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Stochastic thermodynamics of fractional Brownian motion
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This paper is concerned with the stochastic thermodynamics of nonequilibrium Gaussian processes that can
exhibit anomalous diffusion. In the systems considered, the noise correlation function is not necessarily related
to friction. Thus there is no conventional fluctuation-dissipation relation (FDR) of the second kind and no unique
way to define a temperature. We start from a Markovian process with time-dependent diffusivity (an example
being scaled Brownian motion). It turns out that standard stochastic thermodynamic notions can be applied
rather straightforwardly by introducing a time-dependent temperature, yielding the integral fluctuation relation.
We then proceed to our focal system, that is, a particle undergoing fractional Brownian motion (FBM). In this
case, the noise is still Gaussian, but the noise correlation function is nonlocal in time, defining a non-Markovian
process. We analyze in detail the consequences when using the conventional notions of stochastic thermody-
namics with a constant medium temperature. In particular, the heat calculated from dissipation into the medium
differs from the log ratio of path probabilities of forward and backward motion, yielding a deviation from the
standard integral fluctuation relation for the total entropy production if the latter is defined via system entropy
and heat exchange. These apparent inconsistencies can be circumvented by formally defining a time-nonlocal
temperature that fulfills a generalized FDR. To shed light on the rather abstract quantities resulting from the
latter approach, we perform a perturbation expansion in terms of ε = H − 1/2, where H is the Hurst parameter
of FBM and 1/2 corresponds to the Brownian case. This allows us to calculate analytically, up to linear order
in ε, the generalized temperature and the corresponding heat exchange. By this, we provide explicit expressions
and a physical interpretation for the leading corrections induced by non-Markovianity.
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I. INTRODUCTION

Within the last decades, the framework of stochastic
thermodynamics (ST) [1–3] has been established as a pow-
erful tool to analyze the dynamical and thermodynamic
properties of small, mesoscopic systems out of equilib-
rium [4–7]. Paradigmatic examples whose thermodynamic
fluctuation properties have been studied experimentally are
driven colloidal particles [8], biopolymers [9], and molecu-
lar Szilard-type engines [10]. However, concepts of ST are
nowadays also used for open quantum systems [11,12], non-
linear electronic circuits [13], electron shuttles [14], and open,
coarse-grained systems [15]. In these mesoscopic systems,
observables of interest such as the position of a particle
typically fluctuate strongly due to interactions with an en-
vironment. The key step of ST is to define thermodynamic
quantities such as heat, work, and entropy along single fluc-
tuating trajectories [1,2], allowing one to investigate not only
ensemble averages as in the (phenomenological) thermody-
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namics of large, macroscopic systems, but also fluctuations of
these quantities.

These fluctuations are constrained by fundamental sym-
metry relations, known as fluctuation relations (FRs) (see
Refs. [3,6,7,16,17] for collections and reviews). Applied to
the (total) entropy production, they allow for negative entropy
production on the trajectory level but reduce to the conven-
tional second law of thermodynamics (expressing positiveness
of the entropy production) upon averaging. FRs were put
forward by Evans et al. [18] in numerical simulations of shear-
driven systems, but later they were mathematically proven
for different dynamics [19–21] and also experimentally con-
firmed [4–10]. More generally, FRs relate the probability
density functions of certain thermodynamic observables to
those of conjugate (typically time-reversed) processes. An im-
portant example in the FR collection is the Jarzynski relation
[22,23] involving the nonequilibrium work of driven systems,
which is of great importance because of its applicability for
measuring free-energy landscapes [4]. Subsequently, many
other associated relations have been discovered, such as the
Crooks fluctuation relation [24,25], the Hummer-Szabo rela-
tion [26], and integral FRs (IFRs) [8,27,28].

Within the realm of classical systems, most of the work on
FRs and other aspects of ST (such as the recently discovered
thermodynamic uncertainty relation (TUR) [29,30]) has been
devoted to fluctuating systems exhibiting normal diffusion.
Considering, for simplicity, one-dimensional (1D) motion of a
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Brownian particle in a suspension, “normal” diffusion implies
that the mean-square displacement (MSD) 〈x2(t )〉 (with x
being the distance traveled at time t , averaged over an en-
semble of particles) increases linearly in t at long times. Such
processes are typically modeled by a conventional Langevin
equation (LE) involving white noise, which is related to the
friction via the (second) fluctuation-dissipation relation (FDR)
[31].

In this paper we are interested in the ST of systems ex-
hibiting anomalous diffusion, where 〈x2(t )〉 ∝ tα with α �= 1.
Here, the case α < 1 is referred to as subdiffusion, while
α > 1 corresponds to superdiffusion [32–34]. Anomalous
dynamics occurs in a large variety of systems (see, e.g.,
Refs. [33,35–37]). Typically, subdiffusion is related to crowd-
ing phenomena (where the motion is hindered by obstacles)
or spatial confinement [37–39]. In turn, superdiffusion occurs,
e.g., in glassy material [40], for cell migration [41,42], and in
the foraging of biological organisms [36]. From a theoretical
point of view, various types of models have been proposed to
describe anomalous dynamics [43]. One class of these models
is Markovian in character, where the future of the observ-
able, e.g., x, only depends on the current value. Examples
of (semi-)Markovian models yielding anomalous diffusion in-
clude continuous-time random walks [44,45], heterogeneous
diffusion processes [46], anomalous diffusion in disordered
media [47,48], and scaled Brownian motion [49,50]. How-
ever, there are furthermore many non-Markovian models
predicting anomalous diffusion. Prominent examples are gen-
eralized Langevin equations (GLEs) with friction (“memory”)
kernels and colored noise [51–53], as well as the paradigmatic
case of fractional Brownian motion (FBM) [54,55], where
memory arises through power-law-correlated Gaussian noise.
The FBM process, which has been widely observed in ex-
periments (see, e.g., Ref. [56] for references), is of particular
interest in this paper.

Despite the broad occurrence of anomalous diffusion in
mesoscopic and biological systems, applications of concepts
of ST to such systems are still rare, and many open questions
remain. This concerns both anomalous models with Marko-
vian character and anomalous models with non-Markovian
character. Existing studies mainly focus on FRs. For example,
a series of papers using (non-Markovian) GLEs has confirmed
the validity of the Crooks and the Jarzynski FRs, as well as of
transient and steady-state FRs [57–61]. More generally, the
validity of (different) FRs for GLE-like dynamics has been
shown in Ref. [62]. Notably, the above-mentioned results in
the framework of GLEs have been obtained under the as-
sumption that the noise correlation function and the memory
kernel are related (in fact, proportional) to each other by the
FDR of the second kind (FDR2) [31]. The latter should be
distinguished from the FDR of the first kind (FDR1), which
relates the response of a system with respect to an external
perturbation to (equilibrium) correlation functions in the ab-
sence of that perturbation. In overdamped GLE models of
driven systems without FDR2 [63,64], the conventional form
of FRs may not be obtained for thermodynamic observables.
This problem is also explored in very recent works modeling
fluctuations of a Brownian particle in an active bath, for which
GLEs with two different kinds of noises have been used,
typically Gaussian white and (exponentially) colored noise

[65]. For the latter, representing the active bath, FDR2 is
broken, and deviations from conventional FRs have been re-
ported, arising in such models [65–70]. Beyond GLE models,
forms different from conventional (steady-state and transient)
FRs, dubbed anomalous fluctuation relations [6], were also
obtained for systems with non-Gaussian noises [71–78], in
glassy systems [79,80], and in continuous-time random walks
for certain exponents of the (power-law) waiting time distribu-
tion [81]. More recently, studies of FRs and further concepts
of ST have been extended to other nontrivial systems of cur-
rent interest, particularly to active particles [65,82–84] and
systems with time delay [85–88]. We also mention recent
studies of TURs in systems displaying anomalous dynamics
[89] and time delay [90]. All these developments highlight the
ongoing strong interest in understanding the ST of systems
beyond standard Brownian motion. However, to the best of
our knowledge, most studies have focused on specific aspects
(such as FRs and TURs), while the general framework of ST
for anomalous processes seems still underdeveloped.

In this paper, we aim at filling this gap by a systematic
study of two paradigmatic stochastic processes that can ex-
hibit anomalous diffusion, one being Markovian and the other
being non-Markovian. Both of these processes involve Gaus-
sian noise, yet nontrivial (in one case, non-Markovian) noise
correlation functions. For these two exemplary processes, we
systematically apply the framework of “standard” ST focus-
ing, in particular, on definitions of heat, medium, and total
entropy production, and the IFR. We do not impose a priori
the presence of an FDR (of any kind), thereby considering sys-
tems which have been called “athermal” [3]. Indeed, breaking
FDRs of any kind was found to be characteristic for active
biological systems driven out of equilibrium [91]. Experi-
mental examples concerning FDR1 include hair bundles [92],
active cytoskeletal networks [93], and neutrophil biological
cells [94]. In nonliving systems a violation of FDR1 has been
demonstrated as well, for example, in glassy systems based on
both numerical [95] and experimental [96] evidence. A break-
ing of FDR2 has been reported for numerous nonequilibrium
systems including heated Brownian particles [97], a probe
particle in a nonequilibrium fluid [98], particle-bath systems
in external oscillating fields [99], and systems with nonsta-
tionary noise [100], among many others. In what follows we
refer to FDR2 when mentioning FDR.

Throughout this paper we focus on the overdamped limit
(although mass effects can clearly influence the dynamics;
see, e.g., Ref. [101]). Including inertia in our investigation
would imply significantly expanding the formalism of ST.
For example, already for simple Brownian systems it is well
known that adding inertia yields a modification of detailed
fluctuation relations for the housekeeping heat [102], the cre-
ation of an additional source for entropy production [103], and
a violation of the thermodynamic uncertainty relation [104].
As the main objective of this work is to investigate the effect of
non-Markovian dynamics and anomalous diffusion, we here
chose to focus on particles with negligible mass, where the
overdamped limit seems justified.

To start with, we discuss in Sec. II a model that involves
a time-dependent noise intensity (diffusivity). A prominent
example of such a process (which was originally proposed
by Batchelor in the context of turbulence [105]) is scaled
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Brownian motion [49,50,106–112]. In this paper, we utilize
this rather simple, and still Markovian, generalization of stan-
dard Brownian motion to review some core concepts of ST
definitions. In particular, we discuss the role of the FDR and,
related to that, the definition of an (effective) temperature
[6,60,61,63,64,66–70,82,113,114] for definitions of heat pro-
duction and the validity of the standard IFR for the entropy
production.

In Sec. III of this paper we turn to our major topic, that
is, the ST of FBM. FBM is a non-Markovian process that can
generate all modes of anomalous diffusion, from subdiffusion
to normal diffusion to superdiffusion. This property of FBM
makes it a versatile and nowadays widely used model for nu-
merous experimental observations of anomalous diffusion in
nature and the laboratory [56]. Examples include the motion
of tracers in viscoelastic media [53], crowded in vitro envi-
ronments [115–117], living cells [118,119], and intracellular
media [120]. Given its quite universal applicability, the inves-
tigation of ST concepts for FBM systems is both timely and
relevant. Our goal here is to unravel the challenges implied
by the non-Markovianity and the absence of the FDR for
the definition of heat production, entropy production, and the
related IFR. To this end, we employ a fractional differential
approach and a perturbation expansion. As a main result,
we provide explicit expressions and an interpretation for the
leading corrections induced by non-Markovianity to the usual
temperature and heat.

II. BROWNIAN MOTION WITH TIME-DEPENDENT
NOISE STRENGTH

In this section we revisit some key concepts of ST
considering, specifically, a Langevin equation (LE) with a
time-dependent noise intensity. After introducing relevant
thermodynamic quantities (Sec. II A), we proceed in Sec. II B
by (re)deriving a standard IFR following essentially corre-
sponding arguments for standard Brownian motion [27]. In
this way, we lay the foundation of our later treatment of the
more complex case of (non-Markovian) FBM.

A. Langevin equation and energetics

Let us consider an overdamped particle (henceforth called
the “system”) which diffuses in one dimension through a
medium acting as a heat bath. As in the standard Brownian
picture, the bath interacts with the particle through a stochastic
force ξ (t ) whose correlations are specified below, as well as
by friction. The dynamics of the system is governed by the LE

ẋ(t ) = μF (x(t ), λ(t )) + ξ (t ), (1)

where μ = 1/γ denotes the mobility (with γ being the fric-
tion constant) and F (x(t ), λ(t )) describes a force acting on the
particle. As usual, F can consist of a conservative part arising
from a potential V and/or a nonconservative part directly
applied to the system, that is,

F (x(t ), λ(t )) = −∂xV (x, λ(t )) + f (t, λ(t )). (2)

Here, λ(t ) is a control parameter which can be tuned in order
to manipulate the trajectory of the particle. An example of
such a nonconservative force is an optical tweezer [121] that

drags the system with a time-(in)dependent velocity and (or)
in response to the state of the system in order to control it.
In what follows, we assume that the stochastic force ξ is de-
scribed by a Gaussian process with zero mean, i.e., 〈ξ (t )〉 = 0
(with 〈· · · 〉 being an average over noise realizations) and a
time-dependent correlation function

〈ξ (t )ξ (t ′)〉 = 2K (t )δ(t − t ′), (3)

where K (t ) is the time-dependent noise strength (sometimes
called “time-dependent diffusivity”). By this time depen-
dency, our model contrasts with the LE of standard Brownian
motion, where K is constant and equals the diffusion constant
D. We note, however, that despite the time dependence of
K (t ), the model considered here is still Markovian in the
sense that the stochastic forces ξ (t ) at different times are
uncorrelated [as indicated by the delta function in Eq. (3)].

A prominent example of K (t ) which indeed generates
anomalous diffusion is scaled Brownian motion (SBM)
[49,50]. In SBM, K (t ) has a power-law dependence on time,
that is,

K (t ) = αKαtα−1. (4)

With this choice, the MSD [for one-dimensional motion in
the absence of F (x(t ), λ(t )) and x(t = 0) = 0] is given as
〈x2(t )〉 = 2Kαtα [49], indicating the possibility of generating
sub- or superdiffusive processes when choosing α smaller
or greater than unity, respectively. For α = 1, one recovers
standard Brownian motion with K (t ) = K1 = D.

So far, Eqs. (3) and (4) have been introduced as a sim-
ple generalization of standard Brownian motion. Importantly,
however, here we do not impose any relation between the
noise strength, K (t ), and the particle’s mobility, μ, or equiv-
alently, the friction γ . This is in contrast to the ordinary
Brownian case, where the noise strength identified with the
diffusion coefficient obeys D = μT , with T being the tem-
perature of the bath (and we have set the Boltzmann constant
kB = 1). We recall in this context that the relation D = μT
is just another formulation of FDR2, which formally fol-
lows when setting the noise correlation of standard Brownian
motion, 〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′), proportional to the delta-
like friction kernel γ (t − t ′) that appears when rewriting the
left-hand side of Eq. (1) in a GLE-like manner (see, e.g.,
Ref. [64]). Having this in mind, it becomes clear that for
a system with time-dependent noise strength (such as SBM
with α �= 1), FDR2 is broken if the mobility or (inverse)
friction is assumed to be constant [we come back to this
point below Eq. (12)]. Models with a time-local dissipation
term [see Eq. (1)] and noise with a time-dependent correlation
function [see Eq. (4)], as well as with a time-nonlocal one
(see Sec. III), have been widely used to describe anomalous
diffusion observed in in vitro and in vivo experiments; see,
e.g., Refs. [37,94,122]. Therefore we believe those models are
relevant to consider in the context of ST. As we will proceed
to show, the resulting absence of the (conventional) FDR does
not impose any problems for several definitions and relations
in standard ST [27]. However, complications appear when
considering the so-called medium entropy production.

To start with, we consider the heat exchange between the
particle and the bath due to the friction and thermal fluctua-
tions. For an infinitesimal displacement dx(t ) of the particle
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during the time interval dt , the fluctuating heat dissipated into
the medium is given by

δQ(t ) = (γ ẋ(t ) − γ ξ (t )) � dx(t ), (5)

where the symbol � in Eq. (5) denotes a Stratonovich product
[123]. Henceforth, we will drop this symbol for the sake of
brevity. Combining Eq. (5) with Eqs. (1) and (2), and inte-
grating over time, one obtains the total heat flowing from the
particle into the medium during the time t , that is,

Q[x](t ) =
∫ t

0
F (x(t ′), λ(t ′))ẋ(t ′)dt ′, (6)

stochastic trajectory considered. Equation (6) has exactly the
same form as in the standard case [1–3]. Similarly, the fluc-
tuating work done on the particle is given (as in the standard
case) by

δW (t ) = ∂λV (x, λ(t ))dλ + f (t, λ(t ))dx(t ), (7)

yielding the first law on a trajectory level [1],

dU (t ) = δW (t ) − δQ(t ), (8)

with dU being an increment of the system’s total energy.
We now consider contributions to the entropy production.

For overdamped motion involving only the particle’s position,
the so-called system entropy is defined by [27]

S[x](t ) = − ln P(x(t ), t ), (9)

where P(x, t ) denotes the probability distribution function
(PDF) of the particle displacement evaluated along the tra-
jectory considered. For a Markovian system, P(x, t ) is the
solution of the Fokker-Plank equation (FPE) corresponding to
the LE. With the initial distribution P(x0, 0) with x0 = x(t =
0), the change in the system entropy along the stochastic
trajectory during time t follows as

	S[x](t ) = − ln P(x, t ) + ln P(x0, 0) = ln
P(x0, 0)

P(x, t )
. (10)

From here, one usually proceeds by defining the so-called
medium entropy Sm

[x], either by comparing path probabilities
of forward and backward processes or by directly starting
from the fluctuating heat exchange with the environment. For
standard Brownian motion these two routes yield the same
results [3]. This, however, is not automatically the case for the
model at hand.

To show this, we start by defining Sm
[x] via the heat exchange

(for a discussion of path probabilities, see Sec. II B). In stan-
dard Brownian motion, the (trajectory-dependent) change in
medium entropy is given as 	Sm

[x] = Q[x]/T , where the heat
exchange during time t , Q[x], is given by Eq. (6), and the
bath temperature T is determined by the FDR. In the present
model, however, the noise strength depends on time, such that
the very definition of a temperature is not obvious. To proceed,
we consider two different scenarios.

(i) We first assume that the medium temperature is a
constant, T0, whose value is, however, undetermined. In par-
ticular, T0 is not related to the noise. Defining now the
(fluctuating) medium entropy as in standard Brownian motion

and using Eq. (6), we obtain

	Sm
[x](t, T0) = Q[x](t )

T0
= 1

T0

∫ t

0
dt ′F (x(t ′), λ(t ′))ẋ(t ′). (11)

(ii) Our second choice is motivated by the time depen-
dence of the noise strength. Specifically, we introduce a
time-dependent temperature via

T (t ) = K (t )

μ
. (12)

Equation (12) may be understood as an ad hoc generalization
of the FDR2 of standard Brownian motion. This can be seen
when we formally multiply both sides by 2δ(t − t ′)/μ. Then
the right-hand side of Eq. (12) equals the correlation function
of the renormalized noise 〈ξ ′(t )ξ ′(t ′)〉 = 〈ξ (t )ξ (t ′)〉/μ2 [see
Eq. (3)], while the left-hand side contains the delta-like fric-
tion kernel [i.e., γ (t − t ′) = γ δ(t − t ′)] implicitly assumed in
Eq. (1). Thus one obtains 〈ξ ′(t )ξ ′(t ′)〉 = γ (t − t ′)T (t ), that is,
the FDR2 with time-dependent temperature.

Having these considerations in mind, the change in the
medium entropy along the trajectory may be defined as

	Sm
[x](t ) =

∫ t

0
dt ′ 1

T (t ′)
F (x(t ′), λ(t ′))ẋ(t ′). (13)

As we will see in Sec. II B, only the second choice [scenario
(ii)] is consistent with the definition of Sm

[x] via path proba-
bilities, as well as with the usual IFR for the total entropy
production. It seems worthwhile to note that the introduction
of an effective, in our case time-dependent temperature is
not a new concept at all. Indeed, generalized temperatures
have been used, e.g., in weak turbulence, granular matter, and
glassy material [113] and, more recently, for active matter
[66–70,82]. We remark, however, that its straightforward def-
inition based on FDRs has been criticized [114].

B. Integral fluctuation relation and total entropy production

We now discuss consequences of SBM dynamics or, more
generally, a time-dependent noise strength, for FRs, partic-
ularly the IFR. To this end, we recall [2,3,27] that the key
ingredient for the derivation of FRs from the LE is the prob-
ability of observing a certain path of the particle. For an
arbitrary Gaussian process ξ (t ), such as the one in Eq. (1),
the conditional path probability that the particle is at position
x(t ) at time t , given that it was at x(0) at t = 0, is given by
[124,125]

P[x(t )|x(0)] = exp

[
−1

2

∫ t

0
dt2

∫ t

0
dt1ξ (t1)G(t1, t2)ξ (t2)

]
,

(14)

where the kernel G(t1, t2) is the functional inverse of the noise
correlation function, i.e.,∫ ∞

0
dt3G(t1, t3)〈ξ (t3)ξ (t2)〉 = δ(t1 − t2). (15)

For the present system with time-dependent noise strength, it
follows from Eq. (3) that

G(t1, t2) = δ(t1 − t2)

2K (t1)
. (16)
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Inserting Eq. (16) into (14) and substituting ξ (t ) via Eq. (1),
we obtain

P[x(t )|x(0)] ∝ exp

[
−

∫ t

0
dt1

[ẋ(t1) − μF (x(t1), λ(t1))]2

4K (t1)

]
,

(17)

where the (negative of the) exponent corresponds to the action
of the present model and the proportionality sign signals the
(missing) Jacobian arising from the substitution of ξ . In
fact, Eq. (17) is formally identical to the path probability of
standard Brownian motion (in the presence of a force F ), the
only difference being the appearance of the time-dependent
noise strength in the denominator rather than the diffusion
constant D.

As a next step, we calculate the ratio of the probabilities
of the forward and backward paths, the latter involving the
system’s dynamics under time reversal. The forward path
[x], whose probability is denoted by P[x(t )|x(0)], starts from
an initial point x(0) chosen from the distribution P0(x(0))
and ends at x(t ) under the control protocol λ(t ). The corre-
sponding reversed path [x̃] starts from the final position of
the forward path, with the distribution P1(x(t )), and ends at
the initial position of the forward path, i.e., x̃(0) = x(t ) and
x̃(t ) = x(0), under the reversed protocol, λ̃(t ). Note that in
the present model the noise strength K (t ) is time dependent;
see Eq. (3). However, since the resulting noise correlation
function is symmetric in time (as in the normal case), the
time dependence of K (t ) does not impose any complication.
With these considerations, we find that the logarithm of (con-
ditional) path probabilities in the forward and the backward
direction, which is a key ingredient for defining the total
entropy production (and the IFR), is given by

ln
P[x(t )|x(0)]

P[x̃(t )|x̃(0)]
=

∫ t

0
dt1

μ

K (t1)
F (x, λ(t1))ẋ(t1). (18)

We now compare the right-hand side of Eq. (18) with our pre-
viously stated expressions for the change in medium entropy
defined via the heat exchange; see Eqs. (11) and (13). One
immediately observes consistency with the second expression
[scenario (ii)], that is,

ln
P[x(t )|x(0)]

P[x̃(t )|x̃(0)]
= 	Sm

[x](t, T (t )). (19)

Thus, by introducing a time-dependent temperature via a gen-
eralized FDR [see Eq. (12)], the previously defined medium
entropy production becomes consistent with the logarithm of
the path probability ratio, in complete analogy to the case of
standard Brownian motion. Clearly, this is not the case if we
define ad hoc a constant temperature T0 [scenario (i)]. In that
case, where an FDR is lacking, the medium entropy produc-
tion defined via Eq. (11) obviously differs from Eq. (18).

To proceed towards an IFR, we consider the quantity R[x]

defined as

R[x] = ln
P[x(t )|x(0)]P0(x(0))

P[x̃(t )|x̃(0)]P1(x̃(0))
, (20)

which fulfills the exact relation [28]

〈e−R[x]〉 = 1. (21)

We stress that Eq. (21) is entirely a mathematical expression
that does not rely on any physical interpretation of R[x]. Fol-
lowing the usual approach [27], we decompose R[x] into a
“bulk” term determined by the log ratio of conditional proba-
bilities for forward and backward dynamics and a “boundary”
term governed by the log ratio of the distributions of the
initial and final values, i.e., P1(x̃(0)) = P1(x(t )) and P0(x(0)).
Setting P1(x(t )) = P(x, t ), the latter being the PDF of the
particle displacement with the distribution of initial condition
P0(x(0)), the boundary term becomes equal to the change in
system entropy 	S considered in Eq. (10) [27]. In this case,
we therefore have

R[x] = ln
P[x(t )|x(0)]

P[x̃(t )|x̃(0)]
+ 	S[x]

=
∫

dt1
μ

K (t1)
F (x, λ(t1))ẋ(t1) + 	S[x], (22)

where we have used Eq. (18) in the second line.
Comparing Eq. (22) with Eq. (13), we see that the first

term in Eq. (22) becomes indeed equal to the medium entropy
production if we define the latter based on a time-dependent
temperature fulfilling a generalized FDR, Eq. (12). In this case
[scenario (ii)] we thus obtain the usual relations

R[x] = 	Sm
[x](t, T (t )) + 	S[x] = 	Stot

[x] (23)

for the definition of the total entropy production [2,3,27] via
the quantity R[x]. Combining Eqs. (23) and (21), we immedi-
ately find

〈
e−	Stot

[x]
〉 = 1. (24)

In contrast, if we assume a constant medium temperature
[T0; see scenario (i)] and define the medium entropy pro-
duction via Eq. (11), an inconsistency arises: In this case,
the quantity R[x] is obviously different from the sum of
medium and system entropy production. Rather, we have from
Eqs. (22) and (11)

R[x] = 	S[x] + 	Sm
[x](t, T0)

+
∫

dt1

(
μ

K (t1)
− 1

T0

)
F (x, λ(t1))ẋ(t1). (25)

If we still define the total entropy production 	Stot
[x] as the sum

of system and medium entropy production [the latter being
defined by Eq. (11)], we have from Eqs. (25) and (21)

〈
e−[	Stot

[x]+
∫

dt ( μ

K (t ) − 1
T0

)F (x,λ(t ))ẋ(t )]〉 = 1. (26)

Clearly, the exponent deviates from the total entropy produc-
tion alone. This suggests that we interpret the term involving
μ/K (t ) − 1/T0 as an indicator [114] of how far the IFR for
the total entropy production deviates from the standard one.
Note, however, that this all depends on how we define the
term “total entropy production”: One could also argue that,
in the case of a constant medium temperature (not related to
noise correlations), the “total” entropy production includes an
additional term, namely, just the integral term appearing on
the right-hand side of Eq. (26).
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III. FRACTIONAL BROWNIAN MOTION

We now extend our discussion towards a more complex,
non-Markovian diffusion process, namely, fractional Brown-
ian motion (FBM). Physically, we could think, for example,
of a colloidal particle diffusing through a homogeneous, yet
viscoelastic medium (a situation which may be mapped onto
FBM; see, e.g., Ref. [115]). The homogeneity of the medium
allows one to consider the friction coefficient γ , and thus the
mobility μ = γ −1, as independent of space and time. The
medium’s viscoelasticity then enters only through the prop-
erties of the noise. Specifically, we consider the LE

ẋ(t ) = μF (x(t ), λ(t )) + ξH
fGn(t ), (27)

where we have assumed, in analogy to the previous model
equation (1), that the particle is also subject to a force F . Fur-
thermore, ξH

fGn(t ) denotes the fractional Gaussian noise (FGN)
with zero mean, i.e., 〈ξH

fGn(t )〉 = 0, and correlation function
[126–128]〈

ξH
fGn(t1)ξH

fGn(t2)
〉 = 2KH (2H − 1)|t1 − t2|2H−2

+ 4KH H |t1 − t2|2H−1δ(t1 − t2). (28)

In Eq. (28), H is the so-called Hurst parameter, whose range
is given by 0 < H < 1. The Hurst parameter is related to the
exponent α governing the long-time behavior of the MSD
as 2H = α. Thus the motion of the particle is subdiffusive
for H < 1/2, diffusive for H = 1/2, and superdiffusive for
H > 1/2. Furthermore, the prefactor KH plays the role of
the noise strength. For later purposes, we note that the noise
correlation function of FGN, Eq. (28), depends (only) on the
time difference t1 − t2 rather than separately on both times.

The process referred to as FBM emerges via an integration
over time. Specifically, in the absence of a force F , the trajec-
tory of the particle follows from Eq. (27) as

x(t ) = ξH
fBm(t ) =

∫ t

0
dt1ξ

H
fGn(t1), (29)

where ξH
fBm(t ) is the characteristic noise of an FBM process,

with zero mean and correlation function〈
ξH

fBm(t1)ξH
fBm(t2)

〉 = KH
(
t2H
1 + t2

2H − |t1 − t2|2H
)
. (30)

Based on this connection, we henceforth refer to the system
at hand as an “FBM-driven” particle. We stress that due to
the time nonlocality of the FGN and FBM noise correlation
functions in Eqs. (28) and (30), respectively, the dynamics of
the FBM-driven particle is indeed non-Markovian, that is, the
motion of the particle depends on its past. This is different
from the case of delta-correlated noise with time-dependent
strength considered in Sec. II [see Eq. (3)]. A common feature
of both models is that the noise is not related to the mobility
of the particles, which is, in both cases, a constant, μ. In other
words, there is no FDR2. We now discuss consequences for
the thermodynamic properties for the (non-Markovian) FBM
model.

As recalled in Sec. II A, the definitions of the (trajectory-
dependent) work done on the system and the heat dissipated
into the medium do not involve the statistical properties of
the noise appearing in the LE (as long as this noise originates
from the medium). In particular, these definitions do not rely

on the Markovianity or non-Markovianity of the noise cor-
relation functions. We can therefore employ Eq. (6) as the
definition of the total heat dissipated into the medium also
for the FBM-driven model. Furthermore, since we are still
considering x(t ) as the relevant dynamical variable, we can
also apply the expressions for the system entropy and system
entropy production given in Eqs. (9) and (10). However, as
expected, complications arise when determining the medium
entropy production, since the latter requires a definition of the
temperature.

Following essentially our approach in Sec. II A, we con-
sider two scenarios for the definition of temperature. Within
the first scenario [scenario (i)], the temperature is considered
to be a constant throughout the medium, T0, whose value is yet
to be quantified. In this case, the medium entropy production
defined via the heat exchange is given by Eq. (11). Secondly
[scenario (ii)], we introduce a generalized, time-dependent
temperature defined in such as way that the resulting medium
entropy production equals the corresponding expression aris-
ing from the log ratio of path probabilities. Since this is more
involved than in the Markovian case discussed before, we
postpone the definition of the generalized temperature to the
next section.

A. Path probability ratio of the FBM-driven system

In what follows, we aim at calculating the log ratio of
forward and backward path probabilities for the FBM-driven
system using two distinct approaches, resulting in two rep-
resentations. This twofold strategy will later facilitate the
interpretation and analysis of the expressions needed in the
IFR.

First, we start directly with the expression for the (con-
ditional) path probability given in Eq. (14). This is possible,
since for the FBM-driven system given in Eq. (27), the noise
term is still Gaussian, i.e., we can set ξ = ξH

fGn. As before, the
kernel G appearing in Eq. (14) is defined by the functional
inverse of the noise correlation function. In the present case,
we have

∫
dt3G(t1, t3)〈ξH

fGn(t3)ξH
fGn(t2)〉 = δ(t1 − t2) involving

the correlation function of fractional Gaussian noise [see
Eq. (28)]. For simplicity, we henceforth write the inverse of
G as 〈ξH

fGn(t1)ξH
fGn(t2)〉−1. By substituting ξH

fGn from Eq. (27)
one obtains

P[x(t )|x(0)] ∝ exp

{
−1

2

∫ t

0
dt1

∫ t

0
dt2(ẋ(t1) − μF (t1))

× 〈
ξH

fGn(t1)ξH
fGn(t2)

〉−1
(ẋ(t2) − μF (t2))

}
. (31)

Note that we neglect [as in (17)] the Jacobian of the trans-
formation, due to its irrelevance in calculating the forward
and backward path probability ratio. Considering the reversed
trajectory obtained by ẋ → −ẋ, and taking into account that
the noise correlation function equation (28) is symmetric with
respect to time, the logarithm of the forward and backward
path ratio follows as

ln
P[x(t )|x(0)]

P̃[x̃(t )|x̃(0)]
= 2μ

∫ t

0
dt1

∫ t

0
dt2F (t1)

× 〈
ξH

fGn(t1)ξH
fGn(t2)

〉−1
ẋ(t2), (32)
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which is only a function of the forward path. The above
expression can be rewritten in a more familiar form by intro-
ducing (similar to Sec. II B for the SBM case) a generalized,
time-dependent temperature that is proportional to the func-
tional inverse of the noise correlation function. For FGN, this
function involves two times, t1 and t2, with the simplification
that it only depends on the time difference; see Eq. (28). We
therefore introduce the “temperature”

T −1(t1 − t2) := 2μ
〈
ξH

fGn(t1)ξH
fGn(t ′)

〉−1
, (33)

such that
∫

dt3(2μ)−1T (t1 − t2)〈ξH
fGn(t3)ξH

fGn(t2)〉 =
δ(t1 − t2).

Equation (33) may be considered as a generalized FDR (of
the second kind), since it relates the generalized temperature
to the mobility μ and the noise autocorrelation function, in
analogy to our argument below Eq. (12), for the case of SBM.
With this, Eq. (32) becomes

ln
P[x(t )|x(0)]

P̃[x̃(t )|x̃(0)]
=

∫ t

0
dt1

∫ t

0
dt2F (t1)

× T −1(t1 − t2)ẋ(t2). (34)

Combining the left-hand side of Eq. (34) with the boundary
term involving the distribution of initial and final values of P
as described before [see Eq. (22)], we obtain for the quantity
R[x] in Eq. (20)

R[x] = 	S[x] +
∫ t

0
dt1

∫ t

0
dt2F (t1)T −1(t1 − t2)ẋ(t2). (35)

By definition, the so-obtained R[x] fulfills the IFR equa-
tion (21). We also see, however, that in order to view R[x]

as a “total entropy production” (which appears in the IFR
of standard Brownian motion), we have to introduce an un-
usual form of medium entropy production, that is, 	Sm

[x] =∫ t
0 dt1

∫ t
0 dt2F (t1)T −1(t1 − t2)ẋ(t2). Clearly, the price to pay

is the introduction of the time-nonlocal temperature according
to Eq. (33). This strategy corresponds to scenario (ii) referred
to at the beginning of Sec. III, i.e., it is analogous to the
introduction of a time-dependent temperature in the SBM case
[see Eq. (12)]. Furthermore, from the preceding expressions it
is obvious that if we defined the medium entropy production
with a constant temperature [scenario (i); see Eq. (11)], then
the sum of this quantity and the system entropy would be
different from R[x] and therefore would not fulfill the IFR, just
as in the SBM system.

So far, we have evaluated the log ratio of path probabilities
following the standard approach. As an alternative, we now
employ a fractional differential approach [32–34]. To start
with, we integrate Eq. (27) over time, yielding

x(t ) − x0 = μF̄ (x(t ), λ(t )) + ξH
fBm(t ), (36)

where F̄ (x(t ), λ(t )) = ∫ t
0 dt ′F (x(t ′), λ(t ′)), x0 = x(0), and

we have used Eq. (29) relating ξH
fGn to ξH

fBm. Equation (36)
can be formally solved in terms of the Riemann-Liouville
fractional differential operator 0Dβ

t [32,33], yielding

0D
(H+ 1

2 )
t (x(t ) − x0) − μ 0D

(H+ 1
2 )

t F̄ (x(t ), λ(t )) = ξ (t ). (37)

On the right-hand side of Eq. (37), ξ (t ) is a standard, Gaus-
sian white noise with zero mean and autocorrelation function

〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′) (with D being the diffusion con-
stant). For the special case H = 1/2, the fractional differential
operator reduces to a normal time derivative, i.e., 0Dβ

t = d/dt .
This ensures that Eq. (37) reduces to the standard Brownian
equation of motion for H = 1/2.

The path probability corresponding to Eq. (37) follows
from Eq. (14) where, in the present case, G(t1, t2) = δ(t1 −
t2)/(2D). We thus obtain

P[x(t )|x(0)] ∝ exp

{
− 1

4D

∫ t

0

[
0D

(H+ 1
2 )

t ′ (x(t ′) − x0)

−μ 0D
(H+ 1

2 )
t ′ F̄ (x(t ′), λ(t ′))

]2
dt ′

}
. (38)

We note in passing that the use of Eq. (38) for actual
calculations of quantities, such as the PDF of the parti-
cle displacement, is quite involved when H > 1/2. This is
because additional boundary conditions involving fractional
derivatives at t = 0 are required. Here we are rather inter-
ested in the log ratio of the forward and backward paths. To
calculate the conjugate trajectory, we use a protocol that is
slightly different from the conventional time-reversal proto-

col, defined as 0D
(H+ 1

2 )
t (x(t ) − x0) → −0D

(H+ 1
2 )

t (x(t ) − x0).
This prescription provides a backward trajectory in time with
fractal dimension H + 1/2. With this we find

ln
P[x(t )|x(0)]

P̃[x̃(t )|x̃(0)]
= μ

D

∫ t

0

[
0D

(H+ 1
2 )

t ′ (x(t ′) − x0)

× 0D
(H+ 1

2 )
t ′ F̄ (x(t ′), λ(t ′))

]
dt ′. (39)

Before proceeding, some consistency checks are in order.
First, for H = 1/2 and using 0D(1)

t = d/dt , we recover, as
we should, the expression for a normal Brownian particle in
a heat bath of temperature T0 = D/μ (according to Einstein’s
relation). Second, Eq. (39) becomes equivalent to Eq. (18),
that is, the log ratio of path probabilities for time-dependent
noise strength, if the fractional derivatives are replaced by the
ordinary time derivatives (i.e., by formally setting H = 1/2),
and K (t ) is set to the constant K(1/2) = D.

In the more interesting, non-Markovian case (H �= 1/2),
Eq. (39) may be considered as an alternative expression to
Eq. (34) for the path probability ratio of an FBM-driven parti-
cle. In Eq. (34), the non-Markovianity enters via the nontrivial
time dependence in the “temperature” defined via the func-
tional inverse of the noise correlation function. In contrast,
Eq. (39) involves a constant prefactor μ/D, suggesting that we
define a constant temperature T0 = D/μ. The non-Markovian
character here rather appears through the presence of frac-
tional derivatives.

Despite these differences, similar problems of inter-
pretation occur when we try to make the connection to
thermodynamics, particularly to the medium entropy produc-
tion. Especially, the integral term in Eq. (39) is equal to the
conventional dissipated heat equation (6) only if H = 1/2. In
this case the log ratio is equivalent to the medium entropy pro-
duction defined in Eq. (11). For any other value of the Hurst
parameter (H �= 1/2) that yields a non-Markovian anoma-
lous dynamics, no immediate conclusion about the physical
meaning of the log ratio of the forward and backward path
probabilities can be made. Thus the total entropy production
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is not straightforwardly defined either. To proceed, we can
formally introduce [based on the right-hand side of Eq. (39)]
a generalized heat function

Q(t ) =
∫ t

0
0D

(H+ 1
2 )

t ′ (x(t ′) − x0)D
(H+ 1

2 )
t ′ F̄ (x(t ′), λ(t ′))dt ′,

(40)

from which we define the medium entropy production as
	Sm

[x] = Q(t )/T0, with T0 = D/μ. We then find from the
full path probability ratio [including the bulk term given in
Eq. (39), which leads to the system entropy] a relation (for-
mally) resembling the standard IFR:

〈
e−	S[x]−Q

T0
〉 = 〈

e−	Stot
[x]

〉 = 1, (41)

where, in this case, 	Stot
[x] = 	S[x] + Q/T0.

So far, we have studied the ST of FBM-driven systems by
introducing and exploiting different definitions of tempera-
tures, medium entropy productions, and heat functions. These
definitions were motivated by the desire to formulate, consis-
tent with standard ST for Brownian motion, an IFR based on
path probability ratios involving the total entropy production.
We have shown that in order to achieve such consistency, one
has to introduce either a time-nonlocal temperature T (t1 − t2)
or a generalized heat function Q. Both quantities seem rather
artificial. In the following section, we will shed some light on
these quantities by utilizing a perturbation method [129–133].

B. Perturbation theory

In this section, we use perturbation theory to further in-
vestigate the ST of the FBM-driven system. Our main focus
is to better understand the definitions of the generalized tem-
perature and generalized heat function introduced in Eqs. (33)
and (40), respectively.

As a starting point, we rewrite the Hurst parameter charac-
terizing the FBM process [see Eqs. (28) and (30)] as

H = 1/2 + ε, (42)

where ε is now considered as a small (perturbation) parameter.
Equation (42) reflects the special role of the case H = 1/2,
for which the noise correlation function reduces to a delta
function, and the (Markovian) LE (27) describes the normal
diffusion of a particle under the influence of a force. By
setting ε �= 0, the noise correlation function becomes nonlocal
in time (i.e., non-Markovian), accompanied by an anomalous
behavior of the particle’s MSD. Thus increasing ε from zero
to some positive or negative value in the range [−1/2, 1/2]
corresponds to a smooth transition from Markovian behavior
(with diffusive dynamics) to non-Markovian behavior and
anomalous dynamics.

Instead of applying the perturbation method directly to the
kernel, as was done in Refs. [129–133] for calculating the path
probability, here we perform our perturbation analysis on the
level of the LE. This will allow us not only to calculate the log
ratio of the forward and backward path probabilities, but also
to study the ST of the system for small values of ε.

We start from the integrated LE (36). The FBM noise
appearing on the right-hand side of the equation can be rep-
resented by the Riemann-Liouville fractional integral 0Iβ

t of

Gaussian white noise [134], that is,

ξH
fBm(t ) = 1

�(H + 1
2 )

∫ t

0
dt ′(t − t ′)H− 1

2 ξ (t ′)

= 0I
(H+ 1

2 )
t ξ . (43)

Substituting Eq. (43) into the LE (36), one obtains

x(t ) − x0 = μF̄ (x(t ), λ(t )) + 0I
(H+ 1

2 )
t ξ . (44)

We note that for H = 1/2, the conventional LE for normal
Brownian motion is recovered by differentiating both sides
with respect to time (recall that F̄ corresponds to the time-
integrated force). Our goal is now to expand the H-dependent
terms in Eq. (44), where H is given in Eq. (42), up to the
first order in ε. To this end, we perform a Taylor expansion of
Eq. (43) around ε = 0, yielding

0I
(H+ 1

2 )
t ξ (t ) =

∫ t

0
dt ′ξ (t ′) + ε

[
ζ

∫ t

0
dt ′ξ (t ′)

+
∫ t

0
dt ′ ln(t − t ′)ξ (t ′)

]
+ O(ε2), (45)

where ζ is the Euler-Mascheroni constant given by the neg-
ative sign of the first derivative of the gamma function
with respect to ε at ε = 0, ζ = −�′(1) 
 0.577. Substituting
Eq. (45) into Eq. (44) and differentiating both sides with
respect to time yields

ẋ(t ) − μF (x(t ), λ(t ))

= ξ (t ) + ε

[
(ζ + ln τ )ξ (t ) +

∫ t

0
dt ′|t − t ′|−1ξ (t ′)

]
.

(46)

Here, the parameter τ is chosen to separate the two coincid-
ing times and is considered to be a small cutoff time. It is
introduced in order to avoid the divergence of the log term for
the two coinciding times by using a regularization technique.
As we will proceed to show, this parameter appears only as
a constant in the (renormalized) diffusion coefficient. This
correction can later be removed by choosing a particular value
for τ .

Inspecting Eq. (46), we see that to zeroth order of ε (i.e.,
∼ε0), it reduces to the LE for normal diffusion,

ξ (t ) = ẋ(t ) − μF (x(t ), λ(t )), (47)

as it should. We now insert this zeroth-order result to replace
ξ (t ) in the first-order equation (46). Solving with respect to
ξ (t ), we obtain

ξ (t ) = K−1
ε [ẋ(t ) − μF (x(t ), λ(t ))]

− ε

∫ t

0
dt ′|t − t ′|−1[ẋ(t ′) − μF (x(t ′), λ(t ′))], (48)

where we have introduced K−1
ε = 1 − ε(ζ + ln τ ).

We now proceed towards the path probability. To this
end, we recall that ξ (t ) is a Gaussian process, such that the
path probability can be readily found from Eq. (14), with
G(t1, t2) = δ(t1 − t2)/2D. Substituting ξ (t ) from Eq. (48), we
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find

P[x(t )|x(0)] ∝ exp

{
− 1

4D

∫ t

0
dt ′

[
K−1

ε (ẋt ′ − μFt ′ )

− ε

4D

∫ t ′

0
dt ′′|t ′ − t ′′|−1(ẋt ′′ − μFt ′′ )

]2}
.

(49)

To better see the impact of ε, we expand Eq. (49) up to the
first order in this parameter, yielding

P[x(t )|x(0)] ∝ exp

{(
− 1

4D
+ ε(ζ + ln τ )

2D

)

×
∫ t

0
dt ′(ẋt ′ − μFt ′ )2

}

× exp

{
ε

2D

∫ t

0
dt ′(ẋt ′ − μFt ′ )

×
∫ t

0
dt ′′ (ẋt ′′ − μFt ′′ )

|t ′ − t ′′|
}
. (50)

On the right-hand side of Eq. (50), the first exponential al-
ready resembles the path probability of a normal diffusive
process, with a correction in the prefactor of the integral.
This correction, which can be interpreted as a renormalization
of the diffusion constant, can be set to zero by choosing
τ = e−ζ (recall that τ is a free parameter). In this way the
first exponential becomes equivalent to the Brownian case.
The second exponential in Eq. (50), however, reflects the non-
Markovian character of the noise correlation function, as seen
from the double time integral in the exponent (and the pref-
actor ε of the integral). In this sense, the second exponential
represents the signature of non-Markovianity within our first-
order expansion. We note that the result, Eq. (50), matches
the perturbative path probability of the FBM calculated in
Refs. [129–133].

We are now in the position to calculate the log ratio of the
forward and the backward path probabilities (with the final
goal of investigating the IFR). Following the same protocol for
time reversal as before in the standard approach [see Eq. (32)],
we find

ln
P[x(t )|x(0)]

P̃[x̃(t )|x̃(0)]
= μ

D

∫ t

0
dt ′ẋt ′Ft ′ − ε

μ

D

×
∫ t

0
dt ′

∫ t

0
dt ′′ ẋt ′′Ft ′

|t ′ − t ′′| + O(ε2). (51)

Equation (51) provides a useful starting point for a physical
interpretation of the log ratio of the forward and backward
probabilities for the FBM-driven system. To this end, we
compare Eq. (51) with the corresponding (exact) results ob-
tained via the standard and fractional differential approaches
leading to Eqs. (32) and (39), respectively. Within the stan-
dard approach we have defined a time-dependent temperature
T (t1 − t2) [see Eq. (33)] in order to identify the log ratio
given in Eq. (32) as a medium entropy production [see second
term in Eq. (35)]. We can now specify this temperature up
to first order in ε. Specifically, we compare Eqs. (51) and
(34), after plugging into the latter the ansatz T −1(t1 − t2) =

T −1
(0) (t1 − t2) + εT −1

(1) (t1 − t2) + O(ε2). By this we identify

T −1
(0) (t1 − t2) = μ

D
δ(t1 − t2),

(52)

T −1
(1) (t1 − t2) = μ

D
|t1 − t2|−1,

where the superscript −1 is now meant as an ordinary inverse
(not a functional inverse anymore). By inverting the zeroth-
order term to get T(0) = T0δ(t1 − t2) with T0 = D/μ, we see
that this term is related to the classical definition of the tem-
perature in normal Brownian motion. In contrast to T(0), the
first-order term T −1

(1) is nonlocal in time and thereby introduces
the impact of the non-Markovianity of the dynamics.

With the definitions in Eq. (52), we can now rewrite
Eq. (34) [or, equivalently, Eq. (51)] in terms of the standard
medium entropy production of a system at fixed temperature
plus correction terms, i.e.,

ln
P[x(t )|x(0)]

P̃[x̃(t )|x̃(0)]
= 	Sm,(0)

[x] (t ) + ε	Sm,(1)
[x] (t ) + · · · , (53)

where

	Sm,(0)
[x] = μ

D

∫ t

0
dt1ẋ(t1)F (t1),

	Sm,(1)
[x] = μ

D

∫ t

0
dt1

∫ t

0
dt2

ẋ(t2)F (t1)

|t1 − t2| . (54)

Thus the zeroth order matches the conventional definition
of the medium entropy production, while the first order in-
cludes the effect of the non-Markovianity.

Another important quantity, which we have introduced
within the fractional differential approach for the path prob-
ability ratio [see Eq. (39)], is the generalized heat function
given in Eq. (40). To shed light on the physical meaning of
this function, we first rewrite Eq. (51) as

ln
P[x(t )|x(0)]

P̃[x̃(t )|x̃(0)]
= 1

T0
	Q(t )

− ε

T0
(ẋ�F (t ) + F �ẋ(t )) + O(ε2), (55)

where 	Q(t )/T0 corresponds to the first term on the right-
hand side of Eq. (51) [which equals 	Sm,(0)

[x] (t ) introduced in
Eq. (54)] and

ẋ�F (t ) =
∫ t

0
dt ′′ẋt ′′

∫ t ′′

0
dt ′ Ft ′

(t ′′ − t ′)
=

∫ t

0
dt ′′ẋt ′′ F̃t ′′ ,

F �ẋ(t ) =
∫ t

0
dt ′′Ft ′′

∫ t ′′

0
dt ′ ẋt ′

(t ′′ − t ′)
=

∫ t

0
dt ′′Ft ′′ ˜̇xt ′′ . (56)

Here, we have introduced a retarded velocity ˜̇x and retarded
force F̃ . The two terms arise from a splitting of the double
time integral in the second term in Eq. (51).

Equation (55) reveals that, upon deviating from the
normal-diffusion regime (ε = 0), an additional heat exchange
between the system and the (viscoelastic) medium takes place.
This is due to the memory imposed by the environment, which
is then translated into a retardation of the force and the ve-
locity. We note that the two terms in Eq. (56) arise through
the perturbation expansion around ε = 0; as such, they are
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independent of ε. Having this in mind, we can conclude that
positive values of ε, which correspond to superdiffusion, lead
to a reduction in the heat exchange, whereas negative values
corresponding to subdiffusion lead to an increase in heat
exchange.

Furthermore, it is now evident that 	Q(t ) and the sum
ẋ�F (t ) + F �ẋ(t ) are the zeroth order and first order of the
generalized heat exchange function, respectively, i.e.,

Q(t ) = 	Q(t ) − ε(ẋ�F (t ) + F �ẋ(t )) + O(ε2). (57)

We note that this conclusion could also be obtained by directly
expanding the generalized heat function, Eq. (40). However,
the singularities in the case H = 1/2 are handled more conve-
niently and systematically with the current approach.

We finally turn back to the IFR. Combining Eq. (55) with
the expression for the boundary term of the (full) path proba-
bility ratio and using Eq. (21), we obtain a “perturbative form”
of an IFR for the entropy production, which up to the first
order in ε reads〈

e−	Stot
[x]+ ε

T0
(ẋ�F +F �ẋ )+O(ε2 )〉 = 1. (58)

Here, 	Stot
[x] = 	Sm,(0)

[x] (t ) + 	S[x]. Equation (58) nicely
demonstrates how the additional heat exchange defined in
Eq. (57) enters into the IFR of the entropy production.

We finally remark that the appearance of additional terms
supplementing the conventional total entropy production in
the IFR is in line with other studies for diffusion in complex
environments such as active baths [65] or systems with time-
delayed feedback [88], although the underlying processes
are very different. Interestingly, in Ref. [65] these additional
contributions were interpreted in terms of a mutual informa-
tion production between particle and bath dynamics. For our
FBM-driven system, if we define 	SI

[x] = Q − 	Q, by using
Eq. (57) we can trivially rewrite Eq. (58) as

〈e−	Stot
[x]+	SI

[x]〉 = 1. (59)

Whether one could express 	SI
[x] in terms of mutual informa-

tion production remains an interesting open question.

IV. CONCLUSIONS

In this paper we have explored the applicability of ST
to systems displaying anomalous diffusion. We have studied
two important cases, namely, Markovian systems with time-
dependent noise strength (such as SBM) and FBM. The latter
provides a paradigmatic example of a non-Markovian process
yielding anomalous diffusion, where the non-Markovianity
stems from the noise correlation function. Methodologically,
we have essentially followed the definitions and derivations
of ST quantities and the IFR for standard Brownian systems
[3]. Not surprisingly, the treatment of FBM turned out to be
challenging.

One of the major results concerns the role of a (general-
ized) FDR of the second kind, connected with the definition
of a (generalized) temperature. For conventional Brownian
dynamics, these issues are straightforward: The FDR relating
the (delta-like) noise correlation function with constant diffu-
sion coefficient D to the constant mobility μ (which implies
a delta-like friction kernel) leads directly to the definition

of a (constant) temperature T0 = D/μ. This immediately al-
lows one to define the heat exchange with the medium, as
well as the medium entropy production consistent with the
corresponding expression from the log ratio of (forward and
backward) path probabilities. Furthermore, consideration of
the full log ratio (i.e., the quantity R[x]) directly leads to the
total entropy production 	Stot (as the sum of system and
medium entropy) and the IFR related to this quantity.

As we showed in Sec. II, these well-established concepts
have to be handled with care already for the relatively simple
(Markovian) case of a time-dependent noise strength. In that
case, the noise correlation function is not related to mobility,
i.e., there is no FDR from the LE. Therefore the definition of
temperature is not obvious. If we define the temperature as
a time-dependent function T (t ) related to the noise strength,
thereby introducing a “generalized FDR” (of the second kind),
and define the heat exchange accordingly, then the medium
entropy production defined through the heat becomes consis-
tent with the corresponding path probability expression. The
IFR for 	Stot then follows automatically. In contrast, if we
set the temperature to a constant, we can still define heat
exchange, but the two routes towards the medium entropy
production now yield different results. As a consequence,
we observe deviations from the IFR for 	Stot if the latter is
defined in a physical way as “system entropy plus heat ex-
change.” We stress that, regardless of any definitions, the IFR
for the quantity R[x], that is, the log ratio of path probabilities,
is always true by definition. The question, rather, is whether
R[x] corresponds to the physical total entropy production or
to a somewhat modified quantity. This is what we mean by
“deviation” here.

Similar conceptual issues arise in the FBM case. However,
here the analysis becomes more demanding due to the non-
Markovian character of the noise correlation function. This
leads (when requiring consistency between different routes to
the medium entropy production) to a temperature depending
on a finite time difference, which clearly reveals the pres-
ence of memory effects. In other words, one can introduce
some form of an FDR, but the price to pay is a temperature
with memory. An alternative view comes up when treating
the problem via functional differentiation. Along these lines,
consideration of the log ratio of path probabilities suggests
a constant temperature (due to the white noise appearing in
the fractional LE) but a highly nontrivial heat function whose
physical interpretation remains obscure. So again, there is a
price to pay. We then have shown that these quantities, the
time-nonlocal temperature and the generalized heat function,
can be interpreted to some extent via a perturbation expan-
sion of the Hurst parameter H around the Brownian case
(H = 1/2). The zeroth-order expressions recover the standard
results for Brownian motion. A major result consists of our
explicit first-order expressions for the generalized temperature
and heat dissipation, both reflecting clearly the presence of
memory. For example, the first-order correction to the heat
dissipation can be physically interpreted as extra heat ex-
changes between the system and the medium that include the
memory of the environment through either a retarded force or
a retarded velocity.

We close with some more general remarks on the embed-
ding of our work in the field of ST. The starting point of
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this paper was the wealth of literature concerning the ST of
Brownian and Markovian systems. Within this framework,
it has been shown that FRs provide a universal relationship
that is valid even very far from equilibrium thus generaliz-
ing conventional linear response theory. Starting from FRs,
expressions for a nonlinear response have also been obtained
going beyond Onsager reciprocity relations [21,135,136]. Ac-
cordingly, it would be very interesting to calculate nonlinear
response relations for non-Markovian systems from FRs as
well, both with and without FDR, in order to learn more about
the importance of Markovianity and FDR in nonequilibrium
situations. Furthermore, as pointed out in the Introduction,
there have been several recent efforts to generalize aspects
of ST, particularly FRs, towards non-Markovian systems de-
scribed by GLEs. In this paper we have asked, more generally,
what can be learned when we apply the “standard” ST scheme
with notions such as entropy, heat, and temperature to systems
exhibiting anomalous dynamics, which are “athermal” [3] in
the sense that there is no direct relation between temperature
and noise. We emphasize (again) that such processes are by
no means “exotic” mathematical artifacts, as they are widely
observed in physical and biological experiments. In particular,
they may have important applications to better understand

active matter, such as the motion of a tracer particle in an ac-
tive bath [66–70] and the dynamics of a single active particle
[65], if the persistence of the active particle(s) reflecting the
self-propulsion was anomalous, in the sense of being stronger
than exponentially correlated. We remark that anomalous fea-
tures of dynamics in active baths have already been observed
experimentally and modeled theoretically [137]. Our analy-
sis shows that ST for strongly correlated processes indeed
suggests new definitions for thermodynamic quantities such
as temperature or heat and a respective interpretation of the
physical contributions. We thus view our present analysis
as an important contribution to the development of ST for
anomalous dynamics.
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