MTH4100 Calculus I
 Lecture notes for Week 2

Thomas' Calculus, Sections 1.3 to 1.5

Rainer Klages
School of Mathematical Sciences
Queen Mary University of London
Autumn 2009

Thomas' Calculus, Chapter 1.2:
 Lines, Circles, and Parabolas

What is a function?

examples:
height of the floor of the lecture hall depending on distance; stock market index depending on time; volume of a sphere depending on radius

What do we mean when we say y is a function of x ? Symbolically, we write $y=f(x)$, where

- x is the independent variable (input value of f)
- y is the dependent variable (output value of f at x)
- f is a function ("rule that assigns x to y " - further specify!)

A function acts like a "little machine":

Important: There is uniqueness, i.e., we have only one value $f(x)$ for every x !
Definition $1 A$ function from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

- The set D of all possible input values is called the domain of f.
- The set R of all possible output values of $f(x)$ as x varies throughout D is called the range of f. note: $R \subseteq Y$!
- We write f maps D to Y symbolically as

$$
f: D \rightarrow Y
$$

- We write f maps x to $y=f(x)$ symbolically as

$$
f: x \mapsto y=f(x)
$$

Note the different arrow symbols used!
The natural domain is the largest set of real x which the rule f can be applied to.
examples:

Function	Domain $x \in D$	Range $y \in R$
$y=x^{2}$	$(-\infty, \infty)$	$[0, \infty)$
$y=1 / x$	$(-\infty, 0) \cup(0, \infty)$	$(-\infty, 0) \cup(0, \infty)$
$y=\sqrt{x}$	$[0, \infty)$	$[0, \infty)$
$y=\sqrt{1-x^{2}}$	$[-1,1]$	$[0,1]$

note: A function is specified by the rule f and the domain D :
and

$$
f: x \mapsto y=x^{2}, \quad D(f)=[0, \infty)
$$

$$
f: x \mapsto y=x^{2}, \quad D(f)=(-\infty, \infty)
$$

are different functions!
Definition 2 If f is a function with domain D, its graph consists of the points (x, y) whose coordinates are the input-output pairs for f :

$$
\{(x, f(x)) \mid x \in D\}
$$

examples:

Given the function, one can sketch the graph.

$y=f(x)$ is the height of the graph above/below x.
recall: A function f can have only one value $f(x)$ for each x in its domain! This leads to the vertical line test:

No vertical line can intersect the graph of a function more than once.

(a) $x^{2}+y^{2}=1$

(b) $y=\sqrt{1-x^{2}}$
(c) $y=-\sqrt{1-x^{2}}$

A piecewise defined function is a function that is is described by using different formulas on different parts of its domain.
examples:

- the absolute value function $f(x)=|x|=\left\{\begin{aligned} x & , x \geq 0 \\ -x & , x<0\end{aligned}\right.$

- some other function

$$
f(x)=\left\{\begin{aligned}
-x & , x<0 \\
x^{2} & , 0 \leq x \leq 1 \\
1 & , x>1
\end{aligned}\right.
$$

- the floor function

$$
f(x)=\lfloor x\rfloor
$$

is given by the greatest integer less than or equal to x :

$$
\lfloor 1.3\rfloor=1,\lfloor-2.7\rfloor=-3
$$

Some fundamental types of functions

- linear function: $f(x)=m x+b$
$b=0$: all lines pass through the origin, $f(x)=m x$. One also says " $y=f(x)$ is proportional to x " for some nonzero constant m.

$m=0:$ constant function, $f(x)=b$

- power function: $f(x)=x^{a}$
$a=n \in \mathbb{N}$: graphs of $f(x)$ for $n=1,2,3,4,5$

$a=-n, n \in \mathbb{N}$: graphs of $f(x)$ for $n=-1,-2$

$a \in \mathbb{Q}$: graphs of $f(x)$ for $a=\frac{1}{2}, \frac{1}{3}, \frac{3}{2}, \frac{2}{3}$

- polynomials: $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, n \in \mathbb{N}_{0}$ with coefficients $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} \in \mathbb{R}$ and domain \mathbb{R}
If the leading coefficient $a_{n} \neq 0, n>0, n$ is called the degree of the polynomial. examples: Linear functions with $m \neq 0$ are polynomials of degree 1 .
Three polynomial functions and their graphs:

(a)

(b)

(c)
- rational functions: $f(x)=\frac{p(x)}{q(x)}$
with $p(x)$ and $q(x)$ polynomials and domain $\mathbb{R} \backslash\{x \mid q(x)=0\}$ (never divide by zero!) examples: three rational functions and their graphs

(a)

(b)

(c)
- other classes of functions (to come later):
algebraic functions: any function constructed from polynomials using algebraic operations (including taking roots)
examples:

(a)

(b)

(c)
trigonometric functions
exponential and logarithmic functions
transcendental functions: any function that is not algebraic
examples: trigonometric or exponential functions

Informally,

- a function is called increasing if the graph of the function "climbs" or "rises" as you move from left to right.
- a function is called decreasing if the graph of the function "descends" or "falls" as you move from left to right.
examples:

function	where increasing	where decreasing
$y=x^{2}$	$0 \leq x<\infty$	$-\infty<x \leq 0$
$y=1 / x$	nowhere	$-\infty<x<0$ and $0<x<\infty$
$y=1 / x^{2}$	$-\infty<x<0$	$0<x<\infty$
$y=x^{2 / 3}$	$0 \leq x<\infty$	$-\infty<x \leq 0$

Definition 3 A function $y=f(x)$ is an
even function of x if $f(-x)=f(x)$,
odd function of x if $f(-x)=-f(x)$,
for every x in the function's domain.
examples:

(a)
$f(-x)=(-x)^{2}=x^{2}=f(x)$: even function; graph is symmetric about the y-axis

(b)
$f(-x)=(-x)^{3}=-x^{3}=-f(x)$: odd function; graph is symmetric about the origin

1. $f(-x)=-x=-f(x)$: odd function
2. $f(-x)=-x+1 \neq f(x)$ and $-f(x)=-x-1 \neq f(-x)$: neither even nor odd!

Combining functions

If f and g are functions, then for every $x \in D(f) \cap D(g)$ (that is, for every x that belongs to the domains of both f and g) we define sums, differences, products and quotients:

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f-g)(x) & =f(x)-g(x) \\
(f g)(x) & =f(x) g(x) \\
(f / g)(x) & =f(x) / g(x) \quad \text { if } g(x) \neq 0
\end{aligned}
$$

algebraic operation on functions $=$ algebraic operation on function values

Special case - multiplication by a constant $c \in \mathbb{R}:(c f)(x)=c f(x)$ (take $g(x)=c$ constant function)
examples: combining functions algebraically

$$
f(x)=\sqrt{x} \quad, \quad g(x)=\sqrt{1-x}
$$

(natural) domains:

$$
D(f)=[0, \infty) \quad D(g)=(-\infty, 1]
$$

intersection of both domains:

$$
D(f) \cap D(g)=[0, \infty) \cap(-\infty, 1]=[0,1]
$$

function	formula	domain
$f+g$	$(f+g)(x)=\sqrt{x}+\sqrt{1-x}$	$[0,1]=D(f) \cap D(g)$
$f-g$	$(f-g)(x)=\sqrt{x}-\sqrt{1-x}$	$[0,1]$
$g-f$	$(g-f)(x)=\sqrt{1-x}-\sqrt{x}$	$[0,1]$
$f \cdot g$	$(f \cdot g)(x)=f(x) g(x)=\sqrt{x(1-x)}$	$[0,1]$
f / g	$\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\sqrt{\frac{x}{1-x}}$	$[0,1)(x=1$ excluded $)$
g / f	$\frac{g}{f}(x)=\frac{g(x)}{f(x)}=\sqrt{\frac{1-x}{x}}$	$(0,1](x=0$ excluded $)$

Definition 4 (Composition of functions) If f and g are functions, the composite function $f \circ g$ ("f composed with $g ")$ is defined by

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which $g(x)$ lies in the domain of f, i.e.

$$
D(f \circ g)=\{x \mid x \in D(g) \text { and } g(x) \in D(f)\}
$$

