

MTH4100 Calculus I

Lecture notes for Week 2

Thomas' Calculus, Sections 1.3 to 1.5

Rainer Klages

School of Mathematical Sciences Queen Mary University of London

Autumn 2009

Reaaing Assignment: reaa

Thomas' Calculus, Chapter 1.2: Lines, Circles, and Parabolas

What is a function?

examples:

height of the floor of the lecture hall depending on distance; stock market index depending on time; volume of a sphere depending on radius

What do we mean when we say y is a function of x? Symbolically, we write y = f(x), where

- x is the *independent variable* (input value of f)
- y is the *dependent variable* (output value of f at x)
- f is a function ("rule that assigns x to y" further specify!)

A function acts like a "little machine":

Important: There is *uniqueness*, i.e., we have only one value f(x) for every x!

Definition 1 A function from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

- The set D of all possible *input values* is called the *domain* of f.
- The set R of all possible *output values* of f(x) as x varies throughout D is called the range of f.

```
note: R \subseteq Y !
```

• We write f maps D to Y symbolically as

$$f: D \to Y$$

• We write f maps x to y = f(x) symbolically as

$$f: x \mapsto y = f(x)$$

Note the different arrow symbols used!

The **natural domain** is the largest set of real x which the rule f can be applied to.

examples:

Function	Domain $x \in D$	Range $y \in R$
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
y = 1/x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0) \cup (0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]

note: A function is specified by the rule f and the domain D:

and

$$f: x \mapsto y = x^2 , \quad D(f) = [0, \infty)$$
$$f: x \mapsto y = x^2 , \quad D(f) = (-\infty, \infty)$$

are *different* functions!

Definition 2 If f is a function with domain D, its graph consists of the points (x, y) whose coordinates are the input-output pairs for f:

$$\{(x, f(x)) | x \in D\}$$

examples:

Given the function, one can *sketch* the graph.

y = f(x) is the *height* of the graph above/below x.

recall: A function f can have only one value f(x) for each x in its domain! This leads to the vertical line test:

A **piecewise defined function** is a function that is is described by using *different formulas* on *different parts of its domain*.

examples:

• the *floor function*

 $f(x) = \lfloor x \rfloor$

is given by the greatest integer less than or equal to x:

$$\lfloor 1.3 \rfloor = 1, \, \lfloor -2.7 \rfloor = -3$$

• the *ceiling function*

$$f(x) = \lceil x \rceil$$

is given by the smallest integer greater than or equal to x:

$$\lceil 3.5 \rceil = 4, \ \lceil -1.8 \rceil = -1$$

Some fundamental types of functions

• linear function: f(x) = mx + b

b = 0: all lines pass through the origin, f(x) = mx. One also says "y = f(x) is proportional to x" for some nonzero constant m.

m = 0: constant function, f(x) = b

• power function: $f(x) = x^a$ $a = n \in \mathbb{N}$: graphs of f(x) for n = 1, 2, 3, 4, 5

a = -n, $n \in \mathbb{N}$: graphs of f(x) for n = -1, -2

 $a \in \mathbb{Q}$: graphs of f(x) for $a = \frac{1}{2}, \frac{1}{3}, \frac{3}{2}, \frac{2}{3}$

• polynomials: $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, n \in \mathbb{N}_0$ with coefficients $a_0, a_1, \ldots, a_{n-1}, a_n \in \mathbb{R}$ and domain \mathbb{R}

If the leading coefficient $a_n \neq 0$, n > 0, n is called the *degree* of the polynomial.

examples: Linear functions with $m \neq 0$ are polynomials of degree 1. Three polynomial functions and their graphs:

• rational functions: $f(x) = \frac{p(x)}{q(x)}$

with p(x) and q(x) polynomials and domain $\mathbb{R} \setminus \{x | q(x) = 0\}$ (never divide by zero!) examples: three rational functions and their graphs

• other classes of functions (to come later):

algebraic functions: any function constructed from polynomials using algebraic operations (including taking roots)

examples:

. . .

trigonometric functions exponential and logarithmic functions transcendental functions: any function that is not algebraic **examples:** trigonometric or exponential functions

Informally,

- a function is called **increasing** if the graph of the function "climbs" or "rises" as you move *from left to right*.
- a function is called **decreasing** if the graph of the function "descends" or "falls" as you move *from left to right*.

examples:

function	where increasing	where decreasing
$y = x^2$	$0 \le x < \infty$	$-\infty < x \le 0$
y = 1/x	nowhere	$-\infty < x < 0$ and $0 < x < \infty$
$y = 1/x^2$	$-\infty < x < 0$	$0 < x < \infty$
$y = x^{2/3}$	$0 \le x < \infty$	$-\infty < x \le 0$

Definition 3 A function y = f(x) is an even function of x if f(-x) = f(x), odd function of x if f(-x) = -f(x), for every x in the function's domain.

examples:

 $f(-x) = (-x)^2 = x^2 = f(x)$: even function; graph is symmetric about the y-axis

 $f(-x) = (-x)^3 = -x^3 = -f(x)$: odd function; graph is symmetric about the origin

- 1. f(-x) = -x = -f(x): odd function
- 2. $f(-x) = -x + 1 \neq f(x)$ and $-f(x) = -x 1 \neq f(-x)$: neither even nor odd!

Combining functions

If f and g are functions, then for every $x \in D(f) \cap D(g)$ (that is, for every x that belongs to the domains of both f and g) we define sums, differences, products and quotients:

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$(f/g)(x) = f(x)/g(x) \text{ if } g(x) \neq 0$$

algebraic operation on functions = algebraic operation on function values

Special case - multiplication by a constant $c \in \mathbb{R}$: (cf)(x) = c f(x) (take g(x) = c constant function)

examples: combining functions algebraically

$$f(x) = \sqrt{x} \quad , \quad g(x) = \sqrt{1-x}$$

(natural) domains:

$$D(f) = [0, \infty)$$
 $D(g) = (-\infty, 1]$

intersection of both domains:

$$D(f) \cap D(g) = [0, \infty) \cap (-\infty, 1] = [0, 1]$$

function	formula	domain
f + g	$(f+g)(x) = \sqrt{x} + \sqrt{1-x}$	$[0,1] = D(f) \cap D(g)$
f-g	$(f-g)(x) = \sqrt{x} - \sqrt{1-x}$	[0,1]
g-f	$(g-f)(x) = \sqrt{1-x} - \sqrt{x}$	[0, 1]
$f \cdot g$	$(f \cdot g)(x) = f(x)g(x) = \sqrt{x(1-x)}$	[0,1]
f/g	$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x}{1-x}}$	[0,1) (x = 1 excluded)
g/f	$\frac{g}{f}(x) = \frac{g(x)}{f(x)} = \sqrt{\frac{1-x}{x}}$	(0,1] (x = 0 excluded)

Definition 4 (Composition of functions) If f and g are functions, the composite function $f \circ g$ ("f composed with g") is defined by

The domain of $f \circ g$ consists of the numbers x in the domain of g for which g(x) lies in the domain of f, i.e.

