

MTH4100 Calculus I

Lecture notes for Week 6

Thomas' Calculus, Sections 3.5 to 4.1 except 3.7

Rainer Klages

School of Mathematical Sciences Queen Mary University of London

Autumn 2009

Derivatives of trigonometric functions

- (1) Differentiate $f(x) = \sin x$:
 - Start with the **definition** of f'(x):

$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

• Use $\sin(x+h) = \sin x \cos h + \cos x \sin h$:

$$f'(x) = \lim_{h \to 0} \frac{\sin x(\cos h - 1) + \cos x \sin h}{h}$$

• Collect terms and apply limit laws:

$$f'(x) = \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \lim_{h \to 0} \frac{\sin h}{h}$$

- Use $\lim_{h\to 0} \frac{\cos h 1}{h} = 0$ and $\lim_{h\to 0} \frac{\sin h}{h} = 1$ to conclude $f'(x) = \cos x$.
- (2) A very similar derivation gives $\frac{d}{dx}\cos x = -\sin x$.

(3) We still need
$$\frac{\mathbf{d}}{\mathbf{d}\mathbf{x}} \tan \mathbf{x} = \frac{d}{dx} \left(\frac{\sin x}{\cos x} \right)$$
(quotient rule)
$$= \frac{\frac{d}{dx} (\sin x) \cos x - \sin x \frac{d}{dx} (\cos x)}{\cos^2 x}$$

$$= \frac{\cos x \cos x - \sin x (-\sin x)}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

Summary: Derivatives of trigonometric functions

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\tan x = \frac{1}{\cos^2 x} = \sec^2 x$$

$$\frac{d}{dx}\sec x = \frac{d}{dx}\left(\frac{1}{\cos x}\right) = \sec x \tan x$$

$$\frac{d}{dx}\cot x = \frac{d}{dx}\left(\frac{\cos x}{\sin x}\right) = -\csc^2 x$$

$$\frac{d}{dx}\csc x = \frac{d}{dx}\left(\frac{1}{\sin x}\right) = -\csc x \cot x$$

Derivative of composites

example: relating derivatives

 $y = \frac{3}{2}x$ is the same as $y = \frac{1}{2}u$ and u = 3x. By differentiating

$$\frac{dy}{dx} = \frac{3}{2} \; , \quad \frac{dy}{du} = \frac{1}{2} \; , \quad \frac{du}{dx} = 3 \; ,$$

we find that

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \ .$$

Coincidence or general formula: Do rates of change multiply?

The chain rule:

THEOREM 3 The Chain Rule

If f(u) is differentiable at the point u = g(x) and g(x) is differentiable at x, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x, and

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$$

In Leibniz's notation, if y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx},$$

where dy/du is evaluated at u = g(x).

examples:

(1) Differentiate $x(t) = \cos(t+1)$.

Here: Choose $x = \cos u$ and u = t + 1 and differentiate,

$$\frac{dx}{du} = -\sin u$$
 and $\frac{du}{dt} = 1$.

Then

$$\frac{dx}{dt} = (-\sin u) \cdot 1 = -\sin(t+1) \ .$$

(2)
$$\frac{d}{dx}\sin(x^2 + x) = \cos(x^2 + x)(2x + 1)$$

Parametric equations

example:

Describe a point moving in the xy-plane as a function of a **parameter** t ("time") by two functions

$$x = f(t)$$
, $y = g(t)$.

This may be the graph of a function, but it need not be.

DEFINITION Parametric Curve

If x and y are given as functions

$$x = f(t), \qquad y = g(t)$$

over an interval of t-values, then the set of points (x, y) = (f(t), g(t)) defined by these equations is a **parametric curve**. The equations are **parametric equations** for the curve.

The variable t is a **parameter** for the curve. If $t \in [a, b]$, which is called a **parameter** interval, then (f(a), g(a)) is the initial point, and (f(b), g(b)) is the terminal point. Equations and interval constitute a **parametrisation** of the curve.

examples:

(1) Given is the parametrisation $x=\sqrt{t}$, y=t , $t\geq 0.$ What is the path defined by these equations?

Solve for y = f(x): y = t, $x^2 = t \Rightarrow y = x^2$. Note that the domain of f is only $[0, \infty)$!

- (2) Find a parametrisation for the line segment from (-2, 1) to (3, 5).
 - Start at (-2,1) for t=0 by making the **ansatz** ("educated guess")

$$x = -2 + at$$
, $y = 1 + bt$.

• Implement the terminal point at (3,5) for t=1:

$$3 = -2 + a$$
, $5 = 1 + b$.

- We conclude that a = 5, b = 4.
- Therefore, the solution based on our ansatz is:

$$x = -2 + 5t$$
, $y = 1 + 4t$, $0 \le t \le 1$,

which indeed defines a straight line (why?).

A parametrised curve x = f(t), y = g(t) is **differentiable** at t if f and g are differentiable at t. At a point where g is a differentiable function of g, say g = g(x), it is g = g(x(t)) and by the chain rule

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} .$$

Solving for dy/dx yields the

Parametric Formula for dy/dx

If all three derivatives exist and $dx/dt \neq 0$,

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

example: Describe the motion of a particle whose position P(x,y) at time t is given by

$$x = a \cos t$$
, $y = b \sin t$, $0 \le t \le 2\pi$

and compute the slope at P.

• Find the equation in (x, y) by eliminating t: Using $\cos t = x/a$, $\sin t = y/b$ and $\cos^2 t + \sin^2 t = 1$ we obtain

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \; ,$$

which is the equation of an **ellipse**.

• With $\frac{dx}{dt} = -a \sin t$ and $\frac{dy}{dt} = b \cos t$ the parametric formula yields

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{b\cos t}{-a\sin t} \ .$$

Eliminating t again we obtain $\frac{dy}{dx} = -\frac{b^2}{a^2}\frac{x}{y}$.

Implicit differentiation

problem: We want to compute y' but do not have an **explicit relation** y = f(x) available. Rather, we have an **implicit relation**

$$F(x,y) = 0$$

between x and y.

example:

$$F(x,y) = x^2 + y^2 - 1 = 0.$$

solutions:

- 1. Use parametrisation, for example, $x = \cos t$, $y = \sin t$ for the unit circle.
- 2. If no obvious parametrisation of F(x,y)=0 is possible: use implicit differentiation.

example: Given $y^2 = x$, compute y'.

New method by differentiating implicitly:

- Differentiating both sides of the equation gives 2yy' = 1.
- Solving for y' we get $y' = \frac{1}{2y}$.

Compare with differentiating *explicitly*:

• For $y^2 = x$ we have the two explicit solutions $|y| = \sqrt{x} \Rightarrow y_{1,2} = \pm \sqrt{x}$ with derivatives $y'_{1,2} = \pm \frac{1}{2\sqrt{x}}$.

• Compare with solution above: substituting $y = y_{1,2} = \pm \sqrt{x}$ therein reproduces the explicit result.

Implicit Differentiation

- Differentiate both sides of the equation with respect to x, treating y as a differentiable function of x.
- 2. Collect the terms with dy/dx on one side of the equation.
- 3. Solve for dy/dx.

example: Find dy/dx for the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

$$1. \ \frac{2x}{a^2} + \frac{2yy'}{b^2} = 0$$

2.
$$\frac{2yy'}{b^2} = -\frac{2x}{a^2}$$

3.
$$y' = -\frac{b^2}{a^2} \frac{x}{y}$$
, as obtained via parametrisation in the previous lecture.

application: Motivate the power rule for rational powers by differentiating $y=x^{\frac{p}{q}}$ using implicit differentiation:

• write

• differentiate:
$$qy^{q-1}y' = px^{p-1}$$

• solve for y' as a function of x:

$$y' = \frac{p}{q} \frac{x^{p-1}}{y^{q-1}} = \frac{p}{q} \frac{x^p}{y^q} \frac{y}{x} = \frac{p}{q} \frac{y}{x} = \frac{p}{q} \frac{x^{\frac{p}{q}}}{x} = \frac{p}{q} x^{\frac{p}{q}-1}$$

 $y^q = x^p$

THEOREM 4 Power Rule for Rational Powers

If p/q is a rational number, then $x^{p/q}$ is differentiable at every interior point of the domain of $x^{(p/q)-1}$, and

$$\frac{d}{dx}x^{p/q} = \frac{p}{q}x^{(p/q)-1}.$$

note: Above we have silently assumed that y' exists! Therefore we have 'motivated' but not (yet) proved this theorem!

Linearisation

"Close to" the point (a, f(a)), the tangent L(x) = f(a) + f'(a)(x - a) (point-slope form) is a "good" approximation for y = f(x).

DEFINITIONS Linearization, Standard Linear Approximation

If f is differentiable at x = a, then the approximating function

$$L(x) = f(a) + f'(a)(x - a)$$

is the **linearization** of f at a. The approximation

$$f(x) \approx L(x)$$

of f by L is the **standard linear approximation** of f at a. The point x = a is the **center** of the approximation.

example: Compute the linearisation for $f(x) = \sqrt{1+x}$ at x = a = 0.

We have f(0) = 1 and with $f'(x) = \frac{1}{2}(1+x)^{-1/2}$ we get $f'(0) = \frac{1}{2}$, so

$$L(x) = 1 + \frac{1}{2}x .$$

How accurate is this approximation? Magnify region around x = 0:

Approximation	True value	True value - approximation
$\sqrt{1.2} \approx 1 + \frac{0.2}{2} = 1.10$	1.095445	<10 ⁻²
$\sqrt{1.05} \approx 1 + \frac{0.05}{2} = 1.025$	1.024695	<10 ⁻³
$\sqrt{1.005} \approx 1 + \frac{0.005}{2} = 1.00250$	1.002497	<10 ⁻⁵

Why are linearisations useful? Simplify problems, solve equations analytically, \dots many applications!

Make phrases like "close to a point (a, f(a)) the linearisation is a good approximation" mathematically precise in terms of **differentials**:

$$\underbrace{L(x) = f(a) + f'(a)(x - a)}_{dy} = f'(a) \underbrace{(x - a)}_{dx}$$

Choose x = a + dx, a = x:

DEFINITION Differential

Let y = f(x) be a differentiable function. The **differential** dx is an independent variable. The **differential** dy is

$$dy = f'(x) dx$$
.

Reading Assignment: read

Thomas' Calculus, p.225-228 about **Differentials**

Extreme values of functions

DEFINITIONS Absolute Maximum, Absolute Minimum

Let f be a function with domain D. Then f has an **absolute maximum** value on D at a point c if

$$f(x) \le f(c)$$
 for all x in D

and an **absolute minimum** value on D at c if

$$f(x) \ge f(c)$$
 for all x in D .

These values are also called absolute **extrema**, or **global** extrema.

example:

(c).

	Domain	abs. max.	abs. min.
(a)	$(-\infty,\infty)$	none	0, at 0
(b)	[0, 2]	4, at 2	0, at 0
(c)	(0, 2]	4, at 2	none
(d)	(0,2)	none	none

The existence of a global maximum and minimum is ensured by

THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f attains both an absolute maximum value M and an absolute minimum value m in [a, b]. That is, there are numbers x_1 and x_2 in [a, b] with $f(x_1) = m$, $f(x_2) = M$, and $m \le f(x) \le M$ for every other x in [a, b] (Figure 4.3).

examples:

Classify maxima and minima:

Absolute minimum No smaller value of

f anywhere. Also a

local minimum.

a

Maximum at interior point,

Local maximum

No greater value of

f nearby.

c

minimum at endpoint

Also a local maximum. y = f(x)Local minimum No smaller value of f nearby.

d

No greater value of \int anywhere.

Minimum at interior point,

maximum at endpoint

Absolute maximum

No smaller value of

f nearby.

DEFINITIONS Local Maximum, Local Minimum

A function f has a **local maximum** value at an interior point c of its domain if

 $f(x) \le f(c)$ for all x in some open interval containing c.

A function f has a **local minimum** value at an interior point c of its domain if

 $f(x) \ge f(c)$ for all x in some open interval containing c.

...and the extension of this definition to endpoints via half-open intervals at endpoints. **note:** *Absolute* extrema are automatically *local* extrema!