

MTH4100 Calculus I

Lecture notes for Week 3

Thomas' Calculus, Sections 1.5, 1.6, 2.1, 2.2 and 2.4

Rainer Klages

School of Mathematical Sciences Queen Mary University of London

Autumn 2009

examples: finding formulas for composites

f(x)	$= \sqrt{x}$ with $-x + 1$ with	$D(f) = [0, \infty)$ $D(a) = (-\infty)$	\sim)
<i>g(x)</i>	-x + 1 with	$D(g) = (-\infty, 0)$	~)
composite			domain
$(f \circ g)(x) = f$	$(g(x)) = \sqrt{g(x)}$	$=\sqrt{x+1}$	$[-1,\infty)$
$(g \circ f)(x) = g$	(f(x)) = f(x) +	$1 = \sqrt{x} + 1$	$[0,\infty)$
$(f \circ f)(x) = f$	$f(f(x)) = \sqrt{f(x)}$	$\overline{)} = \sqrt{\sqrt{x}} = x^{1/4}$	$[0,\infty)$
$(g \circ g)(x) = g(x)$	(g(x)) = g(x) +	1 = x + 2	$(-\infty,\infty)$
f(x)	$=\sqrt{x}$ with	$D(f) = [0,\infty)$	
g(x)	$= x^2$ with	$D(g) = (-\infty, \infty)$	o)
	$\operatorname{composite}$	domain	
	$(f \circ g)(x) = x $	$ (-\infty,\infty)$	
	$(g \circ f)(x) = x$	$[0,\infty)$	

Shifting a graph of a function:

Shift Formulas	
Vertical Shifts	
y = f(x) + k	Shifts the graph of $f up k$ units if $k > 0$
	Shifts it <i>down</i> $ k $ units if $k < 0$
Horizontal Shifts	
y = f(x + h)	Shifts the graph of <i>f</i> left <i>h</i> units if $h > 0$
	Shifts it <i>right</i> $ h $ units if $h < 0$

examples:

Scaling and reflecting a graph of a function: For c > 1,

y = cf(x) stretches the graph of f along the y-axis by a factor of c $y = \frac{1}{c}f(x)$ compresses the graph of f along the y-axis by a factor of c

y = f(cx) compresses the graph of f along the x-axis by a factor of cy = f(x/c) stretches the graph of f along the x-axis by a factor of c

y = f(-x) reflects the graph of f across the y-axis Combining scalings and reflections: see next exercise sheet for examples!

Trigonometric functions

The **radian measure** of the angle ACB is the length θ of arc AB on the unit circle. $s = r\theta$ is the *length of arc* on a circle of radius r when θ is measured in radians.

conversion formula degrees \leftrightarrow radians:

360° corresponds to
$$2\pi \Rightarrow \left| \frac{\text{angle in radians}}{\text{angle in degrees}} - \frac{\pi}{180} \right|$$

- angles are **oriented**
- *positive angle*: counter-clockwise
- *negative angle*: clockwise

angles can be *larger* (counter-clockwise) *smaller* (clockwise) than 2π :

reminder: the six basic trigonometric functions

note: These definitions hold not only for $0 \le \theta \le \pi/2$ but also for $\theta < 0$ and $\theta > \pi/2$. recommended to memorize the following two triangles:

because *exact values* of trigonometric ratios in the *surds form* can be read from them **example:**

$$\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
; $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$

a more non-trivial **example**:

From the above triangle and with r = 1, x = -1/2 and $y = \sqrt{3}/2$ we can read off the values of all trigonometric functions:

$$\sin\left(\frac{2}{3}\pi\right) = \frac{y}{r} = \frac{\sqrt{3}}{2} \qquad \csc\left(\frac{2}{3}\pi\right) = \frac{r}{y} = \frac{2}{\sqrt{3}}$$
$$\cos\left(\frac{2}{3}\pi\right) = \frac{x}{r} = -\frac{1}{2} \qquad \sec\left(\frac{2}{3}\pi\right) = \frac{r}{x} = -2$$
$$\tan\left(\frac{2}{3}\pi\right) = \frac{y}{x} = -\sqrt{3} \qquad \cot\left(\frac{2}{3}\pi\right) = \frac{x}{y} = -\frac{1}{\sqrt{3}}$$

note: For an angle of measure θ and an angle of measure $\theta + 2\pi$ we have the *very same* trigonometric function values (why?)

$$\sin(\theta + 2\pi) = \sin\theta$$
; $\cos(\theta + 2\pi) = \cos\theta$; $\tan(\theta + 2\pi) = \tan\theta$

and so on.

DEFINITION Periodic Function

A function f(x) is **periodic** if there is a positive number p such that f(x + p) = f(x) for every value of x. The smallest such value of p is the **period** of f.

Graphs of trigonometric functions:

An important **trigonometric identity**: Since $x = r \cos \theta$ and $y = r \sin \theta$ by definition, for a triangle with r = 1 we immediately have

This is an example of an **identity**, i.e., an equation that remains true *regardless of the* values of any variables that appear within it.

counterexample:

 $\cos\theta = 1$

This is *not* an identity, because it is only true for *some* values of θ , not all.

Reading Assignment: Read Thomas' Calculus

- \bullet short **paragraph** about ellipses, p.44/45
- Section 1.6, p.53-55 about trigonometric function symmetries and identities

You will need this for Coursework 2!

Rates of change and limits

example: growth of a fruit fly population measured experimentally

Average rate of change from day 23 to day 45?

For growth rate on a specific day, e.g., day 23, study the average rates of change over *increasingly short time intervals* starting at day 23:

Lines approach the red tangent at point P with slope

$$\frac{350-0}{35-14} \simeq 16.7 \text{ flies/day}$$

Summary: average rate of change and limit

DEFINITION Average Rate of Change over an Interval The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is $\Delta y = f(x_2) = f(x_1) = f(x_1 + h) = f(x_2)$

 $\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \qquad h \neq 0.$

Show animation!

To move from **average rates of change** to **instantaneous rates of change** we need to consider **limits**!

Definition 1 (informal) Let f(x) be defined on an open interval about x_0 except possibly at x_0 itself. If f(x) gets **arbitrarily close** to the number L (as close to L as we like) for all x sufficiently close to x_0 , we say that f approaches the limit L as x approaches x_0 , and we write

$$\lim_{x \to x_0} f(x) = L \; ,$$

which is read "the limit of f(x) as x approaches x_0 ."

This is an *informal* definition, because: What do "arbitrarily close" and "sufficiently close" mean? This will be made mathematically precise in *Convergence and Continuity*, *MTH5104*; see also Thomas' Calculus, Section 2.3, if you're curious.

example: How does the function

$$f(x) = \frac{x^2 - 1}{x - 1}$$

behave near $x_0 = 1$? Problem: f(x) is not defined for $x_0 = 1$. But: we can *simplify*:

$$f(x) = \frac{(x-1)(x+1)}{x-1} = x+1$$
 for $x \neq 1$

This *suggests* that

$$\lim_{x \to 1} f(x) = 1 + 1 = 2$$

Graphs of these two functions, see (a) and (c):

We say that f(x) approaches the **limit** 2 as x approaches 1 and write

$$\lim_{x \to 1} f(x) = 2 \,.$$

note: The limit value does not depend on how the function is defined at x_0 . All the above 3 functions have limit 2 as $x \to 1$! However, only for h we have equality of limit and function value:

 $\lim_{x\to 1} h(x) = h(1)$

For any value of x_0 we have $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x = x_0$. example: $\lim_{x \to 3} x = 3$

For any value of x_0 we have $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} k = k$. **example:** For k = 5 we have $\lim_{x \to -12} 5 = \lim_{x \to 7} 5 = 5$. Limits can fail to exist! **No limit** at x = 0 — three different **examples**:

values that oscillate too much

We have just "convinced ourselves" that for real constants k and c

$$\lim_{x \to c} x = c$$

and

$$\lim_{x \to c} k = k$$

The following theorem provides the basis to calculate **limits of functions that are arithmetic combinations** of the above two functions (like polynomials, rational functions, powers):

Theorem 1 (Limit laws) If L, M, c and k are real numbers and $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then

- 1. Sum Rule: $\lim_{x \to c} (f(x) + g(x)) = L + M$ The limit of the sum of two functions is the sum of their limits.
- 2. Difference Rule: $\lim_{x \to c} (f(x) g(x)) = L M$
- 3. Product Rule: $\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$
- 4. Constant Multiple Rule: $\lim_{x\to c} (k \cdot f(x)) = k \cdot L$
- 5. Quotient Rule: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}$, $M \neq 0$
- 6. Power Rule: If s and r are integers with no common factor and $s \neq 0$, then

$$\lim_{x \to c} (f(x))^{r/s} = L^{r/s}$$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

For a proof of this theorem see Thomas' Calculus Section 2.3 and Appendix 2, or MTH5104.

examples:

•
$$\lim_{x \to c} (x^3 - 4x + 2) = (rules \ 1, 2)$$

= $\lim_{x \to c} x^3 - \lim_{x \to c} 4x + \lim_{x \to c} 2 = (rules \ 3 \ or \ 6, 4)$
= $c^3 - 4c + 2$

• $\lim_{x \to -2} \sqrt{4x^2 - 3} = \sqrt{4(-2)^2 - 3} = \sqrt{13} \ (rules \ 6, 2, 3)$

So "sometimes" you can just substitute the value of x.

THEOREM 2 Limits of Polynomials Can Be Found by Substitution If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, then $\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0.$

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}.$$

example: Evaluate

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}$$

- substitution of x = 1? No!
- *but* algebraic simplification is possible:

$$\frac{x^2 + x - 2}{x^2 - x} = \frac{(x+2)(x-1)}{x(x-1)} = \frac{x+2}{x}, \ x \neq 1$$

• therefore,

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{x + 2}{x} = 3$$

example: Evaluate

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2}$$

- substitution of x = 0?
- trick: algebraic simplification

$$\frac{\sqrt{x^2 + 100} - 10}{x^2} = \frac{\sqrt{x^2 + 100} - 10}{x^2} \frac{\sqrt{x^2 + 100} + 10}{\sqrt{x^2 + 100} + 10}$$
$$= \frac{(x^2 + 100) - 100}{x^2(\sqrt{x^2 + 100} + 10)}$$
$$= \frac{1}{\sqrt{x^2 + 100} + 10}$$

• therefore

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 100} + 10} = \frac{1}{20}$$