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example:

n
∑

k=1

k = 1 + 2 + 3 + . . . + (n − 1) + n

= n + (n − 1) + (n − 2) + . . . + 2 + 1

⇒ 2
∑n

k=1
k = n(n + 1) (C.F.Gauß, ≃ 1784), or

Can be proved by mathematical induction, see textbook Appendix 1.

Limits of finite sums

example: Compute the area R below the graph of y = 1− x2 and above the interval [0, 1].

• Subdivide the interval into n subintervals of width ∆x = 1

n
:

[

0,
1

n

]

,

[

1

n
,
2

n

]

,

[

2

n
,
3

n

]

, . . . ,

[

n − 1

n
,
n

n

]

.

• Choose the lower sum: ck = k
n

, k ∈ N is the rightmost point.

• Do the summation:

f

(

1

n

)

1

n
+ f

(

2

n

)

1

n
+ . . . + f

(n

n

) 1

n
=

n
∑

k=1

f

(

k

n

)

1

n
=

n
∑

k=1

(

1 −
(

k

n

)2
)

1

n
=

=

n
∑

k=1

(

1

n
− k2

n3

)

=
1

n

n
∑

k=1

1− 1

n3

n
∑

k=1

k2 =
1

n
n− 1

n3

n(n + 1)(2n + 1)

6
= 1−2n3 + 3n2 + n

6n3
=

=
2

3
− 1

2n
− 1

6n2

• Lower sum: R ≥ 2

3
− 1

2n
− 1

6n2 .

• Upper sum: R ≤ 2

3
+ 1

2n
− 1

6n2 . (exercise)

• As n → ∞, both sums converge to 2

3
. Therefore, R =

2

3
.

note: Any other choice of ck would give the same result. (why?)
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Riemann sums and definite integral

Consider a typical continuous function over [a, b]:

Partition [a, b] by choosing n − 1 points between a and b:

a = x0 < x1 < x2 < . . . < xn−1 < xn = b .

Note that ∆xk = xk − xk−1, the width of the subinterval [xk−1, xk], may vary.
Choose ck ∈ [xk−1, xk] and construct rectangles:

The resulting sums Sp =

n
∑

k=1

f(ck)∆xk are called Riemann sums for f on [a, b].

Then choose finer and finer partitions by taking the limit such that the width of the largest
subinterval goes to zero.
For a partition P = {x0, x1, . . . , xn} of [a, b] we write ||P || (called “norm”) for the width of
the largest subinterval.
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shorthand notation:

I = lim
||P ||→0

n
∑

k=1

f(ck)∆xk =

∫ b

a

f(x)dx

with

note:
∫ b

a

f(t)dt =

∫ b

a

f(x)dx , etc.

(idea of proof: check convergence of upper/lower sums; see p.345 of book for further details)

example of a nonintegrable function on [0, 1]: f(x) =

{

0 if x ∈ Q

1 if x ∈ R \ Q

Upper sum is always 1; lower sum is always 0 ⇒
∫

1

0
f(x)dx does not exist!
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Theorem 2 For integrable functions f, g on [a, b] the definite integral satisfies the following
rules:

and (g) order of integration:

∫ a

b

f(x)dx = −
∫ b

a

f(x)dx (for idea of proof of (b) to (f) see

book p.348; (a), (g) are definitions!)

Area under the graph and mean value theorem

example: f(x) = x, a = 0, b > 0

Area A = 1

2
b2. Definition of integral: Choose xk = kb/n with right endpoints ck.

I = lim
n→∞

n
∑

k=1

f(ck)∆x = lim
n→∞

n
∑

k=1

kb

n
· b

n
= lim

n→∞

b2

n2

n
∑

k=1

k = lim
n→∞

b2

n2

n(n + 1)

2
=

b2

2
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Consider the (arithmetic) average of n function values on [a, b]:

1

n

n
∑

k=1

f(ck) =
1

n∆x

n
∑

k=1

f(ck)∆x → 1

b − a

∫ b

a

f(x)dx (n → ∞)

example: f(x) = x , x ∈ [0, b] (see above)

av(f) =
1

b − 0

∫ b

0

xdx =
1

b

x2

2

∣

∣

∣

∣

b

0

=
b2

2b
=

b

2

Theorem 3 (The mean value theorem for definite integrals) If f is continuous on
[a, b], then there is a c ∈ [a, b] with

f(c) =
1

b − a

∫ b

a

f(x)dx .

Interpretation, loosely speaking: “f assumes its average value somewhere on [a, b].”
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geometrical meaning:

(proof: see book p.357; not hard; based on max-min-inequality for integrals and intermedi-
ate value theorem for continuous functions)

example: Let f be continuous on [a, b] with a 6= b and

∫ b

a

f(x)dx = 0 .

Show that f(x) = 0 at least once in [a, b].

Solution: According to the last theorem, there is a c ∈ [a, b] with

f(c) =
1

b − a

∫ b

a

f(x)dx = 0 .

The Fundamental Theorem of Calculus

For a continuous function f , define

F (x) =

∫ x

a

f(t)dt .

Geometric interpretation:
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Compute the difference quotient:

F (x + h) − F (x)

h
=

1

h

(
∫ x+h

a

f(t)dt −
∫ x

a

f(t)dt

)

(additivity rule and see figure below) =
1

h

∫ x+h

x

f(t)dt

(mean value theorem for definite integrals) = f(c)

for some c with x ≤ c ≤ x + h.

Since f is continuous,
lim
h→0

f(c) = f(x)

and therefore

F ′(x) = lim
h→0

F (x + h) − F (x)

h
= f(x) .

We have just proven (except a little detail - which one?)

examples:

1.
d

dx

∫ x

a

1

1 + 4t3
dt =

1

1 + 4x3

2. Find
d

dx

∫ x2

2

cos t dt :
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Define

y =

∫ u

2

cos t dt with u = x2

Apply the chain rule:

dy

dx
=

dy

du
· du

dx

=

(

d

du

∫ u

2

cos t dt

)

· du

dx
= cos u · 2x
= 2x cos x2

Let f be continuous on [a, b]. We know that

∫ x

a

f(t)dt = G(x)

is an antiderivative of f , as G′(x) = f(x), see theorem above.
The most general antiderivative is F (x) = G(x) + C on x ∈ (a, b) (why?). We thus have

F (b) − F (a) = (G(b) + C) − (G(a) + C)

= G(b) − G(a)

=

∫ b

a

f(t)dt −
∫ a

a

f(t)dt

(zero width interval rule) =

∫ b

a

f(t)dt .

We have just shown (to be amended by considering F, G at the boundary points a, b)



10

Recipe to calculate

∫ b

a

f(x)dx:

1. Find an antiderivative F of f

2. Calculate F (b) − F (a)

Notation:
F (b) − F (a) = F (x)|ba

example:

∫

4

1

(

3

2

√
x − 4

x2

)

dx =

(

x3/2 +
4

x

)
∣

∣

∣

∣

4

1

=

(

43/2 +
4

4

)

−
(

13/2 +
4

1

)

= 4

Fundamental Theorem of Calculus: summary

d

dx

∫ x

a

f(t)dt =
dF

dx
= f(x)

∫ x

a

f(t)dt =

∫ x

a

dF

dt
dt = F (x) − F (a)

Processes of integration and differentiation are “inverses” of each other!

Finding total areas

example:

To find the area between the graph of y = f(x) and the x-axis over the interval [a, b], do
the following:
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1. Subdivide [a, b] at the zeros of f .

2. Integrate over each subinterval.

3. Add the absolute values of the integrals.

example continued:
f(x) = x3 − x2 − 2x , −1 ≤ x ≤ 2

1. f(x) = x(x2 − x − 2) = x(x + 1)(x − 2): zeros are −1, 0, 2

2.
∫

0

−1

(x3 − x2 − 2x)dx =

(

x4

4
− x3

3
− x2

)
∣

∣

∣

∣

0

−1

=
5

12
∫

2

0

(x3 − x2 − 2x)dx =

(

x4

4
− x3

3
− x2

)
∣

∣

∣

∣

2

0

= −8

3

3. A =
∣

∣

5

12

∣

∣+
∣

∣−8

3

∣

∣ = 37

12

The substitution rule

motivation: develop more general techniques for calculating antiderivatives
Recall the chain rule for F (g(x)):

d

dx
F (g(x)) = F ′(g(x))g′(x)

If F is an antiderivative of f , then

d

dx
F (g(x)) = f(g(x))g′(x)

Now compute
∫

f(g(x))g′(x)dx =

∫
(

d

dx
F (g(x))

)

dx

(fundamental theorem) = F (g(x)) + C

(u = g(x)) = F (u) + C

(fundamental theorem) =

∫

F ′(u)du

=

∫

f(u)du

We have just proved
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method for evaluating
∫

f(g(x))g′(x)dx :

1. Substitute u = g(x), du = g′(x)dx to obtain
∫

f(u)du.

2. Integrate with respect to u.

3. Replace u = g(x).


