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example: Evaluate ∫
2z

3
√

z2 + 5
dz :

1. Substitute u = z2 + 5, du = 2z dz:
∫

2z
3
√

z2 + 5
dz =

∫

u−1/3du

2. Integrate: ∫

u−1/3du =
3

2
u2/3 + C

3. Replace u = z2 + 5: ∫
2z

3
√

z2 + 5
dz =

3

2
(z2 + 5)2/3 + C

Transform integrals by using trigonometric identities.

example: Evaluate

∫

sin2 x dx:

Use half-angle formula sin2 x = (1 − cos 2x)/2 to write
∫

sin2 x dx =

∫
1

2
(1 − cos 2x)dx

=
1

2

∫

dx − 1

2

∫

cos 2x dx

=
1

2
x − 1

4
sin 2x + C

Move on to substitution in definite integrals:

Theorem 1 If g′ is continuous on [a, b] and f is continuous on the range of g, then
∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du .

(note that u = g(x)! proof straightforward, see book p.377)

example: Evaluate

∫ 1

−1

3x2
√

x3 + 1dx.

Substitute u = x3 + 1, du = 3x2dx.
x = −1 gives u = (−1)3 + 1 = 0; x = 1 gives u = 13 + 1 = 2, and we obtain

∫ 1

−1

3x2
√

x3 + 1dx =

∫ 2

0

√
udu

=
2

3
u3/2

∣
∣
∣
∣

2

0

=
2

3
23/2 − 0

=
4
√

2

3
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Definite integrals of symmetric functions

Theorem 2 Let f be continuous on the symmetric interval [−a, a].

(a) If f is even, then
∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx.

(b) If f is odd, then
∫ a

−a
f(x)dx = 0.

(proof by splitting the integrals and straightforward formal manipulations, see book p.379
for part (a))

examples:

Areas between curves
example:
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example: Find the area that is enclosed above by y =
√

x and below by y = 0 and y = x−2.
Two solutions:
(a) by definition:

Split total area into area A + area B.
Find right-hand limit for B by solving

√
x = x − 2 ⇒ x = 4.

total area =

∫ 2

0

√
x − 0dx +

∫ 4

2

√
x − (x − 2)dx

=
2

3
x3/2

∣
∣
∣
∣

2

0

+

(
2

3
x3/2 − 1

2
x2 + 2x

)∣
∣
∣
∣

4

2

=
10

3
(b) the clever way:

The area below the parabola is

A1 =

∫ 4

0

√
xdx =

2

3
x3/2

∣
∣
∣
∣

4

0

=
16

3
.

The area of the triangle is A2 = 2 · 2/2 = 2 so that

total area = A1 − A2 =
16

3
− 2 =

10

3
.
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Inverse functions and their derivatives

These functions take on any value in their range exactly once.
examples:

Both functions are one-to-one on R, respectively on R+
0 .

examples:

y = x2 is one-to-one on, e.g., R+
0 but not R.

y = sin x is one-to-one on, e.g., [0, π/2] but not R.
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note:

• f−1 reads f inverse

• f−1(x) 6= (f(x))−1 = 1/f(x)! (not an exponent)

• (f−1 ◦ f)(x) = x for all x ∈ D(f)

• (f ◦ f−1)(x) = x for all x ∈ R(f)

Read off inverse from graph of f(x), as follows:
usual procedure x 7→ y = f(x):

for inverse y 7→ x = f−1(y):
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Note that D(f) = R(f−1) and R(f) = D(f−1), which suggests to reflect x = f−1(y) along
y = x:

After reflection, x and y have changed places. Therefore, swap x and y. . .

. . . and we have found y = f−1(x) graphically.

method for finding inverses algebraically:

1. solve y = f(x) for x: x = f−1(y)

2. interchange x and y: y = f−1(x)

example: Find the inverse of y = x2, x ≥ 0.

1. solve y = f(x) for x:
√

y =
√

x2 = |x| = x, as x ≥ 0.

2. interchange x and y: y =
√

x.
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Calculate derivatives of inverse functions.
Differentiate y = f−1(x), or x = f(y):

dx

dx
= 1 =

d

dx
f(y) = f ′(y)

dy

dx
.

Therefore,
dy

dx
=

1

f ′(y)
=

1
dx
dy

The derivatives are reciprocals of one another.

Be precise: x = f(y) means y = f−1(x) so that

dy

dx
=

1

f ′(f−1(x))

Be more precise:



9

example: f(x) = x2, x ≥ 0 continued.

f−1(x) =
√

x and f ′(x) = 2x so that

(f−1)′(x) =
1

f ′(f−1(x))
=

1

2f−1(x)
=

1

2
√

x

note: The theorem can be used pointwise to find a value of the inverse derivative without
calculating any formula for the inverse (see the book p.472 for an example). Otherwise,
simply differentiate the inverse.

Natural Logarithms

For a ∈ Q \ {−1} we know that

∫ x

1

tadt =
1

a + 1

(
xa+1 − 1

)

(Fundamental Theorem of Calculus part 2).

What happens if a = −1?

∫ x

1

1

t
dt is well defined for x > 0:
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The range of ln x is R.

A special value: the number e = 2.718281828459 . . . (sometimes called Euler’s number),
satisfying

ln e = 1 .

Differentiate ln x (according to the fundamental theorem of calculus part 1):

d

dx
ln x =

d

dx

∫ x

1

1

t
dt =

1

x
.

If u(x) > 0, by the chain rule

d

dx
ln u =

1

u
u′ .

If u(x) = ax with a > 0,

d

dx
ln ax =

1

ax
a =

1

x

Since ln ax and ln x have the same derivative (!),

ln ax = ln x + C .

For x = 1 we get C = ln a1 − ln 1 = ln a and therefore

ln ax = ln a + ln x .

We have shown rule 1 in the following table:
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(For the proof of rule 4 see book p.480.)
examples: Apply the logarithm properties to function formulas by replacing a → f(x), x →
g(x).

1. ln 8 + ln cosx = ln(8 cosx)

2. ln
z2 + 3

2z − 1
= ln(z2 + 3) − ln(2z − 1)

3. ln cotx = ln
1

tanx
= − ln tan x

4. ln 5
√

x − 3 = ln(x − 3)1/5 =
1

5
ln(x − 3)

For t > 0, the Fundamental Theorem of Calculus tells us that

∫
1

t
dt = ln t + C .

For t < 0, (−t) is positive, and we find analogously

∫
1

(−t)
d(−t) = ln(−t) + C .

For t 6= 0, together this gives
∫

1

t
dt = ln |t| + C

Substituting t = f(x), dt = f ′(x)dx leads to
∫

f ′(x)

f(x)
dx = ln |f(x)| + C

(for all f(x) that maintain a constant sign on the range of integration).
example:

∫

tan x dx =

∫
sin x

cos x
dx
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Substitute t = cos x > 0, dt = − sin x dx on (−π/2, π/2):

∫

tanx dx = −
∫

1

t
dt = − ln |t| + C = − ln | cosx| + C

Analogously for cot x:

The exponential function

ln x is strictly increasing, therefore invertible:

Definition 1 (Exponential function) For every x ∈ R, exp x = ln−1 x.

Recall that 1 = ln e so that exp 1 = e.
Apply the power rule:

ln er = r ln e = r

so that
er = exp r , r ∈ Q .

But exp x is defined for any real x, which suggests to define real exponents for base e via
exp x:

Definition 2 For every x ∈ R, ex = exp x.
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It is
ln(ea) = a , a ∈ R

and
eln a = a , a > 0 .

With
(
eln a

)x
= ex ln a = ax

we can define real powers of positive real numbers a:

Definition 3 (General exponential functions) For every x ∈ R and a > 0, the expo-
nential function with base a is

ax = ex lna .

note: By using xn = en ln x, it can be proved that

d

dx
xn = nxn−1 , x > 0,

for all real n. (see book p.492)
We have

Proof of 1.:

exp(x1) · exp(x2) = exp ln(exp(x1) · exp(x2))

(product rule for ln x) = exp(ln exp(x1) + ln exp(x2))

= exp(x1 + x2)

(2. and 3. follow from 1., 4. is proved similarly to 1.)

As ex = f−1(x) with f(x) = ln x and f ′(x) = 1/x, we find (by using the derivative rule for
inverses)

d

dx
ex =

1

f ′(f−1(x))
= f−1(x) = ex

implying ∫

exdx = ex + C .
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By the chain rule,
d

dx
ef(x) = ef(x)f ′(x)

so that ∫

ef(x)f ′(x)dx = ef(x) + C

or ∫

eudu = eu + C

by substituting u = f(x).

examples:

1.
d

dx
esin x = esin x d

dx
sin x = esin x cos x

2.
∫ ln 2

0

e3xdx =

∫ ln 8

0

eu 1

3
du

=
1

3
eu

∣
∣
∣
∣

ln 8

0

=
7

3

We defined e via ln e = 1 and stated e = 2.718281828459 . . ..

Theorem 3 (The number e as a limit)

e = lim
x→0

(1 + x)1/x

Proof:

ln
(

lim
x→0

(1 + x)1/x
)

=

(continuity of ln x ) = lim
x→0

(
ln(1 + x)1/x

)

(power rule) = lim
x→0

(
1

x
ln(1 + x)

)

(ln 1 = 0 and l’Hôpital) = lim
x→0

1

1 + x
= 1

= ln(e)

q.e.d.

Differentiate general exponential functions of base a > 0:

d

dx
ax =

d

dx
ex ln a = ex ln a ln a = ax ln a
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implying
∫

axdx =
ax

ln a
+ C , a 6= 1

example:

d

dx
xx =

d

dx
ex ln x = ex lnx d

dx
(x ln x) = xx(1 + ln x)

Definition 4 (loga x) The inverse of y = ax is

loga x , the logarithm of x with base a,

provided a > 0 and a 6= 1 (why?).

It is

loga(a
x) = x , x ∈ R

and

x = alog
a

x , x > 0 .

Furthermore,

ln x = ln
(
alog

a
x
)

= loga x · ln a .

yielding loga x =
ln x

ln a
note: The algebra for loga x is precisely the same as that for ln x.

Read

Thomas’ Calculus:

Section 7.7 Inverse trigonometric functions,

and Section 7.8, Hyperbolic functions

You will need this information for coursework 10!

In the following two sections I explain some very bare essentials that can be found on these
pages.

Inverse trigonometric functions

note: sin, cos, sec, csc, tan, cot are not one-to-one unless the domain is restricted.

example:
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Once the domains are suitably restricted, we can define:

arcsin x = sin−1 x arccsc x = csc−1 x

arccos x = cos−1 x arcsec x = sec−1 x

arctan x = tan−1 x arccot x = cot−1 x

examples:

. . . and so on.
caution: sin−1 x 6= (sin x)−1

Unfortunately this is inconsistent, since sin2 x = (sin x)2. Best to avoid sin−1 x and use
arcsin x etc. instead.
How to differentiate inverse trigonometric functions?
example: Differentiate y = arcsin x.
Start with implicit differentiation of sin y = x,

cos y
dy

dx
= 1 .

Solve for dy
dx

:
dy

dx
=

1

cos y
=

1
√

1 − sin2 y
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for −π/2 < y < π/2 (cos x = 0 for x = ±π/2). Therefore, for |x| < 1,

d

dx
arcsin x =

1√
1 − x2

and, conversely,
∫

dx√
1 − x2

= arcsin x + C .

example: Evaluate
∫

dx√
4x − x2

.

Trick: complete the square!

4x − x2 = 4 − (x − 2)2

Now integrate

∫
dx√

4x − x2
=

∫
dx

√

4 − (x − 2)2

(u = x − 2) =

∫
du√

4 − u2

= arcsin
u

2
+ C

= arcsin
(x

2
− 1

)

+ C

Hyperbolic functions

Every function f on [−a, a] can be decomposed into

f(x) =
f(x) + f(−x)

2
︸ ︷︷ ︸

even function

+
f(x) − f(−x)

2
︸ ︷︷ ︸

odd function

For f(x) = ex:

ex =
ex + e−x

2
︸ ︷︷ ︸

=cosh x

+
ex − e−x

2
︸ ︷︷ ︸

=sinhx

,

called hyperbolic sine and hyperbolic cosine.

Define tanh, coth, sech, and csch in analogy to trigonometric functions.

examples:
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sinh x =
ex − e−x

2
cosh x =

ex + e−x

2

Compare the following with trigonometric functions:

How to differentiate hyperbolic functions?
example:

d

dx
sinh x =

d

dx

ex − e−x

2
=

ex + e−x

2
= cosh x

d

dx
cosh x =

d

dx

ex + e−x

2
=

ex − e−x

2
= sinh x

Inverse hyperbolic functions defined in analogy to trigonometric functions.


