MTH4100 Calculus I Lecture notes for Week 9

Thomas' Calculus, Sections 4.6 to 5.2 except 4.7

Rainer Klages

School of Mathematical Sciences
Queen Mary University of London

Autumn 2009

Look at second derivative instead of sign changes at critical points in order to test for local extrema:

THEOREM 5 Second Derivative Test for Local Extrema

Suppose $f^{\prime \prime}$ is continuous on an open interval that contains $x=c$.

1. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at $x=c$.
2. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at $x=c$.
3. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$, then the test fails. The function f may have a local maximum, a local minimum, or neither.
proof of 1. and 2.:

proof of $3 .:$

Consider $y=-x^{4}, y=x^{4}$ and $y=x^{3}$ as examples. In this case use the first derivative test to identify local extrema.

Strategy for Graphing $y=f(x)$

1. Identify the domain of f and any symmetries the curve may have.
2. Find y^{\prime} and $y^{\prime \prime}$.
3. Find the critical points of f, and identify the function's behavior at each one.
4. Find where the curve is increasing and where it is decreasing.
5. Find the points of inflection, if any occur, and determine the concavity of the curve.
6. Identify any asymptotes.
7. Plot key points, such as the intercepts and the points found in Steps 3-5, and sketch the curve.
example: Sketch the graph of $f(x)=\frac{(x+1)^{2}}{1+x^{2}}$.
8. The natural domain of f is $(-\infty, \infty)$; no symmetries about any axis.
9. calculate derivatives:

$$
\begin{gathered}
f^{\prime}(x)=[\text { calculation on whiteboard }]=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \\
f^{\prime \prime}(x)=[\text { exercise }]=\frac{4 x\left(x^{2}-3\right)}{\left(1+x^{2}\right)^{3}}
\end{gathered}
$$

3. critical points: f^{\prime} exists on $(-\infty, \infty)$ with $f^{\prime}(\pm 1)=0$ and $f^{\prime \prime}(-1)=1>0, f^{\prime \prime}(1)=$ $-1<0(-1,0)$ is a local minimum and $(1,2)$ a local maximum.
4. On $(-\infty,-1)$ it is $f^{\prime}(x)<0$: curve decreasing; on $(-1,1)$ it is $f^{\prime}(x)>0$: curve increasing; on $(1, \infty)$ it is $f^{\prime}(x)<0$: curve decreasing
5. $f^{\prime \prime}(x)=0$ if $x= \pm \sqrt{3}$ or $0 ; f^{\prime \prime}<0$ on $(-\infty,-\sqrt{3})$: concave down; $f^{\prime \prime}>0$ on $(-\sqrt{3}, 0)$: concave up; $f^{\prime \prime}<0$ on $(0, \sqrt{3})$: concave down; $f^{\prime \prime}>0$ on $(\sqrt{3}, \infty)$: concave up. Each point is a point of inflection.
6. calculate asymptotes:

$$
f(x)=\frac{(x+1)^{2}}{1+x^{2}}=\frac{x^{2}+2 x+1}{1+x^{2}}=\frac{1+2 / x+1 / x^{2}}{1 / x^{2}+1}
$$

$f(x) \rightarrow 1^{+}$as $x \rightarrow \infty$ and $f(x) \rightarrow 1^{-}$as $x \rightarrow-\infty: y=1$ is a horizontal asymptote. No vertical asymptotes.
7. sketch the curve:

Differentiable \Rightarrow smooth, connected; graph may rise and fall		
 or $y^{\prime \prime}>0 \Rightarrow$ concave up throughout; no waves; graph may rise or fall	$y^{\prime \prime}<0 \Rightarrow$ concave down throughout; no waves; graph may rise or fall	Inflection point
or y^{\prime} changes sign \Rightarrow graph has local maximum or local minimum	at a point; graph has local maximum	$y^{\prime}=0$ and $y^{\prime \prime}>0$ at a point; graph has local minimum

Indeterminate Forms and L'Hôpital's Rule

If $f(a)=g(a)=0, f(a) / g(a)$ is a meaningless indeterminate form: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ cannot be found by substituting $x=a$. Under certain conditions, we can nevertheless calculate it:

Theorem 1 (L'Hôpital's Rule (First Form)) Suppose that $f(a)=g(a)=0$, that $f^{\prime}(a)$ and $g^{\prime}(a)$ exist and that $g^{\prime}(a) \neq 0$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

Proof: Proceed right hand side \rightarrow left hand side:

$$
\begin{aligned}
\frac{f^{\prime}(a)}{g^{\prime}(a)} & = \\
\text { (definition of } \left.f^{\prime}, g^{\prime}\right) & =\frac{\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}}{\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}} \\
\text { (limit laws) } & =\lim _{x \rightarrow a} \frac{\frac{f(x)-f(a)}{x-a}}{\frac{g(x-g(a)}{x-a}} \\
\text { (simplify) } & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)} \\
\text { (hypothesis theorem) } & =\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
\end{aligned}
$$

q.e.d.

WARNING:

- Always check for " $0 / 0$ ", i.e., $f(a)=g(a)=0$, before using l'Hôpital!
- Do not compute $\left(\frac{f}{g}\right)^{\prime}(x)$ but $\frac{f^{\prime}(x)}{g^{\prime}(x)}$!
examples: (1) $\lim _{x \rightarrow 0} \frac{5 x-\sin x}{x}=\left.\frac{5-\cos x}{1}\right|_{x=0}=4$.
(2) $\lim _{x \rightarrow 0} \frac{1+\sin x}{1-x}=\ldots$ (This does not fulfill the assumptions of l'Hôpital's rule!) $\ldots=\frac{1}{1}=1$ by substitution.
(3) $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}=\left.\frac{1-\cos x}{3 x^{2}}\right|_{x=0}=\frac{0}{0}$: Doesn't work! But can be handled with

Theorem 2 (L'Hôpital's Rule (Stronger Form)) Suppose that $f(a)=g(a)=0$, that f and g are differentiable on an open interval I containing a, and that $g^{\prime}(x) \neq 0$ on I if $x \neq a$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)},
$$

assuming that the limit on the right side exists.
proof: See textbook Section 4.6, via a generalized Mean Value Theorem.
example: Finish up case (3) above,

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}=\lim _{x \rightarrow 0} \frac{1-\cos x}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{6 x}=\lim _{x \rightarrow 0} \frac{\cos x}{6}=\frac{1}{6} .
$$

summary:

Using L'Hôpital's Rule

To find

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

by l'Hôpital's Rule, continue to differentiate f and g, so long as we still get the form $0 / 0$ at $x=a$. But as soon as one or the other of these derivatives is different from zero at $x=a$ we stop differentiating. L'Hôpital's Rule does not apply when either the numerator or denominator has a finite nonzero limit.
remark: L'Hôpital also applies to one-sided limits (see proof of previous theorem).
example:

$$
\lim _{x \rightarrow 0^{ \pm}} \frac{\sin x}{x^{2}}=\lim _{x \rightarrow 0^{ \pm}} \frac{\cos x}{2 x}= \pm \infty
$$

What's about limits involving other indeterminate forms like $\infty / \infty, \infty \cdot 0$ or $\infty-\infty$?
(1) ∞ / ∞ : Can be proved that if $f(x), g(x) \rightarrow \pm \infty$ as $x \rightarrow a$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

So use L'Hôpital same way as before also for " ∞ / ∞ ".
example:

$$
\lim _{x \rightarrow \infty} \frac{x-x^{2}}{x^{2}+7 x}=\lim _{x \rightarrow \infty} \frac{1-2 x}{2 x+7}=\lim _{x \rightarrow \infty} \frac{-2}{2}=-1
$$

(2) $\infty \cdot 0$: Use

$$
\lim _{x \rightarrow a}(f(x) g(x))=\lim _{x \rightarrow a} \frac{g(x)}{1 / f(x)}
$$

example:

$$
\lim _{x \rightarrow \infty} x \sin (1 / x)=\lim _{x \rightarrow \infty} \frac{\sin (1 / x)}{1 / x}=\lim _{h \rightarrow 0^{+}} \frac{\sin h}{h}=\lim _{h \rightarrow 0^{+}} \frac{\cos h}{1}=1
$$

(3) $\infty-\infty$: Best demonstrated by an
example:

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)=\lim _{x \rightarrow 0} \frac{x-\sin x}{x \sin x}=\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x+x \cos x}=\lim _{x \rightarrow 0} \frac{\sin x}{2 \cos x-x \sin x}=0
$$

Antiderivatives

Aim: Given $f(x)$ and $f(x)=F^{\prime}(x)$, find $F(x)$.

DEFINITION Antiderivative

A function F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.
examples: (1) $f(x)=2 x \Rightarrow F(x)=x^{2}$
(2) $h(x)=\sin x \Rightarrow H(x)=-\cos x$

But these are not the only solutions:
Corollary 1 (of the Mean Value Theorem) If $G^{\prime}(x)=F^{\prime}(x)$ on (a, b) then $G(x)=$ $F(x)+C$ for all $x \in(a, b)$.
which implies:

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$
F(x)+C
$$

where C is an arbitrary constant.

Some antiderivative formulas are shown in the following table:

TABLE 4.2 Antiderivative formulas

	Function	General antiderivative
1.	x^{n}	$\frac{x^{n+1}}{n+1}+C, \quad n \neq-1, n$ rational
2.	$\sin k x$	$-\frac{\cos k x}{k}+C, \quad k$ a constant, $k \neq 0$
3.	$\cos k x$	$\frac{\sin k x}{k}+C, \quad k$ a constant, $k \neq 0$
4.	$\sec ^{2} x$	$\tan x+C$
5.	$\csc ^{2} x$	$-\cot x+C$
6.	$\sec x \tan x$	$\sec x+C$
7.	$\csc x \cot x$	$-\csc x+C$

examples: (1) $f(x)=x^{4} \Rightarrow F(x)=\frac{x^{5}}{5}+C$
(2) $h(x)=\cos 5 x \Rightarrow H(x)=\frac{\sin 5 x}{5}+C$

The rules shown in the following table are easily proved by differentiation:

TABLE 4.3 Antiderivative linearity rules

		Function	General antiderivative
1.	Constant Multiple Rule:	$k f(x)$	$k F(x)+C, \quad k$ a constant
2.	Negative Rule:	$-f(x)$	$-F(x)+C$,
3.	Sum or Difference Rule:	$f(x) \pm g(x)$	$F(x) \pm G(x)+C$

More advanced techniques will come later.
example: Find the general antiderivative of $h(x)=\frac{5}{\sqrt{x}}+\sin 3 x$.

- Function is of the form $h(x)=5 f(x)+g(x)$ with $f(x)=x^{-1 / 2}$ and $g(x)=\sin 3 x$.
- $F(x)=2 \sqrt{x}+C_{1}$, which satisfies $F^{\prime}(x)=f(x)$.
- $G(x)=-\frac{1}{3} \cos 3 x+C_{2}$, which satisfies $G^{\prime}(x)=g(x)$.
- Therefore

$$
H(x)=10 \sqrt{x}-\frac{1}{3} \cos 3 x+C, C=C_{1}+C_{2} .
$$

A special symbol is used to denote the collection of all antiderivatives of f :

DEFINITION Indefinite Integral, Integrand

The set of all antiderivatives of f is the indefinite integral of f with respect to x, denoted by

$$
\int f(x) d x
$$

The symbol \int is an integral sign. The function f is the integrand of the integral, and x is the variable of integration.
examples:

1. $\int 4 x d x=2 x^{2}+C$
2. $\int \cos x d x=\sin x+C$

Integration

Estimating with finite sums

example: See first animation in MML Multimedia Library Section 5.1.

How can we compute the shaded area R ?
algorithm ("recipe"):

- Subdivide the interval $[a, b]$ into n subintervals of equal width $\Delta x=\frac{b-a}{n}$.
- Choose point c_{k} in the $k-t h$ subinterval.
- Construct rectangles:

1. midpoint rule: Choose c_{k} in the middle of the $k-t h$ subinterval.
2. upper sum: Choose c_{k} such that $f\left(c_{k}\right)$ is maximal.
3. lower sum: choose c_{k} such that $f\left(c_{k}\right)$ is minimal.

- Form the sum $f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\ldots+f\left(c_{n}\right) \Delta x$.
- Refine your approximation by choosing more rectangles:

(a)

(b)

To handle sums with many terms, we need a better notation:

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}
$$

with

The summation symbol (Greek letter sigma)

$k=1$
The index k starts at $k=1$.
examples: (1) $f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\ldots+f\left(c_{n}\right) \Delta x=\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x$
(2) $\sum_{k=1}^{3}(-1)^{k} k=(-1)^{1} \cdot 1+(-1)^{2} \cdot 2+(-1)^{3} \cdot 3=-1+2-3=-2$

$$
\begin{align*}
1+3+5+7+9 & =\sum_{k=1}^{5}(2 k-1) \tag{3}\\
(k=n+1) & =\sum_{n=0}^{4}(2 n+1) \\
(n=x+3) & =\sum_{x=-3}^{1}(2 x+7)=25
\end{align*}
$$

Algebra Rules for Finite Sums

1. Sum Rule:

$$
\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}
$$

2. Difference Rule:

$$
\sum_{k=1}^{n}\left(a_{k}-b_{k}\right)=\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{n} b_{k}
$$

3. Constant Multiple Rule:

$$
\sum_{k=1}^{n} c a_{k}=c \cdot \sum_{k=1}^{n} a_{k}
$$

(Any number c)
4. Constant Value Rule:

$$
\sum_{k=1}^{n} c=n \cdot c
$$

(c is any constant value.)
example: $\sum_{k=1}^{n}\left(5 k-k^{3}\right)=5 \sum_{k=1}^{n} k-\sum_{k=1}^{n} k^{3}($ with rules 1 and 2$)$
Can we calculate these sums?

