MTH4100 Calculus I
 Lecture notes for Week 6

Thomas' Calculus, Sections 3.5 to 4.1 except 3.7

Rainer Klages

School of Mathematical Sciences
Queen Mary University of London

Autumn 2009

Derivatives of trigonometric functions

(1) Differentiate $f(x)=\sin x$:

- Start with the definition of $f^{\prime}(x)$:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}
$$

- Use $\sin (x+h)=\sin x \cos h+\cos x \sin h$:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin x(\cos h-1)+\cos x \sin h}{h}
$$

- Collect terms and apply limit laws:

$$
f^{\prime}(x)=\sin x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h}
$$

- Use $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0$ and $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$ to conclude $f^{\prime}(x)=\cos x$.
(2) A very similar derivation gives $\frac{d}{d x} \cos x=-\sin x$.
(3) We still need

$$
\begin{aligned}
\frac{\mathbf{d}}{\mathbf{d x}} \tan \mathbf{x} & =\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right) \\
\text { (quotient rule) } & =\frac{\frac{d}{d x}(\sin x) \cos x-\sin x \frac{d}{d x}(\cos x)}{\cos ^{2} x} \\
& =\frac{\cos x \cos x-\sin x(-\sin x)}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} \mathbf{x}}
\end{aligned}
$$

Summary: Derivatives of trigonometric functions

$$
\begin{aligned}
\frac{d}{d x} \sin x & =\cos x \\
\frac{d}{d x} \cos x & =-\sin x \\
\frac{d}{d x} \tan x & =\frac{1}{\cos ^{2} x}=\sec ^{2} x \\
\frac{d}{d x} \sec x & =\frac{d}{d x}\left(\frac{1}{\cos x}\right)=\sec x \tan x \\
\frac{d}{d x} \cot x & =\frac{d}{d x}\left(\frac{\cos x}{\sin x}\right)=-\csc ^{2} x \\
\frac{d}{d x} \csc x & =\frac{d}{d x}\left(\frac{1}{\sin x}\right)=-\csc x \cot x
\end{aligned}
$$

Derivative of composites

example: relating derivatives
$y=\frac{3}{2} x$ is the same as $y=\frac{1}{2} u$ and $u=3 x$. By differentiating

$$
\frac{d y}{d x}=\frac{3}{2}, \quad \frac{d y}{d u}=\frac{1}{2}, \quad \frac{d u}{d x}=3
$$

we find that

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Coincidence or general formula: Do rates of change multiply?
The chain rule:

THEOREM 3 The Chain Rule

If $f(u)$ is differentiable at the point $u=g(x)$ and $g(x)$ is differentiable at x, then the composite function $(f \circ g)(x)=f(g(x))$ is differentiable at x, and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

In Leibniz's notation, if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

where $d y / d u$ is evaluated at $u=g(x)$.
examples:
(1) Differentiate $x(t)=\cos (t+1)$.

Here: Choose $x=\cos u$ and $u=t+1$ and differentiate,

$$
\frac{d x}{d u}=-\sin u \quad \text { and } \quad \frac{d u}{d t}=1 .
$$

Then

$$
\begin{gather*}
\frac{d x}{d t}=(-\sin u) \cdot 1=-\sin (t+1) \\
\frac{d}{d x} \sin \left(x^{2}+x\right)=\cos \left(x^{2}+x\right)(2 x+1) \tag{2}
\end{gather*}
$$

Parametric equations

example:

Describe a point moving in the $x y$-plane as a function of a parameter t ("time") by two functions

$$
x=f(t), \quad y=g(t)
$$

This may be the graph of a function, but it need not be.

DEFINITION Parametric Curve

If x and y are given as functions

$$
x=f(t), \quad y=g(t)
$$

over an interval of t-values, then the set of points $(x, y)=(f(t), g(t))$ defined by these equations is a parametric curve. The equations are parametric equations for the curve.

The variable t is a parameter for the curve. If $t \in[a, b]$, which is called a parameter interval, then $(f(a), g(a))$ is the initial point, and $(f(b), g(b))$ is the terminal point. Equations and interval constitute a parametrisation of the curve.
examples:
(1) Given is the parametrisation $x=\sqrt{t}, y=t, t \geq 0$. What is the path defined by these equations?

Solve for $y=f(x): y=t, x^{2}=t \Rightarrow y=x^{2}$. Note that the domain of f is only $[0, \infty)$!

(2) Find a parametrisation for the line segment from $(-2,1)$ to $(3,5)$.

- Start at $(-2,1)$ for $t=0$ by making the ansatz ("educated guess")

$$
x=-2+a t, \quad y=1+b t .
$$

- Implement the terminal point at $(3,5)$ for $t=1$:

$$
3=-2+a, \quad 5=1+b .
$$

- We conclude that $a=5, b=4$.
- Therefore, the solution based on our ansatz is:

$$
x=-2+5 t, y=1+4 t, 0 \leq t \leq 1 \text {, }
$$

which indeed defines a straight line (why?).
A parametrised curve $x=f(t), y=g(t)$ is differentiable at t if f and g are differentiable at t. At a point where y is a differentiable function of x, say $y=y(x)$, it is $y=y(x(t))$ and by the chain rule

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t} .
$$

Solving for $d y / d x$ yields the

Parametric Formula for $d y / d x$

If all three derivatives exist and $d x / d t \neq 0$,

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} .
$$

example: Describe the motion of a particle whose position $P(x, y)$ at time t is given by

$$
x=a \cos t, \quad y=b \sin t, \quad 0 \leq t \leq 2 \pi
$$

and compute the slope at P.

- Find the equation in (x, y) by eliminating t :

Using $\cos t=x / a, \sin t=y / b$ and $\cos ^{2} t+\sin ^{2} t=1$ we obtain

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

which is the equation of an ellipse.

- With $\frac{d x}{d t}=-a \sin t$ and $\frac{d y}{d t}=b \cos t$ the parametric formula yields

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{b \cos t}{-a \sin t}
$$

Eliminating t again we obtain $\quad \frac{d y}{d x}=-\frac{b^{2}}{a^{2}} \frac{x}{y}$.

Implicit differentiation

problem: We want to compute y^{\prime} but do not have an explicit relation $y=f(x)$ available. Rather, we have an implicit relation

$$
F(x, y)=0
$$

between x and y.
example:

$$
F(x, y)=x^{2}+y^{2}-1=0 .
$$

solutions:

1. Use parametrisation, for example, $x=\cos t, y=\sin t$ for the unit circle.
2. If no obvious parametrisation of $F(x, y)=0$ is possible: use implicit differentiation.
example: Given $y^{2}=x$, compute y^{\prime}.
New method by differentiating implicitly:

- Differentiating both sides of the equation gives $2 y y^{\prime}=1$.
- Solving for y^{\prime} we get $y^{\prime}=\frac{1}{2 y}$.

Compare with differentiating explicitly:

- For $y^{2}=x$ we have the two explicit solutions $|y|=\sqrt{x} \Rightarrow y_{1,2}= \pm \sqrt{x}$ with derivatives

$$
y_{1,2}^{\prime}= \pm \frac{1}{2 \sqrt{x}} \text {. }
$$

- Compare with solution above: substituting $y=y_{1,2}= \pm \sqrt{x}$ therein reproduces the explicit result.

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differentiable function of x.
2. Collect the terms with $d y / d x$ on one side of the equation.
3. Solve for $d y / d x$.
example: Find $d y / d x$ for the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
4. $\frac{2 x}{a^{2}}+\frac{2 y y^{\prime}}{b^{2}}=0$
5. $\frac{2 y y^{\prime}}{b^{2}}=-\frac{2 x}{a^{2}}$
6. $y^{\prime}=-\frac{b^{2}}{a^{2}} \frac{x}{y}$, as obtained via parametrisation in the previous lecture.
application: Motivate the power rule for rational powers by differentiating $y=x^{\frac{p}{q}}$ using implicit differentiation:

- write

$$
y^{q}=x^{p}
$$

- differentiate:

$$
q y^{q-1} y^{\prime}=p x^{p-1}
$$

- solve for y^{\prime} as a function of x :

$$
y^{\prime}=\frac{p}{q} \frac{x^{p-1}}{y^{q-1}}=\frac{p}{q} \frac{x^{p}}{y^{q}} \frac{y}{x}=\frac{p}{q} \frac{y}{x}=\frac{p}{q} \frac{x^{\frac{p}{q}}}{x}=\frac{p}{q} x^{\frac{p}{q}-1}
$$

THEOREM 4 Power Rule for Rational Powers

If p / q is a rational number, then $x^{p / q}$ is differentiable at every interior point of the domain of $x^{(p / q)-1}$, and

$$
\frac{d}{d x} x^{p / q}=\frac{p}{q} x^{(p / q)-1} .
$$

note: Above we have silently assumed that y ' exists! Therefore we have 'motivated' but not (yet) proved this theorem!

Linearisation

"Close to" the point $(a, f(a))$, the tangent $L(x)=f(a)+f^{\prime}(a)(x-a)$ (point-slope form) is a "good" approximation for $y=f(x)$.

DEFINITIONS Linearization, Standard Linear Approximation

If f is differentiable at $x=a$, then the approximating function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is the linearization of f at a. The approximation

$$
f(x) \approx L(x)
$$

of f by L is the standard linear approximation of f at a. The point $x=a$ is the center of the approximation.
example: Compute the linearisation for $f(x)=\sqrt{1+x}$ at $x=a=0$.
We have $f(0)=1$ and with $f^{\prime}(x)=\frac{1}{2}(1+x)^{-1 / 2}$ we get $f^{\prime}(0)=\frac{1}{2}$, so

$$
L(x)=1+\frac{1}{2} x .
$$

How accurate is this approximation? Magnify region around $x=0$:

Approximation	True value	\mid True value - approximation \mid
$\sqrt{1.2} \approx 1+\frac{0.2}{2}=1.10$	1.095445	$<10^{-2}$
$\sqrt{1.05} \approx 1+\frac{0.05}{2}=1.025$	1.024695	$<10^{-3}$
$\sqrt{1.005} \approx 1+\frac{0.005}{2}=1.00250$	1.002497	$<10^{-5}$

Why are linearisations useful? Simplify problems, solve equations analytically, ... many applications!

Make phrases like "close to a point $(a, f(a))$ the linearisation is a good approximation" mathematically precise in terms of differentials:

$$
\begin{aligned}
L(x) & =f(a)+f^{\prime}(a)(x-a) \\
\underbrace{L(x)-f(a)}_{d y} & =f^{\prime}(a) \underbrace{(x-a)}_{d x}
\end{aligned}
$$

Choose $x=a+d x, a=x$:

Let $y=f(x)$ be a differentiable function. The differential $d x$ is an independent variable. The differential $d y$ is

$$
d y=f^{\prime}(x) d x
$$

Reading Assignment: read Thomas' Calculus, p.225-228 about Differentials

Extreme values of functions

DEFINITIONS Absolute Maximum, Absolute Minimum

Let f be a function with domain D. Then f has an absolute maximum value on D at a point c if

$$
f(x) \leq f(c) \quad \text { for all } x \text { in } D
$$

and an absolute minimum value on D at c if

$$
f(x) \geq f(c) \quad \text { for all } x \text { in } D .
$$

These values are also called absolute extrema, or global extrema.
example:

(a)

(c)

(b)

(d)

	Domain	abs. max.	abs. min.
(a)	$(-\infty, \infty)$	none	0 , at 0
(b)	$[0,2]$	4 , at 2	0 , at 0
(c)	$(0,2]$	4 , at 2	none
(d)	$(0,2)$	none	none

The existence of a global maximum and minimum is ensured by

THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval $[a, b]$, then f attains both an absolute maximum value M and an absolute minimum value m in $[a, b]$. That is, there are numbers x_{1} and x_{2} in $[a, b]$ with $f\left(x_{1}\right)=m, f\left(x_{2}\right)=M$, and $m \leq f(x) \leq M$ for every other x in $[a, b]$ (Figure 4.3).
examples:

Maximum and minimum at interior points

Maximum at interior point, minimum at endpoint
Classify maxima and minima:

| | Local maximum
 No greater value of
 Absolute maximum
 No greater value of f anywhere. |
| :---: | :---: | :---: |
| Also a local maximum. | |

DEFINITIONS Local Maximum, Local Minimum

A function f has a local maximum value at an interior point c of its domain if $f(x) \leq f(c) \quad$ for all x in some open interval containing c.

A function f has a local minimum value at an interior point c of its domain if $f(x) \geq f(c) \quad$ for all x in some open interval containing c.
\ldots and the extension of this definition to endpoints via half-open intervals at endpoints. note: Absolute extrema are automatically local extrema!

