MTH4100 Calculus I Lecture notes for Week 5

Thomas' Calculus, Sections 2.6 to 3.5 except 3.3

Rainer Klages

School of Mathematical Sciences
Queen Mary University of London

Autumn 2009

Continuous extension to a point

 example:$$
f(x)=\frac{\sin x}{x}
$$

NOT TO SCALE

is defined and continuous for all $x \neq 0$. As $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, it makes sense to define a new function

$$
F(x)=\left\{\begin{array}{cc}
\frac{\sin x}{x} & \text { for } x \neq 0 \\
1 & \text { for } x=0
\end{array}\right.
$$

Definition 1 If $\lim _{x \rightarrow c} f(x)=L$ exists, but $f(c)$ is not defined, we define a new function

$$
F(x)=\left\{\begin{array}{cc}
f(x) & \text { for } x \neq c \\
L & \text { for } x=c
\end{array}\right.
$$

which is continuous at c. It is called the continuous extension of $f(x)$ to c.
A function has the intermediate value property if whenever it takes on two values, it also takes on all the values in between.

THEOREM 11 The Intermediate Value Theorem for Continuous Functions
A function $y=f(x)$ that is continuous on a closed interval $[a, b]$ takes on every value between $f(a)$ and $f(b)$. In other words, if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

Geometrical interpretation of this theorem: Any horizontal line crossing the y-axis between $f(a)$ and $f(b)$ will cross the curve $y=f(x)$ at least once over the interval $[a, b]$.

Continuity is essential: if f is discontinuous at any point of the interval, then the function may "jump" and miss some values.

Differentiation

Recall our discussion of average and instantaneous rates of change.
example: revisit growth of fruit fly population

\boldsymbol{Q}	Slope of $P Q=\Delta p / \Delta t$ (flies/day)
$(45,340)$	$\frac{340-150}{45-23} \approx 8.6$
$(40,330)$	$\frac{330-150}{40-23} \approx 10.6$
$(35,310)$	$\frac{310-150}{35-23} \approx 13.3$
$(30,265)$	$\frac{265-150}{30-23} \approx 16.4$

basic idea:

- Investigate the limit of the secant slopes as Q approaches P.
- Take it to be the slope of the tangent at P.

$$
\begin{array}{|l|}
\hline \text { Now we can use limits to make this idea precise... } \\
\hline
\end{array}
$$

example: Find the slope of the parabola $y=x^{2}$ at the point $P(2,4)$.

- Choose a point Q a horizontal distance $h \neq 0$ away from P,

$$
Q\left(2+h,(2+h)^{2}\right) .
$$

- The secant through P and Q has the slope

$$
\frac{\Delta y}{\Delta x}=\frac{(2+h)^{2}-2^{2}}{(2+h)-2}=\frac{4+4 h+h^{2}-4}{h}=4+h .
$$

- As Q approaches $P h$ approaches 0 , hence

$$
m=\lim _{h \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{h \rightarrow 0}(4+h)=4
$$

must be the parabola's slope at P.

- The equation of the tangent through $P(2,4)$ is $y=y_{1}+m\left(x-x_{1}\right)$; here: $y=4+4(x-2)$ or $y=4 x-4$.

summary:

Now generalise to arbitrary curves and arbitrary points:

DEFINITIONS Slope, Tangent Line

The slope of the curve $y=f(x)$ at the point $P\left(x_{0}, f\left(x_{0}\right)\right)$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \quad \text { (provided the limit exists). }
$$

The tangent line to the curve at P is the line through P with this slope.

Finding the Tangent to the Curve $y=f(x)$ at $\left(x_{0}, y_{0}\right)$

1. Calculate $f\left(x_{0}\right)$ and $f\left(x_{0}+h\right)$.
2. Calculate the slope

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

3. If the limit exists, find the tangent line as

$$
y=y_{0}+m\left(x-x_{0}\right) .
$$

example: Find slope and tangent to $y=1 / x$ at $x_{0}=a \neq 0$

1. $f(a)=\frac{1}{a}, f(a+h)=\frac{1}{a+h}$
2. slope:

$$
\begin{aligned}
m & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a-(a+h)}{h \cdot a(a+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{a(a+h)}=-\frac{1}{a^{2}}
\end{aligned}
$$

3. tangent line at $(a, 1 / a): y=\frac{1}{a}+\left(-\frac{1}{a^{2}}\right)(x-a)$ or $y=\frac{2}{a}-\frac{x}{a^{2}}$.

The expression $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ is called the difference quotient of f at x_{0} with increment h. The limit as h approaches 0 , if it exists, is called the derivative of f at x_{0}.

Let $x \in D(f)$.

DEFINITION Derivative Function

The derivative of the function $f(x)$ with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists.

If $f^{\prime}(x)$ exists, we say that f is differentiable at x.
Choose $z=x+h: h=z-x$ approaches 0 if and only if $z \rightarrow x$.

Alternative Formula for the Derivative

$$
f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}
$$

Equivalent notation: If $y=f(x), y^{\prime}=f^{\prime}(x)=\frac{d}{d x} f(x)=\frac{d y}{d x}$.
Calculating a derivative is called differentiation ("derivation" is something else!).
example: Differentiate from first principles $f(x)=\frac{x}{x-1}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+h}{x+h-1}-\frac{x}{x-1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{(x+h)(x-1)-x(x+h-1)}{(x+h-1)(x-1)} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{-h}{(x+h-1)(x-1)} \\
& =-\frac{1}{(x-1)^{2}}
\end{aligned}
$$

example: Differentiate $f(x)=\sqrt{x}$ by using the alternative formula for derivatives.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x} \\
& =\lim _{z \rightarrow x} \frac{\sqrt{z}-\sqrt{x}}{z-x} \\
& =\lim _{z \rightarrow x} \frac{\sqrt{z}-\sqrt{x}}{(\sqrt{z}-\sqrt{x})(\sqrt{z}+\sqrt{x})} \\
& =\lim _{z \rightarrow x} \frac{1}{\sqrt{z}+\sqrt{x}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

note: For $f^{\prime}(x)$ at $x=4$, one sometimes writes

$$
f^{\prime}(4)=\left.\frac{d}{d x} \sqrt{x}\right|_{x=4}=\left.\frac{1}{2 \sqrt{x}}\right|_{x=4}
$$

One-sided derivatives

In analogy to one-sided limits, we define one-sided derivatives:

$$
\begin{array}{ll}
\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h} & \text { right-hand derivative at } x \\
\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h} & \text { left-hand derivative at } x
\end{array}
$$

f is differentiable at x if and only if these two limits exist and are equal.
example: Show that $f(x)=|x|$ is not differentiable at $x=0 . \quad$ [2009 exam question]

- right-hand derivative at $x=0$:

$$
\lim _{h \rightarrow 0^{+}} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=1
$$

- left-hand derivative at $x=0$:

$$
\lim _{h \rightarrow 0^{-}} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=-1,
$$

so the right-hand and left-hand derivatives differ.
Theorem 1 If f has a derivative at $x=c$, then f is continuous at $x=c$.
Proof: Trick: For $h \neq 0$, write

$$
f(c+h)=f(c)+\frac{f(c+h)-f(c)}{h} h .
$$

By assumption, $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=f^{\prime}(c)$. Therefore,

$$
\lim _{h \rightarrow 0} f(c+h)=f(c)+f^{\prime}(c) \cdot 0=f(c) .
$$

According to definition of continuity, f is continuous at $x=c$.
caution: The converse of the theorem is false!
note: The theorem implies that if a function is discontinuous at $x=c$, then it is not differentiable there.

Differentiation rules ('machinery')

Proof of one rule see ff; proof of other rules see book, Section 3.2.
Rule 1 (Derivative of a Constant Function) If f has the constant value $f(x)=c$, then

$$
\frac{d f}{d x}=\frac{d}{d x}(c)=0
$$

Rule 2 (Power Rule for Positive Integers) If n is a positive integer, then

$$
\frac{d}{d x} x^{n}=n x^{n-1} .
$$

Rule 3 (Constant Multiple Rule) If u is a differentiable function of x, and c is a constant, then

$$
\frac{d}{d x}(c u)=c \frac{d u}{d x}
$$

Proof:

$$
\begin{aligned}
\frac{d}{d x} c u & = \\
\text { (def. of derivative) } & =\lim _{h \rightarrow 0} \frac{c u(x+h)-c u(x)}{h} \\
\text { (limit laws) } & =c \lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h} \\
(u \text { is differentiable) } & =c \frac{d u}{d x}
\end{aligned}
$$

Rule 4 (Derivative Sum Rule) If u and v are differentiable functions of x, then

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x} .
$$

example: Differentiate $y=3 x^{4}+2$.

$$
\begin{array}{ll}
\frac{d y}{d x} & =\frac{d}{d x}\left(3 x^{4}+2\right) \\
\text { (rule 4) } & =\frac{d}{d x}\left(3 x^{4}\right)+\frac{d}{d x}(2) \\
\text { (rule 3) } & =3 \frac{d}{d x}\left(x^{4}\right)+\frac{d}{d x}(2) \\
\text { (rule 2) } & =3 \cdot 4 x^{3}+\frac{d}{d x}(2) \\
\text { (rule 1) } & =12 x^{3}+0=12 x^{3}
\end{array}
$$

Rule 5 (Derivative Product Rule) If u and v are differentiable functions of x, then

$$
\frac{d}{d x}(u v)=\frac{d u}{d x} v+u \frac{d v}{d x} .
$$

example: Differentiate $y=\left(x^{2}+1\right)\left(x^{3}+3\right)$.

$$
\begin{aligned}
& \text { here: } u=x^{2}+1, \quad v=x^{3}+3 \\
& u^{\prime}=2 x, \quad v^{\prime}=3 x^{2} \\
& y^{\prime}=2 x\left(x^{3}+3\right)+\left(x^{2}+1\right) 3 x^{2}=5 x^{4}+3 x^{2}+6 x
\end{aligned}
$$

Rule 6 (Derivative Quotient Rule) If u and v are differentiable functions of x and $v(x) \neq 0$, then

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{\frac{d u}{d x} v-u \frac{d v}{d x}}{v^{2}}
$$

example: Differentiate $y=\frac{t-2}{t^{2}+1}$.

$$
\begin{gathered}
\text { here: } u=t-2, \quad v=t^{2}+1 \\
u^{\prime}=1, \quad v^{\prime}=2 t \\
y^{\prime}=\frac{1\left(t^{2}+1\right)-(t-2) 2 t}{\left(t^{2}+1\right)^{2}}=\frac{-t^{2}+4 t+1}{\left(t^{2}+1\right)^{2}}
\end{gathered}
$$

Common mistakes: $(u v)^{\prime}=u^{\prime} v^{\prime}$ and $(u / v)^{\prime}=u^{\prime} / v^{\prime}$ are generally WRONG!
Rule 7 (Power Rule for Negative Integers) If n is a negative integer and $x \neq 0$, then

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

(Proof: define $n=-m$ and use the quotient rule.)
example: $\frac{d}{d x}\left(\frac{1}{x^{11}}\right)=\frac{d}{d x}\left(x^{-11}\right)=-11 x^{-12}$.

Higher-order derivatives

If f^{\prime} is differentiable, we call $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ the second derivative of f.
Notation: $f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d y^{\prime}}{d x}=y^{\prime \prime}$.
Similarly, we write $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$ for the third derivative, and generally for the n-th derivative, $n \in \mathbb{N}_{0}: f^{(n)}=\left(f^{(n-1)}\right)^{\prime} \quad$ with $\quad f^{(0)}=f$.
example: Differentiate repeatedly $f(x)=x^{3}$ and $g(x)=x^{-2}$.

$$
\begin{aligned}
f^{\prime}(x)=3 x^{2} & g^{\prime}(x)=-2 x^{-3} \\
f^{\prime \prime}(x)=6 x & g^{\prime \prime}(x)=6 x^{-4} \\
f^{\prime \prime \prime}(x)=6 & g^{\prime \prime \prime}(x)=-24 x^{-5} \\
f^{(4)}(x)=0 & g^{(4)}(x)=\ldots
\end{aligned}
$$

