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Look at second derivative instead of sign changes at critical points in order to test for local
extrema:

proof of 1. and 2.:

proof of 3.:
Consider y = −x4, y = x4 and y = x3 as examples. In this case use the first derivative test
to identify local extrema.
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example: Sketch the graph of f(x) =
(x + 1)2

1 + x2
.

1. The natural domain of f is (−∞,∞); no symmetries about any axis.

2. calculate derivatives:

f ′(x) = [calculation on whiteboard] =
2(1 − x2)

(1 + x2)2

f ′′(x) = [exercise] =
4x(x2 − 3)

(1 + x2)3

3. critical points: f ′ exists on (−∞,∞) with f ′(±1) = 0 and f ′′(−1) = 1 > 0, f ′′(1) =
−1 < 0 (−1, 0) is a local minimum and (1, 2) a local maximum.

4. On (−∞,−1) it is f ′(x) < 0: curve decreasing; on (−1, 1) it is f ′(x) > 0: curve
increasing; on (1,∞) it is f ′(x) < 0: curve decreasing

5. f ′′(x) = 0 if x = ±
√

3 or 0; f ′′ < 0 on (−∞,−
√

3): concave down; f ′′ > 0 on
(−

√
3, 0): concave up; f ′′ < 0 on (0,

√
3): concave down; f ′′ > 0 on (

√
3,∞):

concave up. Each point is a point of inflection.

6. calculate asymptotes:

f(x) =
(x + 1)2

1 + x2
=

x2 + 2x + 1

1 + x2
=

1 + 2/x + 1/x2

1/x2 + 1

f(x) → 1+ as x → ∞ and f(x) → 1− as x → −∞: y = 1 is a horizontal asymptote.
No vertical asymptotes.

7. sketch the curve:
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Summary: Learning about functions from derivatives

Indeterminate Forms and L’Hôpital’s Rule

If f(a) = g(a) = 0, f(a)/g(a) is a meaningless indeterminate form: lim
x→a

f(x)

g(x)
cannot be

found by substituting x = a. Under certain conditions, we can nevertheless calculate it:

Theorem 1 (L’Hôpital’s Rule (First Form)) Suppose that f(a) = g(a) = 0, that f ′(a)
and g′(a) exist and that g′(a) 6= 0. Then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.
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Proof: Proceed right hand side → left hand side:

f ′(a)

g′(a)
=

(definition of f ′,g′) =
limx→a

f(x)−f(a)
x−a

limx→a
g(x)−g(a)

x−a

(limit laws) = lim
x→a

f(x)−f(a)
x−a

g(x)−g(a)
x−a

(simplify) = lim
x→a

f(x) − f(a)

g(x) − g(a)

(hypothesis theorem) = lim
x→a

f(x)

g(x)

q.e.d.

WARNING:

• Always check for “0/0”, i.e., f(a) = g(a) = 0, before using l’Hôpital!

• Do not compute

(

f

g

)

′

(x) but
f ′(x)

g′(x)
!

examples: (1) lim
x→0

5x − sin x

x
=

5 − cos x

1

∣

∣

∣

∣

x=0

= 4.

(2) lim
x→0

1 + sin x

1 − x
= . . . (This does not fulfill the assumptions of l’Hôpital’s rule!) . . . = 1

1
= 1

by substitution.

(3) lim
x→0

x − sin x

x3
=

1 − cos x

3x2

∣

∣

∣

∣

x=0

=
0

0
: Doesn’t work! But can be handled with

Theorem 2 (L’Hôpital’s Rule (Stronger Form)) Suppose that f(a) = g(a) = 0, that
f and g are differentiable on an open interval I containing a, and that g′(x) 6= 0 on I if
x 6= a. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

assuming that the limit on the right side exists.

proof: See textbook Section 4.6, via a generalized Mean Value Theorem.

example: Finish up case (3) above,

lim
x→0

x − sin x

x3
= lim

x→0

1 − cos x

3x2
= lim

x→0

sin x

6x
= lim

x→0

cos x

6
=

1

6
.

summary:
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remark: L’Hôpital also applies to one-sided limits (see proof of previous theorem).

example:

lim
x→0±

sin x

x2
= lim

x→0±

cos x

2x
= ±∞

What’s about limits involving other indeterminate forms like ∞/∞, ∞ · 0 or ∞−∞?

(1) ∞/∞: Can be proved that if f(x), g(x) → ±∞ as x → a, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

So use L’Hôpital same way as before also for “∞/∞“.

example:

lim
x→∞

x − x2

x2 + 7x
= lim

x→∞

1 − 2x

2x + 7
= lim

x→∞

−2

2
= −1

(2) ∞ · 0: Use

lim
x→a

(f(x)g(x)) = lim
x→a

g(x)

1/f(x)

example:

lim
x→∞

x sin(1/x) = lim
x→∞

sin(1/x)

1/x
= lim

h→0+

sin h

h
= lim

h→0+

cos h

1
= 1

(3) ∞−∞: Best demonstrated by an

example:

lim
x→0

(

1

sin x
− 1

x

)

= lim
x→0

x − sin x

x sin x
= lim

x→0

1 − cos x

sin x + x cos x
= lim

x→0

sin x

2 cosx − x sin x
= 0
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Antiderivatives

Aim: Given f(x) and f(x) = F ′(x), find F (x).

examples: (1) f(x) = 2x ⇒ F (x) = x2

(2) h(x) = sin x ⇒ H(x) = − cos x

But these are not the only solutions:

Corollary 1 (of the Mean Value Theorem) If G′(x) = F ′(x) on (a, b) then G(x) =
F (x) + C for all x ∈ (a, b).

which implies:

Some antiderivative formulas are shown in the following table:
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examples: (1) f(x) = x4 ⇒ F (x) = x5

5
+ C

(2) h(x) = cos 5x ⇒ H(x) = sin 5x
5

+ C

The rules shown in the following table are easily proved by differentiation:

More advanced techniques will come later.

example: Find the general antiderivative of h(x) =
5√
x

+ sin 3x.

• Function is of the form h(x) = 5f(x) + g(x) with f(x) = x−1/2 and g(x) = sin 3x.

• F (x) = 2
√

x + C1, which satisfies F ′(x) = f(x).

• G(x) = −1
3
cos 3x + C2, which satisfies G′(x) = g(x).

• Therefore

H(x) = 10
√

x − 1

3
cos 3x + C , C = C1 + C2 .

A special symbol is used to denote the collection of all antiderivatives of f :

examples:

1.
∫

4x dx = 2x2 + C

2.
∫

cos x dx = sin x + C
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Integration

Estimating with finite sums

example: See first animation in MML Multimedia Library Section 5.1.

How can we compute the shaded area R?

algorithm (“recipe”):

• Subdivide the interval [a, b] into n subintervals of equal width ∆x = b−a
n

.

• Choose point ck in the k − th subinterval.

• Construct rectangles:

1. midpoint rule: Choose ck in the middle of the k − th subinterval.

2. upper sum: Choose ck such that f(ck)is maximal.

3. lower sum: choose ck such that f(ck) is minimal.
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• Form the sum f(c1)∆x + f(c2)∆x + . . . + f(cn)∆x.

• Refine your approximation by choosing more rectangles:

To handle sums with many terms, we need a better notation:

n
∑

k=1

ak = a1 + a2 + . . . + an

with
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examples: (1) f(c1)∆x + f(c2)∆x + . . . + f(cn)∆x =
∑n

k=1 f(ck)∆x

(2)
∑3

k=1(−1)kk = (−1)1 · 1 + (−1)2 · 2 + (−1)3 · 3 = −1 + 2 − 3 = −2

(3)

1 + 3 + 5 + 7 + 9 =

5
∑

k=1

(2k − 1)

(k = n + 1) =

4
∑

n=0

(2n + 1)

(n = x + 3) =

1
∑

x=−3

(2x + 7) = 25

example:
∑n

k=1(5k − k3) = 5
∑n

k=1 k −
∑n

k=1 k3 (with rules 1 and 2)

Can we calculate these sums?


