畀 Queen Mary University of London

MTH4100 Calculus I
 Lecture notes for Week 3

Thomas' Calculus, Sections 1.5, 1.6, 2.1, 2.2 and 2.4

Rainer Klages
School of Mathematical Sciences
Queen Mary University of London
Autumn 2009
examples: finding formulas for composites

$$
\begin{array}{llll}
f(x) & =\sqrt{x} & \text { with } & D(f)=[0, \infty) \\
g(x) & =x+1 & \text { with } & D(g)=(-\infty, \infty)
\end{array}
$$

composite			domain
$\begin{aligned} & (f \circ g)(x)=f(g(x))=\sqrt{g(x)}=\sqrt{x+1} \\ & (g \circ f)(x)=g(f(x))=f(x)+1=\sqrt{x}+1 \\ & (f \circ f)(x)=f(f(x))=\sqrt{f(x)}=\sqrt{\sqrt{x}}=x^{1 / 4} \\ & (g \circ g)(x)=g(g(x))=g(x)+1=x+2 \end{aligned}$			$[-1, \infty)$
			$[0, \infty)$
			$[0, \infty)$
			$(-\infty, \infty)$
$\begin{array}{llll} f(x) & =\sqrt{x} & \text { with } & D(f)=[0, \infty) \\ g(x) & =x^{2} & \text { with } & D(g)=(-\infty, \infty) \end{array}$			
composite domain			
$\begin{aligned} (f \circ g)(x) & =\|x\| & & (-\infty, \infty) \\ (g \circ f)(x) & =x & & {[0, \infty) } \end{aligned}$			

Shifting a graph of a function:

Shift Formulas

Vertical Shifts

$$
y=f(x)+k \quad \text { Shifts the graph of } f u p k \text { units if } k>0
$$

Shifts it down $|k|$ units if $k<0$

Horizontal Shifts

$y=f(x+h) \quad$ Shifts the graph of f left h units if $h>0$
Shifts it right $|h|$ units if $h<0$
examples:

Scaling and reflecting a graph of a function:
For $c>1$,
$y=c f(x) \quad$ stretches the graph of f along the y-axis by a factor of c $y=\frac{1}{c} f(x) \quad$ compresses the graph of f along the y-axis by a factor of c

$y=f(c x) \quad$ compresses the graph of f along the x-axis by a factor of c $y=f(x / c) \quad$ stretches the graph of f along the x-axis by a factor of c

For $c=-1$,
$y=-f(x) \quad$ reflects the graph of f across the x-axis

$y=f(-x) \quad$ reflects the graph of f across the y-axis
Combining scalings and reflections: see next exercise sheet for examples!

Trigonometric functions

The radian measure of the angle $A C B$ is the length θ of arc $A B$ on the unit circle. $s=r \theta$ is the length of arc on a circle of radius r when θ is measured in radians.
conversion formula degrees \leftrightarrow radians:

$$
360^{\circ} \text { corresponds to } 2 \pi \Rightarrow \frac{\text { angle in radians }}{\text { angle in degrees }}=\frac{\pi}{180}
$$

- angles are oriented
- positive angle: counter-clockwise
- negative angle: clockwise
angles can be larger (counter-clockwise) smaller (clockwise) than 2π :

reminder: the six basic trigonometric functions

sine: $\quad \sin \theta=\frac{y}{r} \quad$ cosecant: $\quad \csc \theta=\frac{r}{y}$
cosine: $\quad \cos \theta=\frac{x}{r} \quad$ secant: $\quad \sec \theta=\frac{r}{x}$
tangent: $\tan \theta=\frac{y}{x}$ cotangent: $\cot \theta=\frac{x}{y}$
note: These definitions hold not only for $0 \leq \theta \leq \pi / 2$ but also for $\theta<0$ and $\theta>\pi / 2$. recommended to memorize the following two triangles:

because exact values of trigonometric ratios in the surds form can be read from them example:

$$
\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \quad ; \quad \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}
$$

a more non-trivial example:

From the above triangle and with $r=1, x=-1 / 2$ and $y=\sqrt{3} / 2$ we can read off the values of all trigonometric functions:

$$
\begin{aligned}
& \sin \left(\frac{2}{3} \pi\right)=\frac{y}{r}=\frac{\sqrt{3}}{2} \quad \csc \left(\frac{2}{3} \pi\right)=\frac{r}{y}=\frac{2}{\sqrt{3}} \\
& \cos \left(\frac{2}{3} \pi\right)=\frac{x}{r}=-\frac{1}{2} \quad \sec \left(\frac{2}{3} \pi\right)=\frac{r}{x}=-2 \\
& \tan \left(\frac{2}{3} \pi\right)=\frac{y}{x}=-\sqrt{3} \quad \cot \left(\frac{2}{3} \pi\right)=\frac{x}{y}=-\frac{1}{\sqrt{3}}
\end{aligned}
$$

note: For an angle of measure θ and an angle of measure $\theta+2 \pi$ we have the very same trigonometric function values (why?)

$$
\sin (\theta+2 \pi)=\sin \theta \quad ; \quad \cos (\theta+2 \pi)=\cos \theta \quad ; \quad \tan (\theta+2 \pi)=\tan \theta
$$

and so on.

DEFINITION Periodic Function

A function $f(x)$ is periodic if there is a positive number p such that $f(x+p)=f(x)$ for every value of x. The smallest such value of p is the period of f.

Graphs of trigonometric functions:

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π
(a)

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π
(b)

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $-\infty<y<\infty$
Period: π
(c)

An important trigonometric identity: Since $x=r \cos \theta$ and $y=r \sin \theta$ by definition, for a triangle with $r=1$ we immediately have

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

This is an example of an identity, i.e., an equation that remains true regardless of the values of any variables that appear within it.
counterexample:

$$
\cos \theta=1
$$

This is not an identity, because it is only true for some values of θ, not all.

Reading Assignment: Read Thomas' Calculus

- short paragraph about ellipses, p.44/45
- Section 1.6, p.53-55 about trigonometric function symmetries and identities

You will need this for Coursework 2!

Rates of change and limits

example: growth of a fruit fly population measured experimentally

Average rate of change from day 23 to day 45 ?
For growth rate on a specific day, e.g., day 23 , study the average rates of change over increasingly short time intervals starting at day 23:

\boldsymbol{Q}	Slope of $P Q=\Delta p / \Delta t$ (flies/day)
$(45,340)$	$\frac{340-150}{45-23} \approx 8.6$
$(40,330)$	$\frac{330-150}{40-23} \approx 10.6$
$(35,310)$	$\frac{310-150}{35-23} \approx 13.3$
$(30,265)$	$\frac{265-150}{30-23} \approx 16.4$

Lines approach the red tangent at point P with slope

$$
\frac{350-0}{35-14} \simeq 16.7 \text { flies/day }
$$

Summary: average rate of change and limit

DEFINITION Average Rate of Change over an Interval

The average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}, \quad h \neq 0 .
$$

Show animation!
To move from average rates of change to instantaneous rates of change we need to consider limits!

Definition 1 (informal) Let $f(x)$ be defined on an open interval about x_{0} except possibly at x_{0} itself. If $f(x)$ gets arbitrarily close to the number L (as close to L as we like) for all x sufficiently close to x_{0}, we say that f approaches the limit L as x approaches x_{0}, and we write

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

which is read "the limit of $f(x)$ as x approaches x_{0}."
This is an informal definition, because: What do "arbitrarily close" and "sufficiently close" mean? This will be made mathematically precise in Convergence and Continuity, MTH5104; see also Thomas' Calculus, Section 2.3, if you're curious.
example: How does the function

$$
f(x)=\frac{x^{2}-1}{x-1}
$$

behave near $x_{0}=1$?
Problem: $f(x)$ is not defined for $x_{0}=1$.
But: we can simplify:

This suggests that

$$
\begin{gathered}
f(x)=\frac{(x-1)(x+1)}{x-1}=x+1 \text { for } x \neq 1 \\
\lim _{x \rightarrow 1} f(x)=1+1=2
\end{gathered}
$$

Graphs of these two functions, see (a) and (c):

(a) $f(x)=\frac{x^{2}-1}{x-1}$
(b) $g(x)= \begin{cases}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ 1, & x=1\end{cases}$
(c) $h(x)=x+1$

We say that $f(x)$ approaches the limit 2 as x approaches 1 and write

$$
\lim _{x \rightarrow 1} f(x)=2
$$

note: The limit value does not depend on how the function is defined at x_{0}. All the above 3 functions have limit 2 as $x \rightarrow 1$! However, only for h we have equality of limit and function value:

$$
\lim _{x \rightarrow 1} h(x)=h(1)
$$

Limits at every point:

For any value of x_{0} we have $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} x=x_{0}$.
example: $\lim _{x \rightarrow 3} x=3$

For any value of x_{0} we have $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} k=k$.
example: For $k=5$ we have $\lim _{x \rightarrow-12} 5=\lim _{x \rightarrow 7} 5=5$.
Limits can fail to exist! No limit at $x=0$ - three different examples:

values that grow too large

We have just "convinced ourselves" that for real constants k and c

$$
\lim _{x \rightarrow c} x=c
$$

and

$$
\lim _{x \rightarrow c} k=k .
$$

The following theorem provides the basis to calculate limits of functions that are arithmetic combinations of the above two functions (like polynomials, rational functions, powers):

Theorem 1 (Limit laws) If L, M, c and k are real numbers and $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$, then

1. Sum Rule: $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$

The limit of the sum of two functions is the sum of their limits.
2. Difference Rule: $\lim _{x \rightarrow c}(f(x)-g(x))=L-M$
3. Product Rule: $\lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot M$
4. Constant Multiple Rule: $\lim _{x \rightarrow c}(k \cdot f(x))=k \cdot L$
5. Quotient Rule: $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, M \neq 0$
6. Power Rule: If s and r are integers with no common factor and $s \neq 0$, then

$$
\lim _{x \rightarrow c}(f(x))^{r / s}=L^{r / s}
$$

provided that $L^{r / s}$ is a real number. (If s is even, we assume that $L>0$.)
For a proof of this theorem see Thomas' Calculus Section 2.3 and Appendix 2, or MTH5104.
examples:

- $\lim _{x \rightarrow c}\left(x^{3}-4 x+2\right)=$ (rules 1,2$)$
$=\lim _{x \rightarrow c} x^{3}-\lim _{x \rightarrow c} 4 x+\lim _{x \rightarrow c} 2=($ rules 3 or 6,4$)$
$=c^{3}-4 c+2$
- $\lim _{x \rightarrow-2} \sqrt{4 x^{2}-3}=\sqrt{4(-2)^{2}-3}=\sqrt{13}$ (rules $6,2,3$)

So "sometimes" you can just substitute the value of x.

THEOREM 2 Limits of Polynomials Can Be Found by Substitution
If $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, then

$$
\lim _{x \rightarrow c} P(x)=P(c)=a_{n} c^{n}+a_{n-1} c^{n-1}+\cdots+a_{0}
$$

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution

If the Limit of the Denominator Is Not Zero
If $P(x)$ and $Q(x)$ are polynomials and $Q(c) \neq 0$, then

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)} .
$$

example: Evaluate

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x}
$$

- substitution of $x=1$? No!
- but algebraic simplification is possible:

$$
\frac{x^{2}+x-2}{x^{2}-x}=\frac{(x+2)(x-1)}{x(x-1)}=\frac{x+2}{x}, x \neq 1
$$

- therefore,

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x}=\lim _{x \rightarrow 1} \frac{x+2}{x}=3
$$

example: Evaluate

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+100}-10}{x^{2}}
$$

- substitution of $x=0$?
- trick: algebraic simplification

$$
\begin{aligned}
\frac{\sqrt{x^{2}+100}-10}{x^{2}} & =\frac{\sqrt{x^{2}+100}-10}{x^{2}} \frac{\sqrt{x^{2}+100}+10}{\sqrt{x^{2}+100}+10} \\
& =\frac{\left(x^{2}+100\right)-100}{x^{2}\left(\sqrt{x^{2}+100}+10\right)} \\
& =\frac{1}{\sqrt{x^{2}+100}+10}
\end{aligned}
$$

- therefore

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+100}-10}{x^{2}}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x^{2}+100}+10}=\frac{1}{20}
$$

