MTH4100 Calculus I
 Lecture notes for Week 11

Thomas' Calculus, Sections 5.5 and 7.1 to 7.8 (except Sections 7.5, 7.6)

Rainer Klages

School of Mathematical Sciences
Queen Mary, University of London

Autumn 2009
example: Evaluate

$$
\int \frac{2 z}{\sqrt[3]{z^{2}+5}} d z:
$$

1. Substitute $u=z^{2}+5, d u=2 z d z$:

$$
\int \frac{2 z}{\sqrt[3]{z^{2}+5}} d z=\int u^{-1 / 3} d u
$$

2. Integrate:

$$
\int u^{-1 / 3} d u=\frac{3}{2} u^{2 / 3}+C
$$

3. Replace $u=z^{2}+5$:

$$
\int \frac{2 z}{\sqrt[3]{z^{2}+5}} d z=\frac{3}{2}\left(z^{2}+5\right)^{2 / 3}+C
$$

Transform integrals by using trigonometric identities.
example: Evaluate $\int \sin ^{2} x d x$:
Use half-angle formula $\sin ^{2} x=(1-\cos 2 x) / 2$ to write

$$
\begin{aligned}
\int \sin ^{2} x d x & =\int \frac{1}{2}(1-\cos 2 x) d x \\
& =\frac{1}{2} \int d x-\frac{1}{2} \int \cos 2 x d x \\
& =\frac{1}{2} x-\frac{1}{4} \sin 2 x+C
\end{aligned}
$$

Move on to substitution in definite integrals:
Theorem 1 If g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of g, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

(note that $u=g(x)$! proof straightforward, see book p.377)
example: Evaluate $\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x$.
Substitute $u=x^{3}+1, d u=3 x^{2} d x$.
$x=-1$ gives $u=(-1)^{3}+1=0 ; x=1$ gives $u=1^{3}+1=2$, and we obtain

$$
\begin{aligned}
\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x & =\int_{0}^{2} \sqrt{u} d u \\
& =\left.\frac{2}{3} u^{3 / 2}\right|_{0} ^{2} \\
& =\frac{2}{3} 2^{3 / 2}-0 \\
& =\frac{4 \sqrt{2}}{3}
\end{aligned}
$$

Definite integrals of symmetric functions

Theorem 2 Let f be continuous on the symmetric interval $[-a, a]$.
(a) If f is even, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
(b) If f is odd, then $\int_{-a}^{a} f(x) d x=0$.
(proof by splitting the integrals and straightforward formal manipulations, see book p. 379 for part (a))
examples:

(a)

(b)

Areas between curves

example:

DEFINITION Area Between Curves

If f and g are continuous with $f(x) \geq g(x)$ throughout $[a, b]$, then the area of the region between the curves $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{y}=\boldsymbol{g}(\boldsymbol{x})$ from \boldsymbol{a} to \boldsymbol{b} is the integral of $(f-g)$ from a to b :

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

example: Find the area that is enclosed above by $y=\sqrt{x}$ and below by $y=0$ and $y=x-2$. Two solutions:
(a) by definition:

Split total area into area $A+$ area B.
Find right-hand limit for B by solving $\sqrt{x}=x-2 \Rightarrow x=4$.

$$
\begin{aligned}
\text { total area } & =\int_{0}^{2} \sqrt{x}-0 d x+\int_{2}^{4} \sqrt{x}-(x-2) d x \\
& =\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{2}+\left.\left(\frac{2}{3} x^{3 / 2}-\frac{1}{2} x^{2}+2 x\right)\right|_{2} ^{4} \\
& =\frac{10}{3}
\end{aligned}
$$

(b) the clever way:

The area below the parabola is

$$
A_{1}=\int_{0}^{4} \sqrt{x} d x=\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{4}=\frac{16}{3} .
$$

The area of the triangle is $A_{2}=2 \cdot 2 / 2=2$ so that

$$
\text { total area }=A_{1}-A_{2}=\frac{16}{3}-2=\frac{10}{3} .
$$

Inverse functions and their derivatives

DEFINITION One-to-One Function
A function $f(x)$ is one-to-one on a domain D if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$ in D.

These functions take on any value in their range exactly once.
examples:

Both functions are one-to-one on \mathbb{R}, respectively on \mathbb{R}_{0}^{+}.

The Horizontal Line Test for One-to-One Functions

A function $y=f(x)$ is one-to-one if and only if its graph intersects each horizontal line at most once.
examples:

$y=x^{2}$ is one-to-one on, e.g., \mathbb{R}_{0}^{+}but not \mathbb{R}.
$y=\sin x$ is one-to-one on, e.g., $[0, \pi / 2]$ but not \mathbb{R}.

DEFINITION Inverse Function

Suppose that f is a one-to-one function on a domain D with range R. The inverse function f^{-1} is defined by

$$
f^{-1}(a)=b \text { if } f(b)=a
$$

The domain of f^{-1} is R and the range of f^{-1} is D.
note:

- f^{-1} reads f inverse
- $f^{-1}(x) \neq(f(x))^{-1}=1 / f(x)$! (not an exponent)
- $\left(f^{-1} \circ f\right)(x)=x$ for all $x \in D(f)$
- $\left(f \circ f^{-1}\right)(x)=x$ for all $x \in R(f)$

Read off inverse from graph of $f(x)$, as follows:
usual procedure $x \mapsto y=f(x)$:

for inverse $y \mapsto x=f^{-1}(y)$:

Note that $D(f)=R\left(f^{-1}\right)$ and $R(f)=D\left(f^{-1}\right)$, which suggests to reflect $x=f^{-1}(y)$ along $y=x$:

After reflection, x and y have changed places. Therefore, swap x and $y \ldots$

\ldots and we have found $y=f^{-1}(x)$ graphically.
method for finding inverses algebraically:

1. solve $y=f(x)$ for $x: x=f^{-1}(y)$
2. interchange x and $y: y=f^{-1}(x)$
example: Find the inverse of $y=x^{2}, x \geq 0$.
3. solve $y=f(x)$ for x : $\sqrt{y}=\sqrt{x^{2}}=|x|=x$, as $x \geq 0$.
4. interchange x and $y: y=\sqrt{x}$.

Calculate derivatives of inverse functions.
Differentiate $y=f^{-1}(x)$, or $x=f(y)$:

$$
\frac{d x}{d x}=1=\frac{d}{d x} f(y)=f^{\prime}(y) \frac{d y}{d x} .
$$

Therefore,

$$
\frac{d y}{d x}=\frac{1}{f^{\prime}(y)}=\frac{1}{\frac{d x}{d y}}
$$

The derivatives are reciprocals of one another.
Be precise: $x=f(y)$ means $y=f^{-1}(x)$ so that

$$
\frac{d y}{d x}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Be more precise:

THEOREM 1 The Derivative Rule for Inverses

If f has an interval I as domain and $f^{\prime}(x)$ exists and is never zero on I, then f^{-1} is differentiable at every point in its domain. The value of $\left(f^{-1}\right)^{\prime}$ at a point b in the domain of f^{-1} is the reciprocal of the value of f^{\prime} at the point $a=f^{-1}(b)$:

$$
\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}\left(f^{-1}(b)\right)}
$$

or

$$
\left.\frac{d f^{-1}}{d x}\right|_{x=b}=\left.\frac{1}{\frac{d f}{d x}}\right|_{x=f^{-1}(b)}
$$

example: $f(x)=x^{2}, x \geq 0$ continued.
$f^{-1}(x)=\sqrt{x}$ and $f^{\prime}(x)=2 x$ so that

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{2 f^{-1}(x)}=\frac{1}{2 \sqrt{x}}
$$

note: The theorem can be used pointwise to find a value of the inverse derivative without calculating any formula for the inverse (see the book p. 472 for an example). Otherwise, simply differentiate the inverse.

Natural Logarithms

For $a \in \mathbb{Q} \backslash\{-1\}$ we know that

$$
\int_{1}^{x} t^{a} d t=\frac{1}{a+1}\left(x^{a+1}-1\right)
$$

(Fundamental Theorem of Calculus part 2).
What happens if $a=-1$? $\int_{1}^{x} \frac{1}{t} d t$ is well defined for $x>0$:

DEFINITION The Natural Logarithm Function

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

The range of $\ln x$ is \mathbb{R}.
A special value: the number $\boldsymbol{e}=2.718281828459 \ldots$ (sometimes called Euler's number), satisfying

$$
\ln e=1
$$

Differentiate $\ln x$ (according to the fundamental theorem of calculus part 1):

$$
\frac{d}{d x} \ln x=\frac{d}{d x} \int_{1}^{x} \frac{1}{t} d t=\frac{1}{x}
$$

If $u(x)>0$, by the chain rule

$$
\frac{d}{d x} \ln u=\frac{1}{u} u^{\prime}
$$

If $u(x)=a x$ with $a>0$,

$$
\frac{d}{d x} \ln a x=\frac{1}{a x} a=\frac{1}{x}
$$

Since $\ln a x$ and $\ln x$ have the same derivative (!),

$$
\ln a x=\ln x+C .
$$

For $x=1$ we get $C=\ln a 1-\ln 1=\ln a$ and therefore

$$
\ln a x=\ln a+\ln x .
$$

We have shown rule 1 in the following table:

THEOREM 2 Properties of Logarithms

For any numbers $a>0$ and $x>0$, the natural logarithm satisfies the following rules:

1. Product Rule:
$\ln a x=\ln a+\ln x$
2. Quotient Rule:
$\ln \frac{a}{x}=\ln a-\ln x$
3. Reciprocal Rule:
$\ln \frac{1}{x}=-\ln x \quad$ Rule 2 with $a=1$
4. Power Rule:
$\ln x^{r}=r \ln x$
r rational
(For the proof of rule 4 see book p.480.)
examples: Apply the logarithm properties to function formulas by replacing $a \rightarrow f(x), x \rightarrow$ $g(x)$.
5. $\ln 8+\ln \cos x=\ln (8 \cos x)$
6. $\ln \frac{z^{2}+3}{2 z-1}=\ln \left(z^{2}+3\right)-\ln (2 z-1)$
7. $\ln \cot x=\ln \frac{1}{\tan x}=-\ln \tan x$
8. $\ln \sqrt[5]{x-3}=\ln (x-3)^{1 / 5}=\frac{1}{5} \ln (x-3)$

For $t>0$, the Fundamental Theorem of Calculus tells us that

$$
\int \frac{1}{t} d t=\ln t+C
$$

For $t<0,(-t)$ is positive, and we find analogously

$$
\int \frac{1}{(-t)} d(-t)=\ln (-t)+C
$$

For $t \neq 0$, together this gives

$$
\int \frac{1}{t} d t=\ln |t|+C
$$

Substituting $t=f(x), d t=f^{\prime}(x) d x$ leads to

$$
\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C
$$

(for all $f(x)$ that maintain a constant sign on the range of integration). example:

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x
$$

Substitute $t=\cos x>0, d t=-\sin x d x$ on $(-\pi / 2, \pi / 2)$:

$$
\int \tan x d x=-\int \frac{1}{t} d t=-\ln |t|+C=-\ln |\cos x|+C
$$

Analogously for $\cot x$:

$$
\begin{aligned}
& \int \tan u d u=-\ln |\cos u|+C=\ln |\sec u|+C \\
& \int \cot u d u=\ln |\sin u|+C=-\ln |\csc x|+C
\end{aligned}
$$

The exponential function

$\ln x$ is strictly increasing, therefore invertible:

Definition 1 (Exponential function) For every $x \in \mathbb{R}$, $\exp x=\ln ^{-1} x$.
Recall that $1=\ln e$ so that $\exp 1=e$.
Apply the power rule:

$$
\ln e^{r}=r \ln e=r
$$

so that

$$
e^{r}=\exp r, r \in \mathbb{Q}
$$

But $\exp x$ is defined for any real x, which suggests to define real exponents for base e via $\exp x$:

Definition 2 For every $x \in \mathbb{R}, e^{x}=\exp x$.

It is

$$
\ln \left(e^{a}\right)=a, a \in \mathbb{R}
$$

and

$$
e^{\ln a}=a, a>0
$$

With

$$
\left(e^{\ln a}\right)^{x}=e^{x \ln a}=a^{x}
$$

we can define real powers of positive real numbers a :
Definition 3 (General exponential functions) For every $x \in \mathbb{R}$ and $a>0$, the exponential function with base a is

$$
a^{x}=e^{x \ln a}
$$

note: By using $x^{n}=e^{n \ln x}$, it can be proved that

$$
\frac{d}{d x} x^{n}=n x^{n-1}, x>0,
$$

for all real n. (see book p.492)
We have

THEOREM 3 Laws of Exponents for e^{x}

For all numbers x, x_{1}, and x_{2}, the natural exponential e^{x} obeys the following laws:

1. $e^{x_{1}} \cdot e^{x_{2}}=e^{x_{1}+x_{2}}$
2. $e^{-x}=\frac{1}{e^{x}}$
3. $\frac{e^{x_{1}}}{e^{x_{2}}}=e^{x_{1}-x_{2}}$
4. $\left(e^{x_{1}}\right)^{x_{2}}=e^{x_{1} x_{2}}=\left(e^{x_{2}}\right)^{x_{1}}$

Proof of $1 .:$

$$
\begin{aligned}
\exp \left(x_{1}\right) \cdot \exp \left(x_{2}\right) & =\exp \ln \left(\exp \left(x_{1}\right) \cdot \exp \left(x_{2}\right)\right) \\
\text { (product rule for } \ln x) & =\exp \left(\ln \exp \left(x_{1}\right)+\ln \exp \left(x_{2}\right)\right) \\
& =\exp \left(x_{1}+x_{2}\right)
\end{aligned}
$$

(2. and 3. follow from 1., 4. is proved similarly to 1.)

As $e^{x}=f^{-1}(x)$ with $f(x)=\ln x$ and $f^{\prime}(x)=1 / x$, we find (by using the derivative rule for inverses)

$$
\frac{d}{d x} e^{x}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=f^{-1}(x)=e^{x}
$$

implying

$$
\int e^{x} d x=e^{x}+C
$$

By the chain rule,

$$
\frac{d}{d x} e^{f(x)}=e^{f(x)} f^{\prime}(x)
$$

so that

$$
\int e^{f(x)} f^{\prime}(x) d x=e^{f(x)}+C
$$

or

$$
\int e^{u} d u=e^{u}+C
$$

by substituting $u=f(x)$.

examples:

1.

$$
\frac{d}{d x} e^{\sin x}=e^{\sin x} \frac{d}{d x} \sin x=e^{\sin x} \cos x
$$

2.

$$
\begin{aligned}
\int_{0}^{\ln 2} e^{3 x} d x & =\int_{0}^{\ln 8} e^{u} \frac{1}{3} d u \\
& =\left.\frac{1}{3} e^{u}\right|_{0} ^{\ln 8} \\
& =\frac{7}{3}
\end{aligned}
$$

We defined e via $\ln e=1$ and stated $e=2.718281828459 \ldots$.
Theorem 3 (The number e as a limit)

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

Proof:

$$
\begin{aligned}
\ln \left(\lim _{x \rightarrow 0}(1+x)^{1 / x}\right) & = \\
(\text { continuity of } \ln x) & =\lim _{x \rightarrow 0}\left(\ln (1+x)^{1 / x}\right) \\
(\text { power rule }) & =\lim _{x \rightarrow 0}\left(\frac{1}{x} \ln (1+x)\right) \\
(\ln 1=0 \text { and l'Hôpital) } & =\lim _{x \rightarrow 0} \frac{1}{1+x} \\
& =1 \\
& =\ln (e)
\end{aligned}
$$

q.e.d.

Differentiate general exponential functions of base $a>0$:

$$
\frac{d}{d x} a^{x}=\frac{d}{d x} e^{x \ln a}=e^{x \ln a} \ln a=a^{x} \ln a
$$

implying

$$
\int a^{x} d x=\frac{a^{x}}{\ln a}+C, a \neq 1
$$

example:

$$
\frac{d}{d x} x^{x}=\frac{d}{d x} e^{x \ln x}=e^{x \ln x} \frac{d}{d x}(x \ln x)=x^{x}(1+\ln x)
$$

Definition $4\left(\log _{a} x\right)$ The inverse of $y=a^{x}$ is

$$
\log _{a} x, \text { the logarithm of } x \text { with base } a \text {, }
$$

provided $a>0$ and $a \neq 1$ (why?).
It is

$$
\log _{a}\left(a^{x}\right)=x, x \in \mathbb{R}
$$

and

$$
x=a^{\log _{a} x}, x>0 .
$$

Furthermore,

$$
\ln x=\ln \left(a^{\log _{a} x}\right)=\log _{a} x \cdot \ln a .
$$

yielding

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

note: The algebra for $\log _{a} x$ is precisely the same as that for $\ln x$.

Read

Thomas' Calculus:

Section 7.7 Inverse trigonometric functions, and Section 7.8, Hyperbolic functions

You will need this information for coursework 10!

In the following two sections I explain some very bare essentials that can be found on these pages.

Inverse trigonometric functions

note: sin, cos, sec, csc, tan, cot are not one-to-one unless the domain is restricted. example:

Once the domains are suitably restricted, we can define:

$$
\begin{aligned}
& \arcsin x=\sin ^{-1} x \\
& \arccos x=\cos ^{-1} x \\
& \arctan x=\tan ^{-1} x \\
& \operatorname{arccsc} x=\csc ^{-1} x \\
& \operatorname{arcsec} x=\sec ^{-1} x \\
& \operatorname{arccot} x=\cot ^{-1} x
\end{aligned}
$$

examples:

... and so on.
caution:

$$
\sin ^{-1} x \neq(\sin x)^{-1}
$$

Unfortunately this is inconsistent, since $\sin ^{2} x=(\sin x)^{2}$. Best to avoid $\sin ^{-1} x$ and use $\arcsin x$ etc. instead.
How to differentiate inverse trigonometric functions?
example: Differentiate $y=\arcsin x$.
Start with implicit differentiation of $\sin y=x$,

$$
\cos y \frac{d y}{d x}=1
$$

Solve for $\frac{d y}{d x}$:

$$
\frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin ^{2} y}}
$$

for $-\pi / 2<y<\pi / 2(\cos x=0$ for $x= \pm \pi / 2)$. Therefore, for $|x|<1$,

$$
\frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}}
$$

and, conversely,

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C
$$

example: Evaluate

$$
\int \frac{d x}{\sqrt{4 x-x^{2}}}
$$

Trick: complete the square!

$$
4 x-x^{2}=4-(x-2)^{2}
$$

Now integrate

$$
\begin{aligned}
\int \frac{d x}{\sqrt{4 x-x^{2}}} & =\int \frac{d x}{\sqrt{4-(x-2)^{2}}} \\
(u=x-2) & =\int \frac{d u}{\sqrt{4-u^{2}}} \\
& =\arcsin \frac{u}{2}+C \\
& =\arcsin \left(\frac{x}{2}-1\right)+C
\end{aligned}
$$

Hyperbolic functions

Every function f on $[-a, a]$ can be decomposed into

$$
f(x)=\underbrace{\frac{f(x)+f(-x)}{2}}_{\text {even function }}+\underbrace{\frac{f(x)-f(-x)}{2}}_{\text {odd function }}
$$

For $f(x)=e^{x}$:

$$
e^{x}=\underbrace{\frac{e^{x}+e^{-x}}{2}}_{=\cosh x}+\underbrace{\frac{e^{x}-e^{-x}}{2}}_{=\sinh x}
$$

called hyperbolic sine and hyperbolic cosine.
Define tanh, coth, sech, and csch in analogy to trigonometric functions.
examples:

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}
$$

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

Compare the following with trigonometric functions:

$$
\begin{aligned}
& \text { TABLE 7.6 Identities for } \\
& \text { hyperbolic functions } \\
& \begin{array}{l}
\cosh ^{2} x-\sinh ^{2} x=1 \\
\sinh 2 x=2 \sinh x \cosh x \\
\cosh 2 x=\cosh 2 x+\sinh ^{2} x \\
\cosh x=\frac{\cosh 2 x+1}{2} \\
\sinh ^{2} x=\frac{\cosh 2 x-1}{2} \\
\tanh ^{2} x=1-\operatorname{sech}^{2} x \\
\operatorname{coth}^{2} x=1+\operatorname{csch}^{2} x
\end{array}
\end{aligned}
$$

How to differentiate hyperbolic functions?
example:

$$
\begin{aligned}
\frac{d}{d x} \sinh x & =\frac{d}{d x} \frac{e^{x}-e^{-x}}{2}=\frac{e^{x}+e^{-x}}{2}=\cosh x \\
\frac{d}{d x} \cosh x & =\frac{d}{d x} \frac{e^{x}+e^{-x}}{2}=\frac{e^{x}-e^{-x}}{2}=\sinh x
\end{aligned}
$$

Inverse hyperbolic functions defined in analogy to trigonometric functions.

