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Lyapunov instability for a periodic Lorentz gas thermostated by deterministic scattering
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In recent work a deterministic and time-reversible boundary thermostat called thermostating by deterministic
scattering was introduced for the periodic Lorentz gas@Phys. Rev. Lett.84, 4268~2000!#. Here we assess the
nonlinear properties of this dynamical system by numerically calculating its Lyapunov exponents. Based on a
revised method for computing Lyapunov exponents, which employs periodic orthonormalization with a con-
straint, we present results for the Lyapunov exponents and related quantities in equilibrium and nonequilib-
rium. Finally, we check whether we obtain the same relations between quantities characterizing the micro-
scopic chaotic dynamics and quantities characterizing macroscopic transport as obtained for conventional
deterministic and time-reversible bulk thermostats.
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I. INTRODUCTION

The investigation of nonequilibrium transport processes
many-particle systems generally requires modeling the in
action between a particle and a thermal reservoir. Comm
approaches for such a modeling are deterministic and t
reversible thermostats@1–4#. Conventional types, such as th
Gaussian and the Nose´-Hoover thermostat, are based on i
troducing a momentum dependent friction coefficient in
the microscopic equations of motion@5–9#. Though the mi-
croscopic equations of motion of these systems are time
versible, the macroscopic dynamics is irreversible in n
equilibrium, leading to momentum and energy fluxes w
well-defined transport coefficients@5,6,10–14#, which ap-
pears to be a paradox. However, investigations of the mi
scopic dynamics with methods from dynamical syst
theory could resolve this paradox by showing that the mic
scopic dynamics is nonlinear and highly unstable@12,14# and
leads to a phase space volume contraction onto a fracta
tractor@11,15,16#. From the analysis of conventional therm
stats, further relations between quantities characterizing
microscopic dynamics and quantities characterizing ma
scopic transport could be established. At the heart of s
relations there is an identity between phase space vol
contraction and thermodynamic entropy production. On
basis of this identity the Lyapunov exponents could be
lated to the transport coefficients of a system, which has b
formulated as the Lyapunov sum rule@11,17–21#.

These characteristic features of thermostated ma
particle systems have been recovered for specific o
particle systems, the Gaussian thermostated periodic Lor
gas@11,15,18,19,21–24# and the Nose´-Hoover thermostated

*Present address: Computational Molecular Biology, Max Pla
Institute for Molecular Genetics, Ihnestr. 73, D-14195 Berlin, G
many. Electronic address: katja.rateitschak@molgen.mpg.de

†Electronic address: rklages@mpipks-dresden.mpg.de
1063-651X/2002/65~3!/036209~11!/$20.00 65 0362
n
r-
n
e

e-
-

o-

-

at-

he
o-
h
e

e
-

en

y-
e-
tz

periodic Lorentz gas@25#. The periodic Lorentz gas consis
of a particle that moves through a triangular lattice of ha
disks and is elastically reflected at each disk collision.
serves as a standard model in the field of chaos and trans
@14,26#. The advantage of a one-particle system is tha
reflects more strongly and transparently the nonequilibri
properties induced by a thermostat. For this reason the
entz gas appears to be an appropriate tool with which
compare the properties of nonequilibrium steady states
tained from different deterministic and time-reversible th
mostating mechanisms. The study of different models
scribing the interaction between particles and therm
reservoir and the identification of their common properties
crucial to obtaining a general characterization of nonequi
rium steady states.

To investigate whether the nonequilibrium properties
conventional deterministic and time-reversible thermos
are of general validity, or just characterize these spec
types of systems, an alternative deterministic and tim
reversible thermostat called thermostating by determini
scattering has been introduced for the periodic Lorentz
@4,27#. This thermostat is based on specifically modeling
energy transfer related to a microscopic collision process
tween particle and disk, where the disk mimics a therm
reservoir with infinitely many degrees of freedom. In no
equilibrium under an external electric field this mechani
leads to an on average constant kinetic energy of the par
resulting in a nonequilibrium steady state. Furthermore,
phase space volume contracts onto an attractor similar to
multifractal attractor found for the Gaussian thermosta
Lorentz gas. However, differences appear in the bifurcat
diagram and in the field dependence of the conductivity. T
alternative thermostat has later been applied to a heat
shear flow@28#.

In this work we focus on the microscopic properties
thermostating by deterministic scattering in the periodic L
entz gas by numerically calculating the Lyapunov expone
As quantities from dynamical systems theory, Lyapunov
ponents allow a detailed characterization of the microsco
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stability. In particular, they will enable us to check the ge
eral validity of relations between quantities from dynamic
systems theory and statistical mechanics as obtained for
ventional deterministic and time-reversible thermostats.
first explain the algorithm used to calculate the Lyapun
exponents for the Lorentz gas as thermostated by deter
istic scattering. Numerical computations will then show th
the standard Gram-Schmidt orthonormalization has to
modified, resulting in a variant of this method called co
straint orthonormalization. Beside the results for t
Lyapunov exponents we present results for the Kaplan-Yo
dimension and for the phase space volume contraction.
compare these results as obtained for our model with
results as known for the Gaussian thermostated Lorentz
@21,29#, and with results for a heat and shear flow therm
stated by deterministic scattering@30#. Finally, we check
whether the phase space volume contraction is equal to
thermodynamic entropy production and whether
Lyapunov sum rule holds for our mechanism.

II. ALGORITHM FOR THE CALCULATION OF THE
LYAPUNOV EXPONENTS

In a smoothd-dimensional system the equations of m
tion for a phase space vectorG,

Ġ5F~G!,

and the corresponding equations of motion ford tangent vec-
tors d G5(d r ,d v),

d G5
]F

]G
d G.

are integrated to obtaind Lyapunov exponents

l5 lim
t→`

1

t
ln

ud G~ t !u
ud G~0!u

. ~1!

The Lyapunov exponents are a measure used to charact
the stability of the dynamics@31,32#. The maximal Lyapunov
exponentl measures the maximal exponential divergence
two initially neighboring pointsd G~0!. However, during the
time evolution every tangent vector will move into the fast
growing direction due to the instability of the dynamics. A
these vectors will thus become indistinguishable and th
norm will diverge. The algorithm of Benettin avoids th
problem by a periodic Gram-Schmidt reorthonormalizat
of the tangent vectors thus enabling one to compute the
spectrum of Lyapunov exponents associated with
d-dimensional phase space@33,34#.

In the periodic Lorentz gas the time-continuous flow d
scribing the dynamics of a phase space volume vectorG in
the bulk is interrupted by a time-discrete mapM describing
the transformation ofG at the moment of a collision,

G85M ~G!.

Dellago and co-workers have developed an algorithm to
culate the Lyapunov exponents for particle systems with h
03620
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sphere interactions and applied it to the Gaussian ther
stated Lorentz gas@21,29,35#. Here the tangent vectors ar
transformed at the moment of a collision according to
following rule @29#:

d G85
]M

]G
d G1F]M

]G
F~G!2F@M ~G!#Gdtc . ~2!

Equation ~2! is valid for arbitrary systems composed of
flow F and a time-discrete mapM . It takes into account tha
a trajectory and a satellite trajectory collide with the disk
different space points and with a time delaydtc ,

dtc52
~d r ,n!

~v,n!
,

wheren is the unit vector perpendicular to the surface at
collision point.

Before we establish the equations of motions for the t
gent vectors of the Lorentz gas as thermostated by deter
istic scattering we briefly summarize the full equations
motion of Refs.@4,27# for a particle described by the phas
space vectorG5(r ,v). In the bulkG evolves according to

r5«
t2

2
1vt1r0 ,

v5«t1v0 , ~3!

where« is an external electric field of strength«5u«u gen-
erating a nonequilibrium situation. The basic idea of therm
stating by deterministic scattering is now that at a collisio
energy is transferred such that the resulting velocity distri
tion for the particle is canonical in equilibrium. In a way,
results in a deterministic and time-reversible formulation
stochastic boundary conditions@27,28#. For this purpose the
collision rules have been defined as follows: The velocity
the particle and its direction of flight are changed at a co
sion with the disk according to

~g8,v8!5~X21Y`
21!+B+„X~g!,Y`~v !…, ~4!

where g is the angle of incidence,X(g)5sinugu, B is the
baker map@31#, and

Y`~v !52A 2

pT
vr2v2/~2T!1erfS v

A2T
D , ~5!

with T as a parameter corresponding to the temperature
the particleT5^v2&/2 at«50 in equilibrium. The geometry
of the periodic Lorentz gas and the relevant variables
shown in Fig. 1. To ensure that the system is time reversi
the forward bakerB acts if 0<g<p/2, andB is replaced by
its inverseB21 if 2p/2<g,0. To avoid any symmetry
breaking induced by this combination of forward and bac
ward baker, we alternate their application ing with respect to
the positionb of the colliding particle on the circumference
For the spacing between two neighboring disks with the
dius R51 we choose, following the literature@11,21#,
w.0.2361. Investigating this system in nonequilibrium
9-2
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switching on an external electric field«.0 leads to a non-
equilibrium steady state with an average constant kinetic
ergy of the particlê v2&5const, i.e., the system is thermo
stated.

The equations of motion for the tangent vectorsd G in the
bulk can now be derived from Eqs.~3! as

S d r 8
d v8 D5S 1 t

0 1D S d r
d vD .

The transformation rules for the tangent vectors at the m
ment of a collision are obtained by inserting the collisi
rules for the phase space vectorG of Eq. ~4! into Eq. ~2!,

S d r 8
d v8 D5S 1 0

A BD S d r
d vD1F S 1 0

A BD S v
«D2S v8

« D Gdtc ,

~6!

where

Ai j 5
]v i8

]r j
and Bi j 5

]v i8

]v j
.

The components of the submatrixA read

]vx8

]r x
5

r yvy8

r 2 @2h111#,
]vx8

]r y
5

r xvy8

r 2 @h121#,

]vy8

]r x
5

r yvx8

r 2 @h121#,
]vy8

]r y
5

r xvx8

r 2 @2h111#,

and the components of the submatrixB are

]vx8

]vx
5

vyvy8

v2 h11vxvx8h2 ,
]vx8

]vy
52

vxvy8

v2 h11vyvx8h2 ,

]vy8

]vx
52

vyvx8

v2 h11vxvy8h2 ,
]vy8

]vy
5

vxvx8

v2 h11vyvy8h2 ,

with

h15m1

v8

v
~r ,v!

~r ,v8!
, h25m2

v
v83 expF2

v822v2

2T G ,

FIG. 1. ~a! Elementary cell of the periodic Lorentz gas on
triangular lattice.~b! Definition of the relevant variables.
03620
n-

-

$m1 ,m2% are the slopes of the baker map$2,0.5%, or the
slopes of the inverse baker map$0.5, 2%, respectively.

In the periodic Lorentz gas as thermostated by determ
istic scattering the dynamics of four orthonormal tange
vectors has to be investigated to obtain four Lyapunov ex
nents that completely characterize the stability in the fo
dimensional phase space. Before we present our results
the Lyapunov spectrum, we wish to derive explicit expre
sions for two other interesting quantities.

III. PHASE SPACE VOLUME CONTRACTION

The phase space volume contractionP is equal to the sum
of the Lyapunov exponents@32,36#,

P5(
i

l i . ~7!

In the periodic Lorentz gas as thermostated by determini
scattering only the change of a phase space volume elem
d G at the moment of a collision as described by Eq.~6!
contributes toP. The mean exponential rate of the pha
space volume contractionP can then be calculated accordin
to

P5 K lnU]d G8

]d G U L , ~8!

where

U]d G8

]d G
U5U ]d r 8

]d r
0

]d v8

]d r

]d v8

]d v

U5S ]dr x8

]dr x

]dr y8

]dr y
2

]dr x8

]dr y

]dr y8

]dr x
D

3S ]dvx8

]dvx

]dvy8

]dvy
2

]dvx8

]dvy

]dvy8

]dvx
D .

The partial derivatives of Eq.~6! read

]dr x8

]dr x
511~vx82vx!

nx

~v,n!
,

]dr x8

]dr y
5~vy82vy!

nx

~v,n!
,

]dr y8

]dr x
5~vx82vx!

ny

~v,n!
,

]dr y8

]dr y
511~vy82vy!

ny

~v,n!
,

]dvx8

]dvx
5B00,

]dvx8

]dvy
5B01,

]dvy8

]dvx
5B10,

]dvy8

]dvy
5B11.

Inserting these expressions into Eq.~8! yields

P5
^v82&2^v2&

2T
. ~9!
9-3
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The phase space volume contraction depends thus onl
the average transfer of kinetic energy to the reservoir. Eq
tion ~9! is valid in equilibrium as well as in nonequilibrium
An analogous result has been obtained for collisions wit
flat wall in a heat and shear flow thermostated by determ
istic scattering@28#, however, in case of shear the express
for P turned out to be more complicated.

If P,0 the phase space volume contracts onto a fra
attractor. The geometric properties of the attractor can
related to the Lyapunov exponents by the Kaplan-Yorke c
jecture, DKY5D1 . Here D1 is the information dimension
@31# andDKY is the Kaplan-Yorke dimension defined by

DKY5 j 1
( i 51

j l1

ul j 11u
, ~10!

wherej is the largest integer for which( i 51
j l i.0.

IV. THERMODYNAMIC ENTROPY PRODUCTION
AND RESERVOIR TEMPERATURE

The macroscopic properties of nonequilibrium stea
states can be characterized by quantities from thermodyn
ics and statistical physics. In this work we want to che
whether we can relate the thermodynamic entropy prod
tion dS,

dS5
dQ

Tr
, ~11!

to the phase space volume contraction. To calculate the
modynamic entropy production for thermostating by det
ministic scattering we have to calculate the temperature
the reservoirTr in nonequilibrium. As discussed in Ref.@27#,
in nonequilibrium the temperature related to the particle,
respectively the temperature in the bulkTb defined via equi-
partitioning of energy, is greater than the parametric te
peratureT in Eq. ~5! and increases with the field strengt
Moreover,Tb is inhomogeneously distributed in the bulk b
cause the thermostat acts only at the boundary. In this sec
we derive an expression for the temperature of the reser
Tr similarly to how it has been done in Ref.@28#.

If we assume equipartitioning of energy of particle a
reservoir at the wall, we can define the reservoir tempera
Tr indirectly via the velocity distribution of the particle at th
moment of the collision denoted as%map. For the sake of
simplicity, here we do not explicitly consider the dependen
of Tr on the positionb of the colliding particle at the disk
An expression for the temperature of the reservoir can t
be derived from the temperature in the bulk on the basis
the relation between the map density%map and the time-
continuous density% in the bulk as given by Eq.~5! in Ref.
@27#,

%~v !5const3
%map~v !

v
. ~12!

The precise derivation of this equation can be found in S
III B 2 of Ref. @27#. To obtain the expressions for the veloci
03620
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fluctuations parallel and perpendicular to the reservoir,
corresponding equations for the velocity distributions of t
normal and tangential componentsvn and v t , respectively,
have to be calculated. For this purpose, first the analog
equation for%~g! corresponding to Eq.~12! must be derived.
Knowing that in equilibrium%(g)51 because of symmetry
and%map(g)5cosg at the disk leads to

%~g!5const3
%map~g!

ucos~g!u
. ~13!

Combining these two equations yields the full transformat

%~v !%~g!5
const

vucos~g!u
3%map~v !%map~g!.

Changing to local Cartesian coordinates (vn ,v t) corotating
with the positionb at the disk and applying the transform
tion dvndv t5v dv dg results in

%~vn!%~v t!5
const

vucos~g!u
3%map~vn!%map~v t!. ~14!

Noting that uvnu5vucos(g)u and matching the variables o
both sides, Eq.~14! can be decomposed into

%~v t!5%map~v t! , ~15!

with 2`,v t,` and

%~vn!5
const

uvnu
3%map~vn! , ~16!

with 0,vn,`. Before we come to the reservoir temper
ture definitions that are based on these densities, we rem
that the disk that serves as the thermal reservoir is fixed
cannot recognize any current. In other words, only the
netic energy of the particle in the fixed frame of the bu
2Ep f5^v2& is relevant for the interaction with the reservo
and no average current needs to be subtracted. Defining
@¯# as the average over%map, Eq. ~15! implies for the tan-
gential component̂v t

2&5@v t
2# , thus leading to the definition

of Tt as

Tt5
@v t

2#1@v t8
2#

4
.

Analogously the average over the map density correspon
to ^vn

2& can be calculated from Eq.~16! to

^vn
2&5

E
2`

`

vn
2%~vn!dvn

E
2`

`

%~vn!dvn

5

E
2`

`

uvnu%map~vn!dvn

E
2`

` 1

uvnu
%map~vn!dvn

5
@ uvnu#

F 1

uvnuG
,

9-4
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where the denominator is obtained from joint normalizat
over the ingoing and outgoing fluxes.Tn is then defined as

Tn5
1

2

@ uvnu1vn8#

F 1

uvnu
1

1

vn8
G

with 2`,vn<0 and 0<vn8,`.
The total temperature of the reservoirTr is consequently

the average ofTt andTn ,

Tr5
Tt1Tn

2
. ~17!

Tr can be calculated as an average overb or locally in a
small intervalDb. We note that our result forTn is slightly
different from the result in Ref.@28#, which, strictly speak-
ing, is only valid if the ingoing and outgoing densities a
symmetrical.

This definition of the temperature is exact in equilibrium
however, in the case of a nonequilibrium situation Eqs.~12!
and ~13! are not valid anymore. A more detailed analysis
these shortcomings leads to the conclusion thatTr calculated
according to Eq.~17! will be greater than the real temper
ture of the reservoir for higher field strength@37#. One would
only obtain the real temperature of the reservoir if one w
to use the correct relation between map density and ti
continuous density in nonequilibrium, and this is not know
In any case, a lower bound for the temperature of the re
voir that we denote asTlr can be calculated by only takin
into account the velocity of the particle after a collision.

V. EQUILIBRIUM

The numerical calculation of the Lyapunov spectrum
the Lorentz gas as thermostated by deterministic scatte
according to the method presented in Sec. II leads to
following result in equilibrium: $l%5$1.8695,0.0104,
20.0104,21.8695%. These data appear to be at varian
with the fact that in equilibrium two zero Lyapunov exp
nents have to exist, one associated with the direction of
flow, and a second one resulting from the conjugate pair
rule in equilibrium@32#. In the Appendix we report on test
to detect the reason for this discrepancy and we propos
alternative method to perform the periodic orthonormali
tion called constraint orthonormalization. The application
constraint orthonormalization leads to a Lyapunov spectr
in equilibrium of $l%5$1.8695,0.0000,0.0000,21.8695%,
thus correctly containing two zero Lyapunov exponen
whereas the first and the fourth Lyapunov exponent are e
to the respective exponents obtained from ordinary Gra
Schmidt orthonormalization; see also Fig. 3. In agreem
with the on-average zero energy transfer between par
and reservoir, the sum of the Lyapunov exponents and
global phase space volume contraction is zero. Furtherm
the Lyapunov exponents trivially fulfill the conjugate pairin
rule related to the Hamiltonian character of the dynamics
equilibrium. The probability density in the Lorentz gas cell
uniform in equilibrium and, as a consequence, the Kapl
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Yorke dimension is equal to the dimension of the pha
space,DKY5d54. In addition, the parametric temperatu
T, the temperature in the bulkTb , and the reservoir tempera
ture Tr , are all equal,T5Tb5Tr .

We now turn to an even more detailed analysis of
dynamical instability of our model system by following idea
summarized in Refs.@36,38#. If a dynamical system is er
godic, the Lyapunov exponents do not depend on the in
conditions of the tangent vectors, and thus they only yi
information about the global instability. This implies that E
~1! provides no direct way to assess the local instability
the system at specific values of phase space variables su
the angle of incidence at a diskg and the position of the
colliding particleb. In Refs. @36,38#, two slightly different
ways have been proposed to access information on loca
stabilities depending on these parameters. Here we use
approach proposed in Ref.@38# that characterizes the loca
deformation of a typical tangent vectord G at the moment of
a collision by introducing the quantity

lc~sing,b!5 K ln
udG8u
udGu L , ~18!

where the brackets indicate an average over all collisions
respective small interval aroundb and/or g. The physical
motivation for defining this quantity is that any tangent ve
tor quickly orients itself into the direction of fastest growt
Accordingly, the full memory of the maximum instability o
the system is contained in the orientation of the tangent v
tor thus representing a ‘‘needle’’ in phase space that v
sensitively measures the local changes of the stability a
collision. Therefore, this quantity is a very sensitive functi
of g andb. In Ref. @38# this quantity has been called a loc
Lyapunov exponent; however, this term has also been use
the literature to indicate the dependence of the Lyapu
exponents, Eq.~1!, on initial conditions in case the dynamic
is nonergodic@32#. To avoid possible confusion, and by fo
lowing Ref. @36# where closely related quantities have be
defined, here we denotelc as the local stretching rates of th
system. Note that the clever and very simple definition
Eq. ~18! makes at least the maximum local stretching r
directly accessible to computer simulations. In contrast,
Ref. @36# the full spectrum of these rates has been defined
a proper comoving coordinate system. This makes their d
nition more convenient in mathematical terms, but also l
accessible for straightforward numerical computations. B
these different definitions are related via coordinate trans
mations @39#. Unfortunately, local stretching rates are n
coordinate invariant, thus yielding different values depen
ing on their precise definition, even in conjugate dynami
systems.

lc as a function ofb for thermostating by deterministic
scattering in comparison to elastic collisions is presented
Fig. 2~a! showing that the conventional hard disk Loren
gas and our thermostated version of it share the same p
erties. The maxima/minima oflc(b) correspond to the di-
rections of maximal/minimal distances between neighbor
disks, respectively. Results for the conventional Lorentz
in a more detailed view of phase space, i.e.,lc@sin(g)# for
9-5
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K. RATEITSCHAK AND R. KLAGES PHYSICAL REVIEW E65 036209
ubu,0.000 01 as presented in Ref.@38#, have shown that the
local stretching ratelc is a singular function of sin(g) ~see
also Ref.@36#!. Related results forlc@sin(g)# for the Lorentz
gas as thermostated by deterministic scattering are prese
in Fig. 2. The curve in Fig. 2~b! looks qualitatively very
similar to the curve in Fig. 1 of@38#. However, the numerica
results forlc@sin(g)# of our system are not sufficiently accu
rate@40# to study the existing discontinuities on a finer sca
as it has been done in Fig. 2 of Ref.@38#. To perform such
investigations in a slightly more detailed way we looked
the refined, decomposed local stretching ratelcGx

5^ ln(ud Gx8u)/(ud Gxu)& that characterizes the deformation of t
x component of a tangent vector only. The results forlcGx

are

presented in Figs. 2~d! and 2~e!. Figure 2~e! shows an en-
larged sector of Fig. 2~d! where one can see a roughly sym
metric profile composed of maxima and minima on a fi
scale. The apparent symmetry of most of these peaks
gests that these oscillations are not due to numerical er
We consider this as an indication that for the Lorentz gas
thermostated by deterministic scattering at least the refi
local stretching ratelcGx

could be a singular function o

sin(g). It may be somewhat surprising that such specific
namical properties of the conventional, unthermostated L
entz gas persist in our thermostated system as well. Howe
this leads to the conclusion that the geometric instability
the system is more important for these characteristics t
the one resulting from the modifications related to our s
cific scattering mechanism.

VI. NONEQUILIBRIUM

In nonequilibrium we choose the electric field such th
«x.0, «y50. The field accelerates the particle, and energ
transfered on average to the disk resulting in a nonequ
rium steady state. As a consequence, the global phase s
volume contraction given by Eq.~9! is negative. The detailed
dependence of the Lyapunov spectrum on the field streng

FIG. 2. Local stretching rate in equilibrium:~a! thermostating
by deterministic scattering~solid curve!, elastic collisions~dashed
curve! for all g, ~b!–~e! thermostating by deterministic scatterin
~b! ubu,0.000 01, ~c! ub2p/2u,0.000 01, ~d!,~e! refined local
stretching rate,~d! ub2p/2u,0.000 01,~e! enlarged sector of~d!.
The quantities plotted in this and in the following figures are
mensionless.
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shown in Fig. 3, where both results from the standa
method as well as from the constraint method are presen
Only one zero Lyapunov exponent exists in nonequilibriu
associated with the direction of the flow. For higher fie
strength unconstraint Gram-Schmidt orthonormalization c
rectly turns the second tangent vector in the direction of
flow, l2,1024 for «x.0.5.

The Lyapunov spectrum as a function of the field stren
obtained from constraint orthonormalization is also p
sented in Fig. 3. As in equilibrium, the results of the tw
methods differ only for the second and third Lyapunov e
ponent for«x,0.5. The differences for the third Lyapuno
exponent are of the same size as the differences for the
ond Lyapunov exponent. The second Lyapunov exponent
tained by the contraint method is zero for all field streng
corresponding to the constrained tangent vector in the di
tion of the flow. The third Lyapunov exponent decreases w
increasing field strength that is related to the dominant
ergy transfer in the direction of the particle to the disk. T
dependence of the third and of the fourth Lyapunov ex
nents on the field strength appears to be a power law wh
is a behavior that has also been observed for the Gaus
thermostated Lorentz gas for small enough field stren
@41#. According to the Pesin theorem@32#, the only positive
Lyapunov exponent is equal to the Kolmogorov-Sinai e
tropy hKS ,

hKS5(
i

l i
1 .

Interestingly, its curve is nonmonotonic. For small fie
strength, the dynamics in configuration space appears t
dominated by the fact that the trajectory of the particle
getting adjusted in the direction of the field, and t
Kolmogorov-Sinai entropy decreases. For higher fie
strength the increasingly disordered dynamics in veloc
space related to an increase of the bulk temperatureTb seems

- FIG. 3. Field dependence of the four Lyapunov exponents
nonequilibrium; filled circles: Gram-Schmidt orthonormalizatio
empty circles: constraint orthogonalization as defined in the text
this and in the following figures the error for the results is less th
531024.
9-6
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LYAPUNOV INSTABILITY FOR A PERIODIC LORENTZ . . . PHYSICAL REVIEW E 65 036209
to become more important, and the Kolmogorov-Sinai
tropy increases. The same field dependence of
Kolmogorov-Sinai entropy has been observed in a shear
as thermostated by deterministic scattering@30#. It would be
interesting to know whether this is a general property app
ing in field-driven system as thermostated by determini
scattering. In contrast to this observation, the Kolmogor
Sinai entropy monotonically decreases for the Gaussian t
mostated Lorentz gas because the constraint of the bulk
mostat onto the dynamics increases with increasing fi
strength@21,42#. Whether the irregularities on the fine sca
in Fig. 3 are a property of the dynamics or numerical flu
tuations could not be decided on the basis of the present d

The sum of the Lyapunov exponents is negative and
cording to Eq.~9! equal to the phase space volume contr
tion P. As presented in Fig. 4~a!, P decreases with increasin
field strength. The density of the attractor remains ph
space filling but shows a nonuniform and complicated str
ture as shown in the Poincare´ section in Fig. 4~a! of Ref. @4#.
Therefore, we can assume that the Hausdorff dimensionD0
is equal to the dimension of the phase space,D05d54, as is
also the case for Gaussian thermostated periodic Lor
gases. In contrast, the Kaplan-Yorke dimensionDKY defined
by Eq. ~10! is not an integer anymore, as presented in F
4~c!. This provides quantitative evidence for the fractal stru
ture of the attractor according to the conjectureDKY5D1 .

Some of the conventional deterministic and tim
reversible bulk thermostats fulfill the conjugate pairing ru
saying that the Lyapunov exponents can be grouped
pairs such thatl11l25const @3,20#. Figure 4~b! shows
that the conjugate pairing rule does not hold for our mod
However, this does not come as a big surprise because
well known that even conventional thermostats do not
hibit conjugate pairing if thermostated at the boundar
@26,43#.

FIG. 4. Field dependence of various important quantities in n
equilibrium: ~a! black: phase space contraction rate2P, white:
irreversible entropy productiondS; ~b! conjugate pairs of Lyapunov
exponents, black:l11l4 , white: l21l3 ; ~c! Kaplan-Yorke di-
mensionDKY ; ~d! reservoir temperatureTr ~black! and its lower
boundTlr ~white!.
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The local expansion ratelc(b) as defined in Eq.~18! is
presented in Fig. 5~b! and can be compared with%~b! shown
in Fig. 5~a!. One still recovers remnants of the periodic eq
librium distribution oflc ; see Fig. 2~a!. However, they are
strongly deformed by the anisotropy induced by the fie
and the maxima and minima are much more pronounced
contrast to equilibrium, there exist two absolute maxima, o
around b'p/6 and another aroundb'2p2p/6, and an
absolute minimum aroundb'p. The maxima and minima
of lc(b) occur just opposite to the maxima and minima
%~b!. This is in agreement with the physical interpretati
that a more unstable dynamics leads to a more dilute par
density in phase space. To extend the comparison, the
perature of the reservoirTr as a function ofb calculated
according to Eq.~17! is presented in Fig. 5~c!. The distribu-
tion of peaks inlc(b) andTr(b) is very similar. This might
be related to the fact that both quantities illustrate somew
irregular behavior:lc characterizes the instability of the dy
namics andTr is equal to the mean kinetic energy of th
degrees of freedom of the reservoir. The analogousb depen-
dence oflc andTr points again to a close relation betwee
dynamical system theory and statistical mechanics.
b'p the distributions of bothlc andTr show a more com-
plicated structure. This is probably a consequence of the
namics being directed parallel to the field resulting in t
global minimum oflc on a coarse scale, whereas for otherb
the dynamics is more chaotic. For more detailed views of
phase space for the local stretching rate in analogy to Fi
in equilibrium we could not get qualitative good results@40#.
Thus, whetherlc(b) is a singular function in nonequilibrium
on a fine scale remains an open question.

The dependence ofTr on the field strength according t
the definition in Eq.~17!, in which Tr is averaged overb,
and the lower boundTlr as defined below this equation a
shown in Fig. 4~d!. In particular, the results forTlr («) con-
firm that Tr is always greater in nonequilibrium than th
parametric temperatureT,Tr.T.

-
FIG. 5. Different quantities evaluated at the collision of a p

ticle with the disk at field strength«x50.5: ~a! density at a collision
%~b!; ~b! local stretching ratelc(b); ~c! reservoir temperature
Tr(b).
9-7
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More detailed information related to the deviations b
tween reservoir temperature and parametric temperature
obtained by studying the map densities%map(v l) and
%map(vn) at a collision as represented in Fig. 6. The dev
tions between ingoing and outgoing densities in both ca
are reminiscent of an average transfer of kinetic energy fr
particle to reservoir, as it is necessary to compensate
influx of energy caused by the electric field to obtain a no
equilibrium steady state. However, in the case of the perio
Lorentz gas, taking the thermodynamic limit leaves the s
tem precisely as it is. Consequently, there is no thermo
namic way to get rid of the difference between ingoing a
outgoing velocity distribution. But these differences are
dynamical reason why in nonequilibrium the reservoir te
peratureTr is typically not equal to the parametric temper
ture T, because this would only be the case if both distrib
tions were converging to the~local! equilibrium distribution
in the thermodynamic limit, as included in these figures. T
aspect will become important for understanding our res
on the relation between phase space contraction and en
production below.

In Fig. 7, the kinetic energy of the particle in the bu
averaged overb, Ep f5^v2&/2, is presented as a function o
the distanced from the disk. The profile ofEp f is inhomo-
geneous as expected. Ford→0, Ep f should approach the
temperature of the reservoir defined via equipartitioning
energy, thus providing an alternative definition of the res
voir temperature based on the bulk dynamics in the in
ring around the disk. However, it is not possible to saf
extrapolate to this limiting value on the basis of the pres
data @40#. ComparingEp f for d→0 with Tr shows, in par-
ticular, that Tr.Ep f for «x51 excluding convergence vi

FIG. 6. Probability density at the moment of a collision for~a!
tangential velocityv t and~b! normal componentvn at field strength
«x50.5. Solid curve, density before collision; dashed curve, den
after collision; long dashed curve, density in equilibrium.

FIG. 7. Profile of the full kinetic energyEp f of the particle in the
bulk, blackEp f , white reservoir temperatureTr : ~a! field strength
«x50.5, ~b! «x51.
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extrapolation, i.e., the assumptions made in the derivation
Eq. ~17! do not hold in nonequilibrium, but at least they yie
a reasonable estimate. Note that the kinetic energy in
limit is still always greater than the lower bound for th
reservoir temperature,Ep f.Tlr , which will be important for
our following discussion of entropy production.

The external driving force« performs work on the system
and causes a macroscopic flow characterized by a pos
conductivity s.0 @27#. At the same time, work is trans
formed into heat and in turn removed by the thermostat le
ing to a positive thermodynamic entropy production. Start
from Eq.~11!, the irreversible entropy production in the bu
dS is easily computed by defining the heat productiondQ as
the change of the kinetic energy of the particle in the bu
dEp f /dt, and feeding in the bulk equations of motion E
~3!. This leads to the well-known expression of entropy p
duction via Joule heating

dS5
«x^vx&

Tr
. ~19!

The numerical result for the field dependence of the therm
dynamic entropy production according to this equation
presented in Fig. 4~a!.

On the other hand, as discussed above the heat prod
in the bulk must leave as an outward flux across the w
absorbed by the thermal reservoir. Correspondingly, com
ing the average change of the kinetic energy during a f
flight from the equations of motion yields

«x^vx&5
^v2&2^v82&

2
, ~20!

where the right hand side is just the average transfer of
netic energy at a collision. Inserting this result into Eq.~19!
leads to

dS5
^v2&2^v82&

2Tr
. ~21!

Comparing now Eq.~21! with Eq. ~9! yields the important
result that the identity between thermodynamic entropy p
duction and phase space volume contraction does not
for the Lorentz gas as thermostated by deterministic sca
ing. Instead, these two quantities just differ by the fac
T/Tr(«x),

dS52P
T

Tr~«x!
. ~22!

To explicitly compare these two quantities, the field depe
dence of2P is also presented in Fig. 4~a!. As we have
discussed above, there is some ambiguity in defining the
ervoir temperatureTr ; however, we emphasize that all ou
applied definitions and bounds lead to the result that2P and
dS are inherently different in nonequilibrium. This is als
clear from the way the thermostat works in our model,
explained above.

As has been done in conventional thermostats, star
from Eq. ~22! a relation between the electrical conductivi

ty
9-8
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and the phase space volume contraction can now be e
lished by using Eq.~19! and replacing the average curre
according to the definition of the conductivity

s5
^vx&
«x

,

yielding

s5
2TP

«x
2 5

2T(l

«x
2 .

This equation is formally identical to the Lyapunov sum ru
obtained for the conventional thermostats. The only diff
ence is the constant factorT that, for conventional thermo
stats, corresponds to the temperature of the reservoir. If
Lyapunov sum rule applies, it shows that macroscopic tra
port can be directly understood in terms of the microsco
dynamics characterized by the sum of the Lyapunov ex
nents.

However, we remark that the existence of a Lyapun
sum rule in thermostated systems of the simple type like
one above seems to be the exception rather than the rule
example, a difference between phase space volume con
tion and thermodynamic entropy production has also b
obtained for a shear flow as thermostated by determin
scattering@28#. For this system the expressions forP anddS
can be rather complicated. Consequently, the Lyapunov
rule does not hold and a similar relation has not been fo
in addition. Furthermore, a variation of the Nose´-Hoover and
of the Gaussian thermostat did not lead to an identity
tweenP anddS, implying the invalidity of the Lyapunov sum
rule as well, as discussed in Refs.@25,44#.

In general, the relation between phase space volume
traction and thermodynamic entropy production, and the c
responding relation between transport coefficient a
Lyapunov exponents, will depend on the details of the m
croscopic energy transfer between particle and reserv
Based on our studies in Refs.@4,25,27,28#, we conclude that
an identity betweenP and dS appears only to be valid fo
what might be called ‘‘ideal’’ thermostats, meaning that e
ergy is exchanged between subsystem and reservoir by
ficiently simple coupling rules as provided, for example,
conventional Gaussian and Nose´-Hoover thermostats.

VII. CONCLUSIONS

In this work we have numerically calculated th
Lyapunov exponents for the Lorentz gas thermostated by
terministic scattering. The Gram-Schmidt orthonormaliz
tion, a fundamental ingredient of the standard method u
to calculate Lyapunov exponents, led to an incorrect re
for the Lyapunov spectrum by applying this thermostat.
modified this method by imposing an additional constra
summarized as constraint orthonormalization, and found
sults that are in agreement with expectations from dynam
systems theory. We wish to remark that the phenome
causing our numerical difficulties is reminiscent of an inel
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tic collision of a particle with a hard disk, as it is also mo
eled in granular materials by using restitution coefficien
Thus, applying constraint orthonormalization might be he
ful for exactly computing Lyapunov spectra in low
dimensional systems of granular type as well. On the basi
the Lyapunov exponents, further quantities have been ca
lated to characterize the nonequilibrium steady state.
comparison of the results obtained for thermostating by
terministic scattering with the ones known for convention
thermostats leads to the following conclusions.

~1! The sum of the Lyapunov exponents for thermostat
by deterministic scattering is negative in nonequilibrium,
agreement with the phase space volume contraction ont
attractor. For thermostating by deterministic scattering o
one Lyapunov exponent is zero in nonequilibrium related
the direction of the flow. Similar results can be expected
the Nose´-Hoover thermostated Lorentz gas, where the cal
lations of the Lyapunov exponents have not yet been p
formed. In contrast, for the Gaussian thermostated Lore
gas, two Lyapunov exponents are zero in nonequilibrium
cause the thermostat keeps the kinetic energy of the par
strictly constant.

~2! The Kaplan-Yorke dimension calculated on the ba
of the Lyapunov exponent is not an integer in nonequil
rium, providing quantitative evidence that the attractor
thermostating by deterministic scattering in the periodic L
entz gas exhibits a fractal structure analogous to the con
tional bulk thermostats.

~3! The identity between thermodynamic entropy produ
tion and phase space volume contraction does not hold
thermostating by deterministic scattering. Instead, these
quantities differ by a field dependent factor. The reason
this difference is that the temperature of the reservoir of th
mostating by deterministic scattering depends on the fi
strength, in contrast to Gaussian and Nose´-Hoover thermo-
stats. This result is important, since this identity has, u
now, been accepted as a general characterization of none
librium steady states generated by deterministic and tim
reversible thermostats.

~4! Surprisingly, although there is no identity we can st
establish a relation between conductivity and Lyapunov
ponents for thermostating by deterministic scattering. T
equation is formally identical to the Lyapunov sum rule f
conventional thermostats. As far as we know, our model t
provides a first example of a system where there is no id
tity, but where nevertheless there is a simple relation betw
transport coefficients and dynamical instabilities similar
conventional thermostats.

In summary, we find that the existence of fractal attract
in nonequilibrium steady states is a common feature t
thermostating by deterministic scattering shares with c
ventional thermostats. Physically speaking, the fractal ch
acter reflects the extreme rarity of nonequilibrium states re
tive to equilibrium ones. To look for additional commo
properties of all deterministic and time-reversible therm
stats remains an important question, which is intimately
lated to obtaining a general characterization of nonequi
9-9
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K. RATEITSCHAK AND R. KLAGES PHYSICAL REVIEW E65 036209
rium steady states. Such a characterization might result
more general relation between quantities of thermodyna
interest and the indicators of dynamical chaos at the mic
scopic level, from which the relations obtained for the th
mostating mechanisms considered above could appea
special cases.
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APPENDIX: CONSTRAINT ORTHONORMALIZATION

In this Appendix we describe numerical problems in t
calculation of Lyapunov exponents for our system and int
duce an alternative orthonormalization scheme called c
straint orthonormalization to solve these problems.

As was explained in Sec. V, by standard Gram-Schm
orthonormalization we have obtained the result that in eq
librium no zero Lyapunov exponent exists, but only two e
ponents being close to zero, which appears to be at varia
with expectations from dynamical systems theory. We h
therefore performed the following tests to detect the rea
for this discrepancy.

~1! We have numerically calculated the Lyapun
exponents by investigating the dynamics of a trajectory
four satellite trajectories, i.e., for finite but small distanc
The Lyapunov spectrum obtained by this method was
same.

~2! Changing parameters such as the interdisk distancw,
the parametric temperatureT, the dimensionality of the res
ervoir @4,27#, the slope of the baker map, and replacing
baker map by more complicated two-dimensional maps s
as the cat map or the standard map@31# did not improve the
result.

~3! We have followed the temporal evolution of tw
points on the same trajectory for about 20 collisions with
orthonormalization and by choosing as initial conditions~a!
that the points are slightly displaced along the trajectory
have the same velocity, and~b! that the points have the sam
configuration space coordinates but slightly different velo
ties. We could then show that two neutral directions ex
corresponding to~a! the direction of the flow and~b! to one
direction perpendicular to the flow.

The third test indicates that two zero Lyapunov expone
indeed exist. Thus, there must be a numerical problem
cause of standard Gram-Schmidt orthonormalization that
tablishes an orthonormal system of the tangent vectors on
basis of the most unstable direction. To cure that probl
we propose an alternative method to perform the perio
orthonormalization. This method establishes an orthonor
system of the tangent vectors starting from the existing n
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tral direction of the flow. Since we are introducing an ad
tional constraint this way, we call it constraint orthonorma
ization. It consists of the following steps.

~1! Choose suitable initial conditions for the orthonorm
system. The first tangent vector is situated in the direction
the flow, d G15(vx0 /v0 ,vy0 /v0,0,0), and the other tangen
vectors are orthonormal to it.

~2! At every orthonormalization the first tangent vector
forced to point in the direction of the flow,d G1

5(vx /v,vy /v,0,0). This step corrects the very small devi
tions of the first tangent vector from the direction of the flo
resulting from a collision with the disk, as will be explaine
in more detail below.

~3! The second, third, and fourth tangent vectors are
thonormalized again starting from the first one according
the method of Gram-Schmidt.

The application of constraint orthonormalization leads
the following Lyapunov spectrum in equilibrium:$l%
5$1.8695,0.0000,0.0000,21.8695%, see also Fig. 3. Com
paring these results to the previous ones obtained from
standard method$l%5$1.8695,0.0104,20.0104,21.8695%
shows that the Gram-Schmidt orthonormalization led to
wrong result only for the second and third Lyapunov exp
nents. The explanation for this numerical problem is
follows. In equilibrium the average energy transfer to t
reservoir is zero. Still, at any collision, energy is transfer
either from the particle to the reservoir or in the oppos
direction. According to Eq.~9! the phase space volume thu
locally contracts or expands although theglobal phase space
volume contraction is zero. However, as shown by Eq.~7!
the phase space contraction is intimately related to
corresponding ~un!stable directions in phase spac
Consequently, the local contractions and expansions
collision change the orientation and the norm of the tang
vectors in a nontrivial way. The Gram-Schmidt orthonorm
ization reacts to these changes by turning the correspon
tangent vectors out of the previously neutral directions. T
question of why the Gram-Schmidt procedure does not c
verge to the two existing neutral directions at least in
long time limit could not be completely resolved even
very detailed numerical investigations of the dynamics. P
sibly some kind of resonance phenomenon between lo
phase space contraction and expansion at the collision
Gram-Schmidt orthonormalization after the collision leads
the corresponding tangent vectors adjusting themse
somewhat symmetrically around these two neutral directi
@45#.

To obtain the correct Lyapunov exponents for«x,0.5
in nonequilibrium, we applied a suitably adjusted versi
of constraint orthonormalization as used in equilibriu
In order to achieve two points on a trajectory staying
the same trajectory after a collision, their initial stat
and velocities have to be chosen such that the points h
the same velocity at the moment of the collision. Th
condition leads to the components for the first tang
vector d G15$vx0 ,vy0 ,«x,0%. Note that d G is not
normalized here. The other steps are then the same a
equilibrium.
9-10
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