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Deterministic diffusion in flower-shaped billiards
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We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal
diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower,
and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion
coefficient of this model from computer simulations and analyze its functional form using different schemes,
all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we
use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas
simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical
correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of
the diffusion coefficent.
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I. INTRODUCTION

One of the central themes in the theory of nonequilibriu
statistical mechanics is to assess the importance of deter
istic chaos for understanding transport processes such a
fusion @1,2#. Simple model systems appear to be most su
for studying the detailed relation between microscopic ch
and macroscopic transport. Along this line of research,
parameter dependent diffusion coefficients of strongly c
otic dynamical systems have been investigated for one-
two-dimensional mappings@3–7#, periodic Lorentz gases
@8#, and billiards in an external field@9#. That diffusion co-
efficients can be fractal functions of control parameters w
first observed in a simple one-dimensional mapping gene
izing a random walk on the line@5,6#. The origin of this
fractality may be attributed to the topological instability
orbits under parameter variation, which affects the param
dependence of the diffusion coefficient in a nontrivial wa
Based on the analysis of such simple systems, it was con
tured that fractal diffusion coefficients are rather generic
low-dimensional fully chaotic dynamical systems exhibiti
some spatial periodicity@5,6#. Indeed, recently it was found
that in case of billiards in an external field the diffusio
coefficient again exhibits a highly irregular structure@9#.

The standard periodic Lorentz gas is one of the typi
models for studying deterministic normal diffusion~see, e.g.,
Refs.@1,2# and further references therein!. That it is strongly
chaotic and exhibits normal diffusion was proven by Bu
movich and co-workers@10–12#. Machta and Zwanzig have
calculated the diffusion coefficient of this model from com
puter simulations at some parameter values, and they h
matched their results to a simple analytical random w
approximation@13#. That the diffusion coefficient in the stan
dard periodic Lorentz gas is indeed a nontrivial function
1063-651X/2002/66~2!/026211~7!/$20.00 66 0262
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the parameter was first reported in Ref.@8#. Here the analysis
by Machta and Zwanzig was refined by suggesting t
methods for systematically correcting their random walk a
proximation. However, whether the numerically detected
regularities in the diffusion coefficient were of a fractal n
ture remains an open question. More recently, a th
approximation scheme was proposed by deriving a Gre
Kubo formula that exactly generalizes the Machta-Zwan
approximation@14#. Applying all these methods led to th
conclusion that including long-term correlations, or memo
effects, was indispensable for reproducing the precise fu
tional form of the parameter dependent diffusion coefficie
for the standard periodic Lorentz gas.

One of the essential problems in the analysis of diffus
in the standard periodic Lorentz gas is that the param
range of normal diffusion is very limited. In this small re
gion, the irregular behavior of the parameter dependent
fusion coefficient shows up on very fine scales and appe
to be rather smooth within the range of precision availa
from computer simulations@8,15#. Consequently, the ques
tion about the existence of a fractal diffusion coefficient
very difficult to answer for this model. As the main reas
for this behavior, it might be suspected that the topologi
instability of the standard periodic Lorentz gas under para
eter variation is not strong enough to generate more p
nounced irregularities in this region. The main purpose
this paper is therefore to propose a billiard without an ext
nal field, which is very similar to the standard periodic Lo
entz gas, but which has a geometry, and an associated r
of control parameters exhibiting normal diffusion, wit
stronger topological instabilities. This way, we intend
learn more about the emergence of possible fractal struct
for diffusion coefficients in billiards. As we will show, ou
model indeed generates a considerably stronger irregular
©2002 The American Physical Society11-1
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rameter dependence of the diffusion coefficient than in
standard Lorentz gas. By applying the set of approximat
methods mentioned above we argue that long-range dyn
cal correlations, or memory effects of orbits, are again at
origin of this irregularity, as in the case of simple one- a
two-dimensional maps.

Our paper is composed of seven sections. In Sec. II,
introduce the flower-shaped billiard. Numerical results d
picting the nontrivial parameter dependence of the diffus
coefficient are shown in Sec. III. In Secs. IV, V, and VI, w
briefly review the different approaches to understanding
parameter dependence of diffusion coefficients in determ
istic dynamical systems, i.e., the Machta-Zwanzig appro
mation, Klages-Dellago correction methods, as well as
approach based on a suitable Green-Kubo formula for di
sion, and we apply them to the flower-shaped billiard. Su
mary and conclusions are contained in Sec. VII.

II. THE FLOWER-SHAPED BILLIARD

The two-dimensional class of billiards we consider he
consists of a point particle of massm moving in a plane such
that its Hamiltonian is

H5
1

2m
px

21
1

2m
py

2 , ~1!

wherex andy denote the Cartesian coordinates of the po
tion in the plane, whilepx and py are the corresponding
momenta. The point particle undergoes elastic collisions w
obstacles that are fixed in the plane. All the obstacles h
the same shape, and their centers are situated on a trian
lattice according to

qc5mcø11ncø2, ~2!

as defined in terms of the fundamental translation vector
the triangular lattice,

ø15~0,1! ~3!

and

ø25SA3

2
,
1

2D , ~4!

wheremc andnc are integers.
If all the pairs of integers are selected, we fill the who

triangular lattice with hard wall obstacles, and the billiard
invariant under the group of spatial translations generated
the vectors Eq.~2!. Accordingly, the whole lattice can b
mapped onto a so-called Wigner-Seitz cell with perio
boundary conditions. The elementary Wigner-Seitz cell
the triangular lattice is a hexagon of area

AWS5uø13ø2u5
A3

2
. ~5!

In this paper, we propose an open billiard consisting
flower-shaped obstacles instead of disks, which belong
02621
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the general class of periodic Lorentz gases whose nor
diffusion has been proven by Bunimovich and co-worke
@10–12#. The mixing property and the extension of such b
liards to higher-dimensional gases have been studied
Chernov @16#. As shown in Fig. 1, the space between t
obstacles forms the two-dimensional domain of the billia
where the point particle moves freely and collides with t
obstacles obeying the law of elastic reflection.

A single scatterer of our billiard is defined as follow
First, we consider the inner hexagon whose vertices are
the middle points of the sides of the hexagon of the elem
tary Wigner-Seitz cell, as depicted by the dotted lines in F
2. Next, we join six arcs that have the same radii and to
the inner hexagon. Then we obtain the flower-shaped
stacle shown in Fig. 2. Note that the radiusr of one arc that
consists in a petal of the flower-shaped obstacle can
changed from 1/(4A3) to infinity. According to this con-
struction, the position space forms a two-dimensional tor
The motion of the point particle in the infinite lattice is un
bounded so that transport by diffusion isa priori possible.
Indeed, we will show that the diffusion of point particles

FIG. 1. The modified Lorentz gas as composed of a point p
ticle moving freely in the spaces between the flower-shaped
stacles, which scatters elastically with the obstacles. In our c
massm51 and velocityv51. The quantities plotted here and i
the following figures are dimensionless.

FIG. 2. Definition of a flower-shaped obstacle. The bigger he
gon ~bold lines! is the elementary Wigner-Seitz cell. The arc alwa
touches the smaller hexagon~dotted lines!, which prohibits any
infinite horizon.
1-2
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the billiard of the flower-shaped obstacles is normal. Wh
the dynamics is reduced to the Wigner-Seitz cell, the posi
of the particle inside this cell must be supplemented b
lattice vector of the type of Eq.~2! in order to determine the
actual position of the particle in the infinite lattice. This la
tice vector changes in discrete steps at each crossing o
border of the elementary Wigner-Seitz cell.

A billiard whose obstacles are disks, or, in higher dime
sions, spheres, is called a periodic Lorentz gas, and
model serves as a typical example for studying determini
diffusion @10–13,16,17#. The diffusion coefficient of this
standard periodic Lorentz gas has been studied in var
ways both analytically and numerically, where recent wo
focused particularly onto its density dependence~see Refs.
@8,14# and further references therein!. However, the density
of this model cannot be varied much because of the co
tion of a finite horizon, which prohibits collision-free ballis
tic motion and thus guarantees the existence of normal
fusion @10–12,16#. Consequently, the diffusion coefficien
exists in a very limited range of parameters only, a
whether the diffusion coefficient of the standard perio
Lorentz gas is a fractal function of the density of scatter
appears to be an open question.

Let us introduce the Liouville equilibrium invariant mea
sure given by

dme5I ~x,y!d~H2E!dxdydpxdpy , ~6!

whereI (x,y) is the indicator function of the billiard domain
andE is the energy of the point particle. Averages over t
invariant measure are denoted by^•&. This measure is nor
malizable for the reduced dynamics in an element
Wigner-Seitz cell, where the area of the billiard domain tak
a finite value. In this finite case, the Liouville invariant me
sure is a probability measure, which defines the microcan
cal ensemble of equilibrium statistical mechanics. T
flower-shaped billiard belongs to the class of dispersing
liards whose hyperbolicity has been proven by Sinai@18#.
Consequently, it is known that the motion of the point p
ticle in the elementary Wigner-Seitz cell of our billiard
hyperbolic, in the sense that all orbits are unstable and
saddle type with nonvanishing Lyapunov exponents, a
time averages are equal to averages over the Liouville e
librium invariant measure.

III. CURVATURE DEPENDENCE OF THE DIFFUSION
COEFFICIENT

Since the system of flower-shaped obstacles is fully c
otic, and by working in the regime of finite horizon, we ma
expect that diffusion is normal in the sense that the posi
is asymptotically a Gaussian random variable with a varia
growing linearly in time. Consequently, the diffusion coef
cient exists and is finite@10–12,16#. Indeed, we checked nu
merically that the variance is proportional to time after s
ficiently long time evolution.

The diffusion coefficientD is given by the Einstein for-
mula
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D5 lim
t→`

1

4t
^$q~ t !2q~0!%2&, ~7!

and according to this formula the diffusion coefficient w
calculated from computer simulations in the flower-shap
billiard, where the curvaturek of the petals is varied from 0
to its maximum, 4A3. The results are depicted in Fig. 3. I
this figure, we observe a nontrivial structure depending
the curvaturek of the arc defining the petal of the flowe
shaped obstacles.

The gross features of the curvature dependence for
diffusion coefficient can qualitatively be explained as fo
lows: When the curvature of the petal of the flower-shap
obstacle is zero, the inner hexagon shown by the dotted l
in Fig. 2 connects to the six hexagons surrounding it. In t
case, the point particle remains forever localized in comp
domains bounded by the three neighboring hexagons.
this specific value of the control parameter, the motion of
point particle is completely predictable because the comp
domain is an equilateral triangle, and the system is in
grable.

When the curvature becomes positive, the point part
can run away from the compact domain, and diffusion o
curs. As already explained, at all positive curvatures of
petal, even if they are very small, the motion of the po
particle is fully chaotic and the horizon is finite, hence d
fusion is expected to be normal. The diffusion coefficie
starts to increase from zero according to the linear incre
of the curvature of the petal, and related to the fact that
space between petals also increases.

When the radius of the petal is equal toRL5A3/4
.0.433, which is the distance between the center of
hexagon and the tangent point to the hexagon, the obst
becomes a disk of radiusRL , that is, for this parameter valu
our billiard is precisely the same as the conventional perio
Lorentz gas. This point corresponds to the curvaturek
.2.309 in Fig. 2.

When the radiusr of the curvature of the petal decreas
below RL , the point particle is much more likely to b
trapped in the space between two obstacles. This appea
be due to the formation of wedges between any two petal
a flower-shaped obstacle.

FIG. 3. Diffusion coefficientD ~solid line! versus the curvature
k of the petal of the flower-shaped obstacles. The diffusion coe
cient inceases approximately linearly for small enoughk until it
reaches a global maximum. Inset: enlargement of the curve of
diffusion coefficient for largerk showing the irregularity of this
curve on fine scales.
1-3



rv
t
tu
on
o

le
ve

le
e

re
se
an
,
a
th
r

m
ra
g

th
p
a
e
t

de

he

ed

a

.
4,
e

he
dic
nt.
cept
e
that
ing
ey
in
of

f the

one
om

g
bili-
the
he
ng
d

ar-
on
an-
est
ly,
for

ll
rest

are

rre-
rve

TAKAHISA HARAYAMA, RAINER KLAGES, AND PIERRE GASPARD PHYSICAL REVIEW E66, 026211 ~2002!
The inset of Fig. 3 depicts an enlargement of the cu
showing the fine structure on smaller scales with respec
curvature. We remark that the apparently continuous fluc
tions therein are within the numerical errors, that is, we c
firmed the convergence of our results within a precision
order 1024 by taking an average over 1010 initial conditions.
Unfortunately, with our computational power it is impossib
to check whether this oscillatory behavior persists on e
finer scales.

IV. MACHTA-ZWANZIG APPROXIMATION FOR
DIFFUSION COEFFICIENTS

In Ref. @13#, Machta and Zwanzig have obtained a simp
analytical approximation for the diffusion coefficient of th
periodic Lorentz gas, which yields asymptotically correct
sults in the limit of small gaps between disks. In this ca
the particle is somewhat trapped for a long time in the tri
gular regions between three adjacent scatterers. Hence
particle is supposed to loose the memory of its past itiner
due to the multiple scattering in the trap region, and
transition probabilities to the neighboring triangular cells a
assumed to be equivalent. As was shown in Ref.@13#, the
average ratet21 of such transitions can be calculated fro
the fraction of phase space available for leaving the t
divided by the total phase space volume of the trap, leadin

t5pA/~3W!, ~8!

whereA is the area of the trap andW is the width of the gap
between the disks.

The flower-shaped billiard has similar types of traps as
periodic Lorentz gas. Accordingly, the Machta-Zwanzig a
proximation can be applied to the flower-shaped billiard
well, and Eq.~8! holds again for the average trapping tim
Hence, we only need to calculate the areas of the trap and
gap between the petals from simple geometrical consi
ations, yielding

A5
3A3

4
23h@A3h1Ar 22h2# ~9!

and

W5 1
2 2@A3h1Ar 22h2#, ~10!

where

h5
1

2 SA3

4
2r D . ~11!

In the above,r denotes the radius of the curvature of t
petal.

The distancel between the centers of the flower-shap
obstacles is 1/A3. Assuming that the gap sizeW is very nar-
row leads to the Machta-Zwanzig random walk approxim
tion for the diffusion coefficient

DMZ5
l 2

4t
, ~12!
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with t being given by Eq.~8! and supplemented by Eqs
~9!–~11! for the flower-shaped case. As is shown in Fig.
the Machta-Zwanzig approximation works very well in th
vicinity of zero curvature of the petal only.

V. KLAGES-DELLAGO CORRECTIONS OF THE
MACHTA-ZWANZIG APPROXIMATION

In Ref. @8#, Klages and Dellago have generalized t
Machta-Zwanzig approximation for the standard perio
Lorentz gas by taking memory effects of orbits into accou
Their generalization is based on the observation that, ex
in the asymptotic limit of narrow gap sizes, the diffusiv
dynamics is not a simple Markov process, in the sense
there exist nonvanishing dynamical correlations. By mapp
the orbit of a particle onto a suitable symbolic dynamics th
numerically calculated the probabilities to obtain certa
symbol sequences of finite length. Increasing the length
these symbol sequences yielded systematic corrections o
Machta-Zwanzig approximation. In Ref.@8#, two schemes
directly emerging from this approach were discussed,
suggesting simple heuristic corrections to the simple rand
walk model of diffusion Eq.~7!, and another one employin
lattice gas computer simulations defined by these proba
ties. In this section, we apply these two methods to
flower-shaped billiard in order to systematically correct t
Machta-Zwanzig approximation. A third scheme starti
from a Green-Kubo formula for diffusion will be discusse
in Sec. VI.

The Machta-Zwanzig approximation assumes that a p
ticle jumps from one trap to a neighboring trap situated
the hexagonal lattice of traps. However, there exist nonv
ishing probabilities that a particle can jump to next near
neighbors, or even farther, without collisions. According
we should correct the Machta-Zwanzig approximation
the flower-shaped billiard by using the probabilitiespc f1 and
pc f2 of those collisionless flights which lead from one ce
directly to its second nearest neighbors, or to its third nea
neighbors, respectively. The distancesl 1 and l 2 between the
center of a trap to the respective second and third neighbors

l 15A3l , l 25A7l . ~13!

FIG. 4. Diffusion coefficientD ~solid line! versus the curvature
k of the petal of the flower-shaped obstacle. The solid curve co
sponds to the numerically exact results, while the dotted cu
yields the Machta-Zwanzig random walk approximation Eq.~12!.
1-4
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The diffusion coefficientDc f with corrections due to thes
collisionless flights then reads

Dc f5~12pc f12pc f2!DMZ1pc f1

l 1
2

4t
1pc f2

l 2
2

4t

5~112pc f116pc f2!DMZ . ~14!

Next we take memory effects of orbits due to backscatter
into account. For this purpose, orbits are coded by labe
the entrance through which a particle enters a trap asz, the
exit to the left of this entrance asl, and that to the right asr.
Thus, an orbit can be mapped onto a sequence of sym
z,l , andr. For example,p(z) is the backscattering probabi
ity pbs , which is the probability of the moving particle t
leave the trap through the same gate where it entered.
Machta-Zwanzig approximation assumes thatp(z)5p( l )
5p(r )51/3. However, in general,p(z) is not close to 1/3 as
shown in Fig. 5, because the actual orbits do not loose t
memory during their itineraries.

A more profound explanation for the complicated fun
tional form of p(z) may be provided in terms of the theor
of chaotic scattering: Chaotic scattering systems with m
tiple exit modes typically have fractal phase space bou
aries separating the sets of initial conditions~basins! going to
the various exits. However, open systems such as a th
disk scatterer of the periodic Lorentz gas possess the e
stronger property of beingWada, that is, any initial condition
which is satisfied on the boundary of one exit basin is a
simultaneously satisfied on the boundaries of all the ot
exit basins@19#. Changing the curvaturek sensitively affects
the highly irregular structure of these basin boundaries. C
sequently, Fig. 5 may be understood as reflecting the to
logical instabilities of Wada basins under parameter va
tion, and as we will now show this is reflected in th
parameter dependence of the diffusion coefficient.

Modifying the Machta-Zwanzig random walk by includ
ing the backscattering probabilityp(z) we obtain the diffu-
sion coefficient

DBS5
@12p~z!# l 2

2

4~2t!
5@12p~z!#

3

2
DMZ . ~15!

Combining the effects of collisionless flights and bac
scattering yields as a first-order approximation

FIG. 5. Backscattering probabilityp(z) ~solid line! versus the
curvaturek of the petal of the flower-shaped obstacle. In the cas
a Markovian process it is equal to 1/3.
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D15 3
2 @12p~z!#~112pc f116pc f2!DMZ . ~16!

Higher-order approximations of the diffusion coefficient,
related to longer symbol sequences and respective proba
ties such asp( lrz•••), can be derived in the same way@8#.
For the flower-shaped billiard, respective results are sho
in Fig. 6.

The above correction methods assume that all orbits
low higher-order Markov processes, where correlations
present in the form of initial transient times before the va
ance becomes linear in time. This dynamics appears to
more suitably represented in the form of lattice gas simu
tions on a honeycomb lattice, where the sites of the lat
represent the traps. Indeed, for the periodic Lorentz gas, s
lattice gas simulations were performed in Ref.@8# confirming
the fast convergence to the numerically exact results. C
pared to that scheme, the convergence of the intuitive
rection method described above is, first slower, and, sec
not everywhere converging to the numerically exact resu
which is due to the fact that this approach was purely o
heuristic nature.

We also performed lattice gas simulation in case of
flower-shaped billiard according to the following prescri
tion: Particles hop from site to site with frequencyt21,
which is identical to the hopping frequency used in t
Machta-Zwanzig approximation. The hopping probabiliti
are given by the backscattering probabilityp(z) and by those
corresponding to respective longer symbol sequences.
diffusion coefficient is then obtained from the Einstein fo
mula Eq. ~7! in the limit when the variance is becomin
proportional to time. The correlations in the actual orbits a
thus systematically and exactly filtered out according to
length of the symbol sequences.

In Fig. 7, the results of such higher-order approximatio
according to lattice gas simulations are shown. One can
that the convergence to the numerically exact results is
only much better than in Fig. 6, but even exact. Stro
memory effects are clearly visible especially after the dif
sion coefficient curve takes its maximum. In the previo
heuristic modifications to the simple random walk model, t
dynamics was only modeled for a limited number of tim
steps as a Markov process. Figure 6 suggests that cor
tions as contained in the symbol sequences are more sui
represented by higher-order iterations in the form of latt

f
FIG. 6. Diffusion coefficients of higher-order approximation

due to including higher-order backscattering probabilities. The s
curve corresponds to numerically exact results, while the ot
curves represent approximate solutions.
1-5
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gas simulations. However, a disadvantage is that the la
gas scheme requires a second round of computations, w
is put on top of the previous simulations, by again looking
the time evolution of an initial ensemble of points.

VI. THE GREEN-KUBO FORMULA APPROACH

The main drawbacks of the two methods described ab
were, first, that the heuristic corrections of the Einstein f
mula were not converging exactly to the numerically ex
results, and, second, that the lattice gas simulations w
merely a numerical scheme without being represented in
form of analytical approximations. These deficiencies w
essentially resolved in Ref.@14# by the derivation of a Green
Kubo formula which employs the symbolic dynamics on t
hexagonal lattice of traps introduced in Sec. V. The res
reads

D5
1

4t
C01

1

2t (
n51

`

Cn , ~17!

with

Cnª^ j ~x0!• j ~xn!& ~18!

being the velocity autocorrelation function related to jum
j (xn) on the hexagonal lattice at time stepn. These jumps are
suitably defined in terms of the lattice vectors Eqs.~3!,~4!.
That is, any symbol sequence of an orbit on the hexago
lattice of traps defines a respective chain of lattice vect
The averages indicated by the brackets in Eq.~18! are calcu-
lated by weighting the respective scalar products of lat
vectors with the corresponding conditional probablit
p(abg•••),a,b,gP$ l ,r ,z%. In Eq. ~17!, t is the mean time
of free flight between symbol changes, and it is given by
~8!. Equation~17! is thus the honeycomb lattice analog to t
Green-Kubo formula derived by Gaspard for the Poinca´-
Birkhoff map of the periodic Lorentz gas@1,20#.

It is easy to see that the first term in Eq.~17! yields the
Machta-Zwanzig approximation Eq.~12!. Higher-order cor-
rections can then be calculated by defining the hierarchy
approximations,

FIG. 7. Diffusion coefficient as obtained from lattice gas sim
lations based on higher-order backscattering probabilities. The s
curve corresponds to numerically exact results, while the o
curves yield higher-order approximations.
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Dn5
l 2

4t
1

1

2t (
abg•••

p~abg••• !ø•ø~abg••• !, ~19!

with n.0 being the number of symbols andD0(w) given by
Eq. ~12!, where, again,ø(abg•••) are suitable lattice vec
tors.

The impact of dynamical correlations on the diffusion c
efficient can now be understood by analyzing the single c
tributions in terms of the correlation functionCn as con-
tained in the Green-Kubo formula Eq.~17!. In fully chaotic
systems such as the periodic Lorentz gas and the flow
shaped billiard, the velocity correlation function decays e
ponentially, which is in agreement with the results depic
in Fig. 8. By comparing this figure to Fig. 9 one can lea
how the irregularities of the correlation function determi
the parameter dependent diffusion coefficient: Let us s
with the first-order approximation of Eq.~19!, which reads
D15D01D0@123p(z)#. The functional form ofp(z) in
Fig. 5 thus qualitatively explains the position of the glob
maximum of the diffusion coefficient, because at this va
of the curvature the probability of backscattering is minim
Adding up the three-jump contributions coming fromC2,
furthermore, yields the most important quantitative contrib
tions in this region of the curvature. In the region of lar

-
lid
r

FIG. 8. Parameter dependence of the time-dependent correl
function Cn , see Eq.~18!, as defined with respect to the symbol
dynamics on the hexagonal lattice of traps. At any parameter,Cn

decays exponentially related to the fact that the Green-Kubo
mula Eq.~17! is a convergent series. The speed of the converge
depends on the curvature. Obviously, in the large curvature re
the correlation function decays more slowly than for small cur
ture.

FIG. 9. Diffusion coefficients as obtained from the Green-Ku
formula Eq. ~19!. The solid curve corresponds to the asymptot
numerically exact results, while the other curves yield the resp
tive hierarchy of approximations.
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curvature the diffusion coefficient decays monotonically
cording to the effect of two-hop correlations covered byC1.
However, note the large fluctuations of the correlation fu
tion Cn as well as of the diffusion coefficient approximatio
Dn in this regime, both indicating the dominant effect
long-range higher-order correlations. Studying the deta
convergence of the approximations depicted in Fig. 9 sho
that correlations due to orbits with longer symbol sequen
yield irregularities in the parameter dependence of the di
sion coefficients on finer and finer scales.

VII. SUMMARY AND CONCLUSION

In this paper, we have introduced a variant of the perio
Lorentz gas by assigning a flower-shaped geometry to
scatterers. Although both systems are rather similar in
sense that they are both fully chaotic and exhibit norm
diffusion in a certain parameter range, we have found t
the diffusion coefficient in the flower-shaped geometry
considerably more irregular under parameter variation t
that obtained from circular disks as scatterers. We have
lyzed these irregularities by three different methods, wh
all start from correcting the Machta-Zwanzig random wa
approximation for the diffusion coefficient. All these im
proved approximation schemes use a symbolic dynam
which maps the orbits of moving particles to symbol s
quences according to traps situated on a hexagonal lat
We have discussed the convergence of these different
proximation schemes, and we have shown how they enab
detailed understanding of the precise shape of the param
dependent diffusion coefficient in the flower-shaped billia
in terms of long-range dynamical correlations.

The Green-Kubo formula introduced in Ref.@14# appears
to be most suitable for understanding the irregular beha
of the parameter dependent diffusion coefficient, becaus
conveniently transforms the diffusive dynamics into a s
cs

-

-
-

02621
-

-

d
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s
-
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n
a-
h

s,
-
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p-
a

ter

r
it

over the velocity correlation function, whose specific para
eter dependence can in turn be analyzed step by step
particular, this approach yields an exact convergence to
parameter dependent diffusion coefficient as obtained fr
simulations.

Interestingly, when the correlation function decays
time, the frequency of oscillations as a function of the co
trol parameter increases. The relation between this deca
time and the increase of the frequency of these oscillati
determines the strength of the irregularities on fine scale
the resulting parameter dependent diffusion coefficient. T
question of the existence of fractal diffusion coefficients
billiards such as periodic Lorentz gases with circular
flower-shaped scatterers might thus be answered by u
Green-Kubo formulas if the respective correlation functio
could be evaluated more precisely for large enough tim
Indeed, in Ref.@9# the highly irregular diffusion coefficien
of an open billiard in an external field has already been
vestigated along these lines by relating the Poincare´-Birkhoff
version of the Green-Kubo formula to fractal Weierstra
functions. The joint efforts compiled in Refs.@8,9,14# may
therefore be considered as first steps towards answering
conjecture of Refs.@5,6#, which suggested a possible unive
sality of fractal diffusion coefficients in low-dimensiona
fully chaotic dynamical systems exhibiting some spatial p
riodicity, for the case of chaotic Hamiltonian dynamical sy
tems such as particle billiards.
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