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Look at second derivative instead of sign changes at critical points in order to test for local
extrema:

THEOREM 5 Second Derivative Test for Local Extrema
Suppose f” is continuous on an open interval that contains x = c.

1. Iff'(¢) = 0and f"(¢) < 0, then f has a local maximum at x = c.
2. Iff'(¢) = 0and f"(c) > 0, then f has a local minimum atx = c.

3. If f'(¢) = 0 and f"(c) = 0, then the test fails. The function f may have a
local maximum, a local minimum, or neither.

proof of 1. and 2.:

f’=0,f”<0 f'=0,f”>0
= local max => local min

proof of 3.:
Consider y = —a2*, y =a2* and y =z
to identify local extrema.

3 as examples. In this case use the first derivative test

Strategy for Graphing y = f(x)

1. Identify the domain of f and any symmetries the curve may have.

Find y’ and y".

Find the critical points of f, and identify the function’s behavior at each one.

Find where the curve is increasing and where it is decreasing.

th = d 9

Find the points of inflection, if any occur, and determine the concavity of the
curve.

Identify any asymptotes.

Plot key points, such as the intercepts and the points found in Steps 3-5, and
sketch the curve.
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example: Sketch the graph of f(z) = T
x

1. The natural domain of f is (—o0, 00); no symmetries about any axis.

2. calculate derivatives:

2(1 — 2?
f'(z) = [calculation on whiteboard] = ﬁ
da(x? —
f//(l‘) = [eXerCise] - H

3. critical points: f’ exists on (—o0,00) with f/(£1) =0 and f”’(-1)=1>0, f"(1) =
—1 <0 (—1,0) is a local minimum and (1, 2) a local maximum.

4. On (—o0,—1) it is f’(z) < 0: curve decreasing; on (—1,1) it is f'(z) > 0: curve

increasing; on (1,00) it is f/'(x) < 0: curve decreasing

5 f"(x) = 0if 2 = £v/3 or 0; f” < 0 on (—00,—/3): concave down; f” > 0 on
(—v/3,0): concave up; f” < 0 on (0,v/3): concave down; f” > 0 on (v/3,00):
concave up. Each point is a point of inflection.

6. calculate asymptotes:

(x+1)? 2°422+1 1+2/z+1/a?
1+22  1+22 1/2241

flz) =
f(x) > 1T asz — ocoand f(x) — 17 asx — —oo: y = 1 is a horizontal asymptote.
No vertical asymptotes.

7. sketch the curve:

3’ Point of inflection
where x = V3

2 —(1’2)/

1 y=1
Horizontal
asymptote

‘ > X
P 1

Point of inflection

where x = —V3




Summary: Learning about functions from derivatives

y =Jf(x) y = fx) y =f(x)
Differentiable = y' > 0 = rises from y' < 0 = falls from
smooth, connected; graph left to right; left to right;
may rise and fall may be wavy may be wavy
/ \ / \ y" changes sign

"> (0 = concave up "< 0 = concave down Inflection point
throughout no waves; graph throughout no waves;
may rise or fall graph may rise or fall

o \ T
AN=\/

v’ changes sign = graph y'=0 and y"<0 y'=0 and y">0
has local maximum or local at a point; graph has at a point; graph has
minimum local maximum local minimum

Indeterminate Forms and L’Hopital’s Rule

If f(a) = g(a) =0, f(a)/g(a) is a meaningless indeterminate form: lim /() cannot be

z—a g(T
found by substituting x = a. Under certain conditions, we can nevertheless calculate it:

Theorem 1 (L’Hépital’s Rule (First Form)) Suppose that f(a) = g(a) =0, that f'(a)
and ¢'(a) exist and that g'(a) # 0. Then

@) P

—ag(z) ¢'(a)




Proof: Proceed right hand side — left hand side:

o)
g'(a)
i @)@
- ! o T—a T—a
(definition of f',g') = . 2@
f@)—f(a)
(limit laws) = ilir}lm
. f(x) = f(a)
(simplify) = lim —————
=—a g(z) — g(a)
(hypothesis theorem) = lim %
T—a x
q.e.d.
WARNING:
e Always check for “0/07, i.e., f(a) = g(a) = 0, before using I'Hopital!
/ /
e Do not compute (i) (x) but f/(x)!
g g'(x)
DT — Si 5—
examples: (1) lim TTIRT S =4.
z—0 xT 1 =0
1+
2) lim Shsme = ... (This does not fulfill the assumptions of I’Hopital’s rule!) ... =1 =1
0o 1 1
r— — X
by substitution.
. x—sinx 1—cosx 0 , .
(3) lim T = 5 = —: Doesn’t work! But can be handled with
e—0 T 3w oo O

Theorem 2 (L’Hépital’s Rule (Stronger Form)) Suppose that f(a) = g(a) = 0, that
f and g are differentiable on an open interval I containing a, and that g'(x) # 0 on I if

x # a. Then
lim M = lim fz)

e=ag(z) a=ag(z)’

assuming that the limit on the right side exists.

proof: See textbook Section 4.6, via a generalized Mean Value Theorem.

example: Finish up case (3) above,

summary:



Using L’Hopital’s Rule
To find

tim £
x—a g(x)

by I’Hopital’s Rule, continue to differentiate f and g, so long as we still get the
form 0/0 at x = a. But as soon as one or the other of these derivatives is differ-
ent from zero at x = a we stop differentiating. IHopital’s Rule does not apply
when either the numerator or denominator has a finite nonzero limit.

remark: L’Hopital also applies to one-sided limits (see proof of previous theorem).

example:

. sinx . cosx
lim = lim

5 = +00
z—0t T z—0t 2%

What’s about limits involving other indeterminate forms like co/o0, 0o - 0 or co — 007

(1) oo/o0: Can be proved that if f(z), g(z) — +oo as v — a, then

f (=)

@ )
Mg e ()

So use L’Hopital same way as before also for “oco/oo*.

example:
’ T —a? I ,
111 = [1m — lim — = —
(2) 00 -0: Use
: . g(x)
lim(f(x)g(x)) = lim
) =
example:
(1 - .
lim zsin(1/z) = lim M — 1 SINA i cos _
—00 T—00 1/[[’ h—0t h oot 1

(3) 00 — 0o: Best demonstrated by an

example:

. 1 1 . x—sinx . 1 ——cosx . sin x
lim | — ——=llm————=lim ———— = lim - =0
z—0 \sinxz =z r—0 xsinx r—0sSinx +xcosxr =—02coSx —xrsSinw




Antiderivatives
Aim: Given f(x) and f(x) = F'(z), find F(z).

DEFINITION Antiderivative

A function F is an antiderivative of f on an interval [ if F'(x) = f(x)
forallxin /.

examples: (1) f(z) = 2x = F(x) = 2?
(2) h(z) =sinz = H(z) = —cosx

But these are not the only solutions:

Corollary 1 (of the Mean Value Theorem) If G'(z) = F'(z) on (a,b) then G(z) =
F(z)+ C for all x € (a,b).

which implies:

If F is an antiderivative of f on an interval /, then the most general antiderivative
of fonlis

F(x) + C

where C is an arbitrary constant.

Some antiderivative formulas are shown in the following table:

TABLE 4.2 Antiderivative formulas

Function General antiderivative

xn+l )

1 x* + C, n # —1, nrational
n+1

2 sin kx = %@ + C, kaconstant, kK # 0

3. cos kx S"}{kx + C, kaconstant,k # 0

4, sec’ x tanx + C

5. csc? x —cotx + C

6. sec x tan x secx + C

T csc x cot x —csex + C
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examples: (1) f(z) =2'= F(z) =%+ C
(2) h(z) = cosbz = H(x) = %5 + C

The rules shown in the following table are easily proved by differentiation:

TABLE 4.3 Antiderivative linearity rules

Function General antiderivative
1. Constant Multiple Rule: kf(x) kF(x) + C, ka constant
2 Negative Rule: —f(x) -F(x) + C,

3. Sum or Difference Rule:  f(x) + g(x) Fx) £ Glx) + C

More advanced techniques will come later.

5
example: Find the general antiderivative of h(x) = —= + sin 3z.

VT
e Function is of the form h(z) = 5f(z) + g(z) with f(z) = 272 and g(z) = sin 3z.
e F(x)=2y/x+ Cy, which satisfies F'(z) = f(z).
e G(x) = —1 cos 3z + Cy, which satisfies G'(z) = g(x).

e Therefore 1
H(x)le\/E—gcosZSmjLC,C':Cl—l—Cg.

A special symbol is used to denote the collection of all antiderivatives of f:

DEFINITION  Indefinite Integral, Integrand
The set of all antiderivatives of f is the indefinite integral of f with respect to x,

denoted by
/ f(x) dx.

The symbol f is an integral sign. The function f is the integrand of the inte-
gral, and x is the variable of integration.

examples:
1. f4xdx =222 +C

2. [coszdr =sinz+C



Integration

Estimating with finite sums
example: See first animation in MML Multimedia Library Section 5.1.

y

A

0.5

0
How can we compute the shaded area R?

algorithm (“recipe”):

L

g N

.%\
N 8764

y:lfx2

05F

0.25 0.5
0.125  0.375

e Subdivide the interval [a, b] into n subintervals of equal width Az = =2,

e Choose point ¢, in the k£ — th subinterval.
e Construct rectangles:
1. midpoint rule: Choose ¢ in the middle of the k — th subinterval.

2. upper sum: Choose ¢, such that f(cg)is mazimal.

3. lower sum: choose ¢, such that f(cg) is minimal.
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e Form the sum f(c;)Az + f(c)Ax + ...+ f(c,)Ax.

e Refine your approximation by choosing more rectangles:

¥

TABLE 5.1 Finite approximations for

the area of R

Number of
subintervals Lower sum Midpoint rule Upper sum
2 375 .6875 875
4 53125 671875 78125
16 634765625 6669921875 697265625
50 6566 .6667 6766
100 66165 666675 67165
1000 6661665 66666675 6671665

[
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N
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(b}

To handle sums with many terms, we need a better notation:

with

n
Zak:a1+a2+...+an

k=1




The index k ends at k = n.
-
n

The summation symbol a .
(Greek letter sigma) E k — a 1s a formula for the kth term.
~

The index k starts at k = 1.
examples: (1) f(c))Az + f(c)Az + ...+ fle)Az =30, flep)Ax
2) S0 (—1DFk = (=)' 1+ (=1)2- 2+ (~-1)* 3=—-14+2-3= 2

(3)

5

1+3454+74+9 = > (2k—1)

k=1
4
(k=n+1) = ) (2n+1)
n=0
1
(n=z+3) = Y (20+7)=25
r=-—3
Algebra Rules for Finite Sums
1. Sum Rule: Slar+ by = Dar+ Dby
i=1 /=y k=1
2. Difference Rule: E(ak — by} = Eak - Ebk
=1 =5 =1

3. Constant Multiple Rule: Ecak =c- Eak (Any number ¢)
=

n
4. Constant Value Rule: Ec =n-c (c is any constant value.)
=1

example: > ) (5k —k*) =53, _ k— > ;_, k* (with rules 1 and 2)

Can we calculate these sums?



