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Abstract
We consider families of dynamics that can be described in terms of Perron–
Frobenius operators with exponential mixing properties. For piecewise C2

expanding interval maps we rigorously prove continuity properties of the drift
J (λ) and of the diffusion coefficient D(λ) under parameter variation. Our main
result is that D(λ) has a modulus of continuity of order O(|δλ| · (log |δλ|)2),
i.e. D(λ) is Lipschitz continuous up to quadratic logarithmic corrections. For
a special class of piecewise linear maps we provide more precise estimates at
specific parameter values. Our analytical findings are quantified numerically
for the latter class of maps by using exact series expansions for the transport
coefficients that can be evaluated numerically. We numerically observe strong
local variations of all continuity properties.

Mathematics Subject Classification: 37C30, 37C40, 37E05, 82C70

PACS numbers: 05.45.Ac, 05.60.Cd

1. Introduction

In simple deterministic dynamical systems physical quantities like transport coefficients
can be fractal functions of control parameters. This finding was first reported for a one-
dimensional piecewise linear map lifted periodically onto the whole real line, for which
the diffusion coefficient was computed by using Markov partitions and topological transition
matrices [27,28,30]. A generalization of this result was obtained for a map with both drift and
diffusion by deriving exact analytical solutions for the transport coefficients [10, 16]. Further
maps modelling chemical reaction–diffusion [15] and anomalous diffusion [34] also yielded
fractal transport coefficients. Recent work aimed at physically more realistic models like
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(Hamiltonian) particle billiards, for which computer simulations yielded transport coefficients
that are non-monotonic under parameter variation [32]. Reference [33] contains a summary
of this line of research.

These results asked for a more detailed characterization of the ‘fractality’ of transport
coefficients. A first attempt in this direction was reported by Klages and Klauß [31], who
used standard techniques from the theory of fractal dimensions for characterizing the drift and
diffusion coefficients of the deterministic random walk Sn(x) generated by the map studied
in [16]:

S : R → R, S(x) =
{

ax + b if − 1
2 � x < 1

2 ,

S(x − k) + k if − 1
2 � x − k < 1

2 , k ∈ Z.
(1)

They numerically computed a non-integer box counting dimension for these curves which
varied with the parameter interval, leading to the notion of a ‘fractal fractal dimension’.
These results were questioned by Koza [35], who computed the oscillation of these graphs
at specific Markov partition parameter values. His work suggested a dimensionality of one
by conjecturing that there exist non-trivial logarithmic corrections to the usual power law
behaviour in the oscillation.

This research reveals the need to study the parameter dependence of transport coefficients
in a rigorous mathematical setting, which can be formulated as follows: given a parametrized
family of chaotic dynamical systems Tλ : I → I on an interval I with unique invariant physical
measures µλ together with a family of sufficiently regular observables ψλ : I → R one has,
under suitable mixing assumptions on the systems (Tλ, µλ), a law of large numbers and a
central limit theorem for the partial sum processes Sλ,n(x) = ∑n−1

k=0 ψλ(T
k
λ x), namely,

lim
n→∞ n−1Sλ,n = J (λ) :=

∫
I

ψλ(x) dµλ(x) for µλ-a.e. x

(Birkhoff’s ergodic theorem) and

L(n− 1
2 Sλ,n) ⇒ N (0, 2D(λ)),

where D(λ) := limn→∞ 1
2n

∫
I
(
∑n−1

k=0(ψλ(T
k
λ x)−J (λ)))2 dµλ(x), see, e.g. [19,22,37,39]. For

the map Tλ(x) = ax +b mod (Z− 1
2 ) and the observable ψλ(x) = (a −1)x +b that are studied

in section 4, the process Sλ,n is just the deterministic random walk Sn from (1), and J (λ) and
D(λ) are the drift and diffusion coefficient of this walk, respectively.

There are a few rigorous results in the literature describing the dependence of µλ and of
quantities like J (λ) for various classes of systems. Without going into the details they can
be summarized as follows: if the maps Tλ and the observables ψλ depend smoothly on λ and
if the topological conjugacy class of Tλ is not changed when λ is varied, then µλ (and hence
J (λ)) depends differentiably on λ [4, 9, 11, 20, 40, 42] (see [21, 41] for related results). If the
topological class changes, quantities like J (λ) may behave less regularly and have a modulus
of continuity not better than |δλ · log |δλ||, even for very simple maps Tλ like symmetric tent
maps [3]. On the other hand, this is always an upper bound for the modulus of continuity when
the Perron–Frobenius operator of the system (acting on a suitable space of ‘regular’ densities)
has a spectral gap [23, 25].

The goal of this paper is to explicitly relate these mathematical results to transport
coefficients. We do so by rigorously proving continuity properties of J (λ) and D(λ) under
parameter variation for certain classes of deterministic maps. In section 2 we give a general
estimate for families of dynamics, which can be described in terms of Perron–Frobenius
operators with exponential mixing properties. The applicability of these general results to
piecewise C2 expanding interval maps and in particular to the class of piecewise linear maps
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discussed in [16, 27, 28, 30, 33] is checked in section 3. The main result is that D(λ) has a
modulus of continuity of order at most O(|δλ| · (log |δλ|)2), i.e. D(λ) is Lipschitz continuous
up to quadratic logarithmic corrections (proposition 1 in conjunction with lemmas 2 and 3).
In section 4, proposition 2, we specialize the general results for transport coefficients to the
particular system (1) and provide more precise estimates when the parameter a is an integer
(proposition 3). From this we can conclude that, for integer a, the δ-oscillation of the diffusion
coefficient as a function of the parameter b is not of order O(δ) at Lebesgue-almost every b.
Although this is weaker than Tricot’s [43] definition of fractality3, we consider this to be a
mathematical justification qualifying the parameter dependence of the diffusion coefficient as
‘fractal’.

Our analytical findings are quantified by numerical computations in section 5, for which
we use exact analytical solutions of the transport coefficients [16]. Particularly, we numerically
analyse local variations of these properties, which goes beyond what can be proven rigorously
mathematically. Our work corrects and amends previous results reported in [31, 35].

2. The general setting

Let I be a compact interval, m normalized Lebesgue measure on I , L1
m the space of Lebesgue-

integrable functions from I to R, and BV ⊂ L1
m the space of L1

m-equivalence classes
of functions of bounded variation. We use the following simplified notation for the two
corresponding norms:

|f |1 :=
∫

|f | dm, ‖f ‖ := Var(f ), (2)

where

Var(f ) := sup

{∫
f ϕ′ dm : ϕ ∈ C1(R, R), |ϕ|∞ � 1

}
(3)

is the variation of f as a function from R → R (i.e. extended by f ≡ 0 on R \ I ).
If f is differentiable as a function from R → R integration by parts shows easily that
Var(f ) = ∫ |f ′| dm. Var is obviously a semi-norm, and as |f |1 � |f |∞ � 1

2 Var(f ), it is
actually a norm. This and more details on functions of bounded variation can be found in [26,
section 2.3]. The monograph [2] is a comprehensive reference for most of the background
material needed in this section.

We consider a family T of non-singular maps T : I → I . Non-singular means that the
Perron–Frobenius operator PT : L1

m → L1
m is well defined, i.e.∫

PT f · g dm =
∫

f · g ◦ T dm (f ∈ L1
m, g ∈ L∞

m ). (4)

By definition, |PT |1 = 1 for all T ∈ T , and we assume

Hypothesis 1. C1 := sup{‖P n
T ‖ : T ∈ T , n ∈ N} < ∞.

Our main assumption is that the maps in T are uniformly exponentially mixing in the following
sense:

Hypothesis 2. Each T ∈ T has a unique invariant probability density hT ∈ BV (so
PT hT = hT ), and there are constants γ ∈ (0, 1) and C2 > 0 such that, for all T ∈ T ,

|P n
T f |1 � C2γ

nVar(f ) for all f ∈ BV with
∫

f dm = 0 and for all n ∈ N. (5)

3 More precisely, our proposition 3 implies that lim supδ→0δ
−1oscδ(b) = +∞ for Lebesgue-a.e. b, whereas Tricot [43,

12.2] requires uniform convergence to +∞ for all b.
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Observe the following consequences of hypotheses 1 and 2:

|P n
T f − hT |1 � C2γ

n(Var(f ) + 2C1) for all probability densities f ∈ BV (6)

and

Var(hT ) � 2C1 (T ∈ T ). (7)

Indeed, |P n
T f − hT |1 = |P n

T (f − hT )|1 � C2γ
n(Var(f ) + Var(hT )) → 0 as n → ∞ by

hypothesis 2 for each probability density f ∈ BV. In particular |P n
T 1 − hT |1 → 0 so that

Var(hT ) � supn Var(P n
T 1) � C1Var(1) = 2C1 by (3) and hypothesis 1. Now (6) follows at

once.
Since it is our goal to investigate the dependence of various dynamical quantities as

functions of T ∈ T , we need to introduce a distance on T . At this stage the following one,
which was already considered in [23], is most appropriate. It measures the distance between
two maps T1 and T2 from T in terms of a suitable norm of PT1 − PT2 :

|||PT1 − PT2 ||| := sup
{|PT1f − PT2f |1 : f ∈ BV, ‖f ‖ � 1

}
. (8)

This distance can be controlled in terms of a more ‘hands-on’ distance between the graphs of
the maps:

d(T1, T2) := inf{ε > 0 : ∃Iε ⊆ I and ∃ a diffeomorphism σ : I → I s.th.

m(I \ Iε) < ε, T1|Iε
= T2 ◦ σ |Iε

, and

∀x ∈ Iε : |σ(x) − x| < ε, |1/σ ′(x) − 1| < ε}.
(9)

Namely (see [23, lemma 13]),

|||PT1 − PT2 ||| � 12 · d(T1, T2). (10)

Now, as a warm-up exercise, we can prove the following estimate: for k � 0 let

�k : (0, ∞) → (0, ∞), �k(u) := u · (1 + | log u|)k. (11)

Lemma 1 (see also [23, proposition 7]). There exist constants K ′
1, K1 > 0 such that

|hT1 − hT2 |1 � K ′
1 · �1(|||PT1 − PT2 |||) � K1 · �1(d(T1, T2)) (T1, T2 ∈ T ) (12)

Proof. Let η̃ := |||PT1 − PT2 |||, assume without loss of generality that η̃ < 1, and fix N ∈ N.
For f ∈ BV,

|P N
T1

f − P N
T2

f |1 �
N−1∑
k=0

|P N−k−1
T1

(PT1 − PT2)P
k
T2

f |1 �
N−1∑
k=0

|(PT1 − PT2)P
k
T2

f |1

�
N−1∑
k=0

|||PT1 − PT2 ||| · ‖P k
T2

f ‖ �
N−1∑
k=0

η̃ C1‖f ‖ � C1Nη̃‖f ‖,
(13)

where we used hypothesis 1. Hence,

|hT1 − hT2 |1 � |P N
T1

1 − P N
T2

1|1 + |P N
T1

(1 − hT1)|1 + |P N
T2

(1 − hT2)|1
� 2C1Nη̃ + 2 · C2γ

N(2 + 2C1),

where we used hypothesis 2 and estimate (7). For N = log η̃/log γ �, this is in the form of
the first inequality of (12). �

Remark 1. Even if T is a family of piecewise linear maps and if T1 has the Markov property,
this estimate can generally not be improved. Examples for this fact within the family of
symmetric mixing tent maps are provided in [3, 38].
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Suppose now that to each T ∈ T there is associated an ‘observable’ ψT : I → R. We
make the following assumptions:

Hypothesis 3. C3 := sup{Var(ψT ) : T ∈ T } < ∞
Hypothesis 4. There is C4 > 0 such that |ψT1 − ψT2 |1 � C4d(T1, T2) for all T1, T2 ∈ T .

Denote

J (T ) :=
∫

I

ψT hT dm. (14)

Then we have immediately from (7) and lemma 1

Corollary 1. There is some K2 > 0 such that, for all T1, T2 ∈ T ,

|J (T1) − J (T2)| � K2 · �1(d(T1, T2)). (15)

J (T ) is the ‘drift’ of the partial sum process

ST,n :=
n−1∑
k=0

ψT ◦ T k = n J (T ) +
n−1∑
k=0

ψ̂T ◦ T k

under the invariant measure hT m, where ψ̂T = ψT − J (T ). Observe that

Var(ψ̂T ) � 2C3, |ψ̂T1 − ψ̂T2 |1 � 2C4 d(T1, T2) for all T , T1, T2 ∈ T . (16)

In view of hypothesis 2 we can also define the ‘diffusion coefficient’4 of this process:

D(T ) := lim
n→∞

1

2n

∫ (
n−1∑
k=0

ψ̂T ◦ T k

)2

hT dm

= 1

2

∫
ψ̂2

T hT dm +
∞∑

n=1

∫
ψ̂T · ψ̂T ◦ T n hT dm

= 1

2

∫
ψ̂2

T hT dm +
∞∑

n=1

∫
P n

T (ψ̂T hT ) ψ̂T dm.

(17)

More precise information on the diffusive behaviour of ST,n is available: for each fixed T ∈ T
we have the central limit theorem

L(n− 1
2 (ST,n − nJ (T )) ⇒ N (0, 2D(T )) as n → ∞. (18)

(If D(T ) = 0 this means, as usual, weak convergence to the unit mass at 0.) For Lasota–Yorke
type maps looked at in section 3 this follows immediately, e.g. from [19,22,39]. In the slightly
more general setting of this section one has to invoke [37, Theorem 1.1]5.

Among physicists (17) is known as the Taylor–Green–Kubo formula for diffusion [33].
For the dependence of D(T ) on T we prove the following proposition.

Proposition 1. There is some K3 > 0 such that, for all T1, T2 ∈ T ,

|D(T1) − D(T2)| � K3 · �2(d(T1, T2)). (19)

4 This is the convention in the physics literature. In the mathematics literature one would rather call 2D(T ) the
diffusion coefficient.
5 The assumptions of this theorem are stated in terms of the Koopman operator T̂ φ := φ ◦ T and its dual T̂ ∗
on L2

µT
(I ) where µT := hT m. Denote by F the Borel-σ -algebra on I and by E the expectation w.r.t. µT . As

hT T̂ ∗nφ = P n
T (hT φ), the assumptions of [37] are easy to check: T̂ T̂ ∗φ is T −1F-measurable and equals E(φ|T −1F),

and
∑∞

n=0 E|T̂ ∗nψ̂T | � ∑∞
n=0 C2γ

nVar(hT ψ̂T ) < ∞ by hypothesis 2, so that
∑∞

n=0 |E(ψ̂T T̂ nψ̂T )| < ∞ and∑∞
n=0 E(T̂ ∗nψ̂T ) converges absolutely and almost surely.
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Proof. Observe first that Var(ψh) � Var(ψ)|h|∞ + Var(h)|ψ |∞ � Var(ψ)Var(h) for all
ψ, h ∈ BV. It follows that, in view of (5),∣∣∣∣∫ P n

T (ψ̂T hT ) ψ̂T dm

∣∣∣∣ � |P n
T (ψ̂T hT )|1 · |ψ̂T |∞ � C2C3γ

nVar(ψ̂T hT )

� 4C1C2C
2
3γ n.

(20)

Let η̃ = ‖PT1 − PT2‖ as before, denote η := d(T1, T2) (so that η̃ � 12η), and fix
N = log η/ log γ �. For all T1, T2 ∈ T , equation (20) implies

∞∑
n=N

∣∣∣∣∫ P n
T1

(ψ̂T1hT1) ψ̂T1 dm −
∫

P n
T2

(ψ̂T2hT2) ψ̂T2 dm

∣∣∣∣ � 8C1C2C
2
3

1 − γ
η. (21)

For 0 � n < N we use a different estimate. We decompose∫
P n

T1
(ψ̂T1hT1) ψ̂T1 dm −

∫
P n

T2
(ψ̂T2hT2) ψ̂T2 dm = �n

1 + �n
2 + �n

3 + �n
4, (22)

where

|�n
1| :=

∣∣∣∣∫ P n
T1

(ψ̂T1hT1) (ψ̂T1 − ψ̂T2) dm

∣∣∣∣ � 1

2
Var(P n

T1
(ψ̂T1hT1)) |ψ̂T1 − ψ̂T2 |1

� 4C2
1C3C4η

(23)

and

|�n
2| :=

∣∣∣∣∫ (P n
T1

− P n
T2

)(ψ̂T1hT1) ψ̂T2 dm

∣∣∣∣ � |||P n
T1

− P n
T2

|||Var(ψ̂T1hT1)|ψ̂T2 |∞
� 4C1C

2
3 |||P n

T1
− P n

T2
||| � 4(C1C3)

2nη̃,

(24)

where the last inequality follows from equation (13). Next,

|�n
3| :=

∣∣∣∣∫ P n
T2

(
(ψ̂T1 − ψ̂T2)hT1

)
ψ̂T2 dm

∣∣∣∣ � |ψ̂T1 − ψ̂T2 |1 |hT1 |∞ |ψ̂T2 |∞
� 4C1C3C4η

(25)

and

|�n
4| :=

∣∣∣∣∫ P n
T2

(
ψ̂T2(hT1 − hT2)

)
ψ̂T2 dm

∣∣∣∣ � |hT1 − hT2 |1 |ψ̂T2 |∞ |ψ̂T2 |∞
� C2

3K1�1(η̃)

(26)

(One may note that the constants C1, . . . , C4 originate from hypotheses 1 to 4, respectively.)
From (23)–(26) we see that

|�n
1| + |�n

2| + |�n
3| + |�n

4| � K̃(nη + �1(η)) (27)

for some constant K̃ > 0. Hence, in view of (21) and the choice of N ,

|D(T1) − D(T2)| � 8C1C2C
2
3

1 − γ
η + K̃

(
1

2
�1(η) +

N−1∑
n=1

(nη + �1(η))

)

� 8C1C2C
2
3

1 − γ
η + K̃

(
N2

2
η + N�1(η)

)
� K3 · �2(η)

(28)

for a suitable constant K3. (The term 1
2�1(η) is the n = 0 contribution.) �
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Remark 2. Quite often slightly stronger forms of hypotheses 2 and 4 are satisfied, where the
mixing assumption (5) is replaced by

Var(P n
T f ) � C ′

2γ
nVar(f ) for all f ∈ BVwith

∫
f dm = 0 and n ∈ N (29)

and the assumption on the T -dependence of ψT is strengthened to

Var(ψT1 − ψT2) � C ′
4d(T1, T2) for all T1, T2 ∈ T . (30)

An inspection of the above estimates shows that |�n
1| � 4C1C

′
2C3C4γ

nη and |�n
2| �

4C1C
′
2C3(1 − γ )−1η if (29) is assumed. If additionally (30) is assumed, then |�n

3| can be
estimated as follows: let α := ∫

I
(ψ̂T1 − ψ̂T2)hT1 dm. Then

|�n
3| =

∣∣∣∣∫ P n
T2

((ψ̂T1 − ψ̂T2)hT1 − αhT2)ψ̂T2 dm

∣∣∣∣ � C2C3 γ n Var((ψ̂T1 − ψ̂T2)hT1 − αhT2)

� C1C2C3C
′
4(4 + 2)γ nη .

(31)

Hence,
∑N−1

n=0 |�n
1| + |�n

3| = O(η) uniformly in N and
∑N−1

n=0 |�n
2| = O(Nη) = O(�1(η)).

But we see no way, in general, to bound the �n
4-terms in a similar way. However, for particular

families of maps T and observables ψT sharper estimates of |�n
2| and |�n

4| are available.
In section 4.2 an example is studied where all T ∈ T are conjugate by rotations and leave
Lebesgue measure on I invariant.

Remark 3. Instead in terms of �2(d(T1, T2)) the estimate in proposition 1 can be given more
directly in terms of �2(|||PT1 −PT2 |||)+�2(|ψT1 −ψT2 |1). In that way it applies also to stochastic
systems, e.g. to stochastic perturbations of many Lasota–Yorke type maps, see e.g. [7, 23].

3. Checking hypotheses 1 and 2

3.1. General piecewise expanding maps

In this subsection we show how the general hypotheses 1 and 2 can be verified in the
more particular setting when T is a parametrized family of piecewise twice continuously
differentiable and expanding interval maps. So, from now on, we look at the following setting:

 ⊂ Rd is a compact parameter space, T = {Tλ : λ ∈ }, and (T1)

there is some L > 0 such that d(Tλ1 , Tλ2) � L|λ1 − λ2| for all λ1, λ2 ∈ . (T2)

We start with an abstract result which reduces hypothesis 2 essentially to a uniform Lasota–
Yorke type inequality plus a mixing assumption.

Lemma 2. Assume (T1) and (T2). Then hypotheses 1 and 2 (and even the stronger property
(29)) are valid if the transformations T ∈ T are mixing and satisfy a uniform Lasota–Yorke
type inequality: there are constants C5, C6 > 0 and α ∈ (0, 1) such that

Var(P n
T f ) � C5α

nVar(f ) + C6|f |1 for all T ∈ T , n ∈ N, f ∈ BV. (LY)

By ‘mixing’ we mean that each T has a unique invariant density and that it is weakly mixing
w.r.t. this density. Bowen [8] gave sufficient conditions for piecewise monotonic maps to be
mixing, see section 3.2 for details.

Proof. As |PT |1 = 1 and |f |1 � 1
2‖f ‖, it is straightforward to check that hypothesis 1 holds

with C1 = C5 + 1
2C6.
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We turn to hypothesis 2. Note first that, because of (T1) and (T2), it suffices to show
that for each λ ∈  there are δ(λ) > 0, C2(λ) > 0 and γ (λ) ∈ (0, 1) such that (29) (and
hence also (5)) holds with these constants for all Tλ1 with |λ1 − λ| < δ(λ). But this is
guaranteed by corollary 2 and remark 1c in [25], because property (LY) guarantees that each
PT : BV → BV is quasicompact with spectral radius 1, and the mixing assumption implies
that 1 is the only eigenvalue of modulus 1 and that it is a simple eigenvalue. The reader may
consult the monograph [2] for a comprehensive discussion of this circle of ideas. �

Our next task is to give sufficient conditions for (LY) and for the mixing property. To
this end we specialize further and assume from now on that our maps are piecewise expanding
(PE) maps in the following sense:

For each λ ∈  there is a finite partition (I 1
λ , . . . , I

Nλ

λ ) of I into
sub-intervals such that all Tλ|I j

λ
are monotone, C2, and κλ := inf |T ′

λ| > 2.
(PE)

Already in [36] it was proved that each individual (PE)-map (even if 1 < κλ � 2) satisfies
(LY) with constants C5, C6, α depending on the map. For parametrized families of maps
one can generally find uniform constants, but there are counterexamples where this is not
possible [5, 6, 23]. Under the above assumption κλ > 2 for all λ ∈  one can, however,
give simple sufficient conditions ensuring the uniform LY-inequality. The proof in [36] (see
also [26, proposition 2.1]) shows

Var(PTλ
f ) � 2

κλ

Var(f ) + (Eλ + Fλ)|f |1, (32)

where

Eλ = sup
x

∣∣∣∣( 1

T ′
λ(x)

)′∣∣∣∣ , Fλ = 2

κλ minj |I j

λ |
. (33)

From this (LY) follows with α = supλ∈ 2/κλ, C5 = 1, and C6 = supλ(κλ/(κλ − 2))(Eλ + Fλ)

provided this supremum is finite and α < 1.
For maps Tλ : I → I verifying (PE), Bowen [8] gave the following sufficient condition

to be mixing:

T = Tλ is mixing, if sup
n>0

µT (T nU) = 1 for each interval U = I 1
λ , . . . , I

Nλ

λ . (M)

3.2. Piecewise linear modulo 1 maps

We now look at a particular model dealt with in [13,14,17,18] from a mathematical perspective
and in [16,27,28,30,33] from a physics point of view. Let I = [− 1

2 , 1
2 ],  = [a0, a1]×[− 1

2 , 1
2 ]

for some constants 2 < a0 < a1, and for λ = (a, b) ∈  consider

Tλ(x) = ax + b mod (Z − 1
2 ). (34)

Hofbauer [17] showed that these maps have always a unique invariant probability density6.
The parameter space  is obviously compact, so (T1) is satisfied. In order to check assumption
(T2) on the Lipschitz dependence of the maps on the parameters we estimate d(Ta,b, Ta′,b′) for
(a, b), (a′, b′) ∈ .

For given (a, b) ∈  let p = ((a + 1)/2) − b� − 1 and q = ((a + 1)/2) + b� where x�
denotes the smallest integer greater or equal to x. Let A−p := − 1

2 , Aq := 1
2 and denote by

6 Indeed, Hofbauer shows this for the maximal measure of such maps, but since these maps have constant slope,
the maximal measures are just the absolutely continuous ones. For numerical results on the probability densities
associated with these measures and how they change under parameter variation see [28].
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Ak := a−1(k − 1
2 − b) (k = −p + 1, . . . , q − 1) the discontinuities of Ta,b in (− 1

2 , 1
2 ). The

intervals (Ak, Ak+1) (k = −p, . . . , q − 1) are the maximal monotonicity intervals of T(a,b).
Consider also another (a′, b′) ∈  and suppose w.l.o.g. that a′ � a. With the same p and q

as before define A′
k := a−1(k − 1

2 − b) (k = −p + 1, . . . , q − 1). Although not all of the A′
k

belong necessarily to (− 1
2 , 1

2 ), all these points are discontinuities of T(a′,b′) when the definition
(34) of this map is extended to all x ∈ R.

Consider the linear map L : R → R, L(x) = (ax+b−b′)/a′ and observe that L(Ak) = A′
k

(−p < k < q) and a′L(x) + b′ = ax + b for all x ∈ R. Let [u, v] := I ∩ L−1(I ) and
I0 := [u + δ, v − δ] for some arbitrarily small δ > 0. Define σ : I → I by σ(x) = L(x) if
x ∈ I0 and extend σ to a diffeomorphism of I . Then

• m(I \ I0) � (1 − a′
a
) + |b′ − b|/a + 2δ � a−1

0 (|a′ − a| + |b′ − b|) + 2δ,
• |σ(x) − x| = |L(x) − x| � 1

2 | a
a′ − 1| + |b − b′|/a′ � a−1

0 ( 1
2 |a − a′| + |b − b′|) for all

x ∈ I0,
• |1/σ ′(x) − 1| = | a′

a
− 1| � a−1

0 |a′ − a| for all x ∈ I0,
• T(a′,b′)(σ (x)) = T(a,b)(x) for all x ∈ I0.

So

d(T(a,b), T(a′,b′)) � a−1
0 (|a − a′| + |b − b′|) (35)

as δ > 0 could be chosen arbitrarily small. Hence (T2) is satisfied.

Lemma 3. The maps Tλ (λ = (a, b) ∈ ) satisfy hypotheses 1 and 2 and also property (29).

Proof. As all Tλ are piecewise expanding in the sense of (PE), the discussion in section 3.1
shows that (LY) is satisfied with C5 = 1 and α = (2/a0) < 1. Hence the claim of the lemma
follows from lemma 2 once we have shown that the Tλ are mixing. To this end we verify
Bowen’s mixing condition (M): if U is a non-empty open interval some iterate T n

λ U must
contain one of the monotonicity intervals (Ak−1, Ak), k ∈ {−p + 1, . . . , q − 1}, introduced
above, that are mapped onto (− 1

2 , 1
2 ). (Otherwise the T n

λ U ⊆ I would contain intervals Vn of
length |Vn| � ( a0

2 )n|U | growing without limit when n → ∞.) �

Remark 4. For the maps Tλ from lemma 3, hypothesis 2 can be verified by direct elementary
calculations along the lines of [24] without invoking the perturbation theory of [25]. One
obtains the explicit estimate

Var(PTλ
f ) � 2

a
Var(f ) + 2

∣∣∣∣∫ f dm

∣∣∣∣ for all f ∈ BV and n ∈ N.

Alternatively, the mixing property follows also from [13, theorem 5.1].

4. Transport coefficients

We apply the results of the previous sections to determine transport coefficients of the
deterministic random walks generated by the maps Tλ = Ta,b from section 3.2. The random
walks in question are Sλ,n = ∑n−1

k=0 ψλ ◦ T k
λ with

ψλ(x) = (a − 1)x + b. (36)

It is an easy exercise to see that hypotheses 3 and 4 as well as their strengthening (30)
are satisfied: Var(ψa,b) � 2(a − 1 + |b|) < 2(a1 + 1) =: C3 and |ψa,b − ψa′,b′ |1 �
1
2 Var(ψa,b − ψa′,b′) � |a − a′| + |b − b′|.
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For later use we note that the maps Ta,b and Ta,−b are conjugate in the sense that
Ta,b(−x) = −Ta,−b(x), in particular ha,−b(−x) is also an invariant density for Ta,b and,
by uniqueness, ha,b(x) = ha,−b(−x).

We first note the following explicit form of the drift:

J (λ) = J (a, b) :=
∫

ψa,bha,b dm = b + (a − 1)

∫
xha,b(x) dx. (37)

As noted above, ha,0(x) = ha,0(−x). Hence J (a, 0) = 0.

4.1. Upper bounds for the modulus of continuity of the drift and the diffusion coefficient

Now we apply corollary 1 and proposition 1 to our setting. In view of the estimate in (35) this
yields:

Proposition 2. For the family of maps (Tλ : λ ∈ ) defined in (34), there are constants
K3, K4 > 0 such that the drift J (λ) := J (Tλ) and the diffusion coefficient D(λ) := D(Tλ),
λ = (a, b), satisfy

|J (λ) − J (λ′)| � K3 · |λ − λ′| · (1 + | log |λ − λ′||), (λ, λ′ ∈ ), (38)

|D(λ) − D(λ′)| � K4 · |λ − λ′| · (1 + | log |λ − λ′||)2 (λ, λ′ ∈ ). (39)

Corollary 2.

(a) The graph of D :  → R has box- and Hausdorff-dimension 2.
(b) For each b ∈ R, the graph of Db : [a0, a1] → R, Db(a) = D(a, b), has box- and

Hausdorff-dimension 1.
(c) For each a > 2, the graph of Da : [− 1

2 , 1
2 ] → R, Da(b) = D(a, b), has box- and

Hausdorff-dimension 1.

Proof. This is well known, but we include a proof for completeness. Denote by dimB and
dimH the box and Hausdorff dimension, respectively. Obviously, 2 � dimH (graph(D)) �
dimB(graph(D)). So it remains to show that dimB(graph(D)) � 2. To this end subdivide the
rectangle  into little squares of equal diameter ≈ N−1. For each such square Q we have

max{D(λ) : λ ∈ Q} − min{D(λ) : λ ∈ Q} � K4N
−1(1 + log N)2. (40)

Hence,

dimB(graph(D)) � lim sup
N→∞

log(K4N
2(1 + log N)2)

log N
= 2. (41)

The two other claims are proved in the same way. �

Remark 5. Corollary 2 has already been conjectured by Koza [35]. His conjecture was based
on calculating the pointwise Minkowski–Bouligand dimension for algebraic Markov partition
parameter values of this family of maps by using the exact solutions for drift and diffusion
coefficient given in [16]. This led him to conclude that the oscillation [43] of D(λ) is linear in
the size of the subinterval multiplied with a logarithmic term, cp (20) of [35] with (40) above.
The exponent of this logarithmic correction was found to be either one or two depending on
the type of Markov partition.



Continuity properties of transport coefficients in simple maps 1729

4.2. A closer look at maps with integer slope

We finish this section with a closer look at the functions Da(b) when a is an integer larger
than 2. In this case T = Ta,b can be seen as an a-fold covering linear circle map, so it leaves
Lebesgue measure invariant. Therefore hT = 1 for all such T so that J (a, b) = b and the
estimates on Da(b) from the proof of proposition 1 simplify drastically. As some of these
estimates can be replaced by more precise expansions, this leads to

Proposition 3. For the family T(a,b) defined in (34) with a ∈ {3, 4, 5, . . .} we have the following
b-dependence of the diffusion coefficient of the generated random walk:

(1) For even a � 4,

Da(b
′) − Da(0) = O(b′)

and

Da(b
′) − Da

(
1

2

)
= a − 1

2 log a

(
b′ − 1

2

) ∣∣∣∣log

∣∣∣∣b′ − 1

2

∣∣∣∣∣∣∣∣ + O
(

b′ − 1

2

)
(2) For odd a � 3,

Da(b
′) − Da(0) = − a − 1

2 log a
b′| log |b′|| + O(b′)

and

Da(b
′) − Da

(
1

2

)
= a − 1

4 log a

(
b′ − 1

2

) ∣∣∣∣log

∣∣∣∣b′ − 1

2

∣∣∣∣∣∣∣∣ + O
(

b′ − 1

2

)
(3) If b is such that b̂ = − 1

2 + (b/(a − 1)) is eventually periodic under Ta,0 and the periodic

part of the orbit neither contains − 1
2 nor b̂, then there is a constant Ca,b such that

Da(b
′) − Da(b) = Ca,b (b′ − b)| log |b′ − b|| + O(b′ − b).

This generalizes assertions (1) and (2). See also remark 5.
(4) For fixed δ and random b drawn uniformly from (0, 1

2 ) or from (− 1
2 , 0),

Da(b + δ(a − 1)) − Da(b) = Ca δ| log |δ||1/2 Zδ + O(δ) as δ → 0

with a constant Ca > 0 and random variables Zδ which all have the same distribution—a
mixture of Gaussians as in (45) depending only on the fixed parameter a.

Remark 6. An immediate consequence of proposition 3(4) is that, for integer a, the graphs
of Da : [− 1

2 , 1
2 ] → R are fractal in a sense only slightly weaker than that of Tricot

[43, section 12.2], although they have box- and Hausdorff-dimension 1: following [43],
denote oscδ(b) := supb′,b′′ |Da(b

′) − Da(b
′′)| where the supremum extends over all b′, b′′ ∈

[b − δ, b + δ]. Then, for every M > 0, m{b ∈ [− 1
2 , 1

2 ] : δ−1oscδ(b) � M} → 0 as δ → 0 so
that lim supδ→0 δ−1oscδ(b) = +∞ for m-a.e. b.

Proof of proposition 3. Fixa ∈ {3, 4, 5, . . .}. ThenJ (a, b) = b for allb (see (37) and [16,33]),
ψ̂a,b(x) = (a − 1)x =: ψ̂a(x) is the same for all b, and denoting T1 = Ta,b and T2 = Ta,b′ we
can replace estimates (22)–(27) by∫

I

P n
T2

(ψ̂T2hT2) ψ̂T2 dm −
∫

I

P n
T1

(ψ̂T1hT1) ψ̂T1 dm

=
∫

I

ψ̂a(x) ψ̂a(T
n

2 x) dx −
∫

I

ψ̂a(x) ψ̂a(T
n

1 x) dx

= (a − 1)2

(∫
I

x T n
a,b′(x) dx −

∫
I

x T n
a,b(x) dx

)
.

(42)
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To evaluate this difference assume henceforth that 0 � b � 1
2 . There is no loss in doing so,

because Ta,b and Ta,−b are conjugate as obseved above. Define the ‘rotation’ R : I → I by
R(x) = x − (b/(a − 1)) mod (Z − 1

2 ). It conjugates Ta,b to Ta,0, namely,

R(T n
a,0x) = T n

a,b(Rx) for all x ∈ I and n ∈ N.

Therefore, denoting b̂ = − 1
2 + (b/(a − 1)) and χb(x) = 1[− 1

2 ,b̂)(x) − (b/(a − 1)),∫
I

x T n
a,b(x) dx =

∫
I

R(x) R(T n
a,0x) dx =

∫
I

(x + χb(x))(T n
a,0x + χb(T

n
a,0x)) dx

so that∫
I

x T n
a,b′(x) dx −

∫
I

x T n
a,b(x) dx

=
∫

I

P n
a,0x · (χb′(x) − χb(x)) dx +

∫
I

P n
a,0(χb′ − χb)(x) · x dx

+
∫

I

P n
a,0χb′(x) · (χb′(x) − χb(x)) dx +

∫
I

P n
a,0(χb′ − χb)(x) · χb(x) dx.

As
∫
I
χb′(x) dx = 0 and Var(χb) = 2 for all b, the third term is of order O((2/a)n|b′ − b|) by

lemma 3. As P n
a,0x = a−nx, the first term is at most of the same order. Therefore their sums

over all n are of the order O(|b′ − b|).
We turn to the two remaining terms. Their sum from n = 0 to ∞ is of the form

∞∑
n=0

∫
I

P n
a,0(χb′ − χb)(x) · gb(x) dx =

∞∑
n=0

∫
I

(χb′ − χb)(x) · gb(T
n
a,0x) dx (43)

with gb(x) = x + χb(x). Let δ = (b′ − b)/(a − 1). As
∫ 1/2
−1/2(χb′ − χb)(x) dx = 0,

Var(χb′ − χb) � 4, and |gb| � 2, the nth integral is of order O((2/a)n). Hence the sum
from n = Nδ := | log |δ||/log a� to ∞ is of order |δ|, and it remains to estimate the sum
from n = 0 to Nδ − 1. (For these n we have an|δ| � 1.) In the following we give precise
approximations of this sum for various values of b. In all cases one should keep in mind the
factor (a − 1)2 in (42) and the definition of δ = (b′ − b)/(a − 1).

Proof of assertions (1) and (2). We start with the special case b = 0 where we have χb = 0,
so gb(x) = x. Then the nth term in the sum (43) evaluates to∫ − 1

2 +δ

− 1
2

T n
a,0(x) dx =

{
δ · (− 1

2 + 1
2anδ) if a is odd,

δ · ( 1
2anδ) if a is even and n � 1

(Observe that
∫
I
T n

(a,0)(x) dx = ∫
I
x dx = 0.) It follows that the sum from n = 0 to Nδ − 1 in

(43) is of the order O(|δ|) if a is even and that it is δ · (−(|log |δ||)/(2 log a) + O(1)) if a is
odd.

Consider next the case b = 1
2 . As b = − 1

2 gives rise to the same map, the we may assume

w.l.o.g. that − 1
2 < b′ < b, i.e. δ < 0. If a is odd, then Ta,0b̂ = b̂ + 1

2 and Ta,0(b̂ + 1
2 ) = b̂.

Therefore∫
I

(χb′ − χb)(x) · gb(T
n
a,0x) dx =

∫ b̂′

b̂

gb(T
n
a,0x) dx

=


∫ δ

0 (b̂ + ant) + χb(b̂ + ant) dt if n is even∫ δ

0 (b̂ +
1

2
+ ant) + χb(b̂ +

1

2
+ ant) dt if n is odd

=


δb̂ +

1

2
anδ2 + δ − δ

b

a − 1
if n is even

δ(b̂ +
1

2
) +

1

2
anδ2 − δ

b

a − 1
if n is odd
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as long as an|δ| < b/(a − 1), i.e. n < Ñδ := Nδ − (log(a − 1) − log b)/ log a. For the
remaining n this identity needs to be modified by at most |δ|. In any case,

Nδ−1∑
n=0

∫
I

(χb′ − χb)(x) · gb(T
n
a,0x) dx = Nδ

2
· δ

2
+

Nδ

2
· 0 + O(δ)

= δ| log |δ|| 1

4 log a
+ O(δ) for odd a

with a constant in ‘O’ that depends on b and a but not on b′. If a is even, then Ta,0b̂ = b̂, and
following the argument for odd a and even n we obtain

Nδ−1∑
n=0

∫
I

(χb′ − χb)(x) · gb(T
n
a,0x) dx = Nδ · δ

2
+ O(δ) = δ| log |δ|| 1

2 log a
+ O(δ) for even a.

Proof of assertions (3) and (4). We turn to more general parameters 0 < b < 1
2 . We have to

estimate

s(δ) :=
Nδ−1∑
n=0

∫
I

(χb′ − χb)(x) · gb(T
n
a,0x) dx =

Nδ−1∑
n=0

∫ b̂+δ

b̂

gb(T
n
a,0x) dx

=
Nδ−1∑
n=0

∫ δ

0
gb(T

n
a,0(b̂) + ant) dt.

(44)

The details of this estimate depend strongly on the distributional properties of the orbit of b̂

under Ta,0 and we discuss only two particular but important cases where the situation does not
become too complicated. First we look at such b for which the orbit of b̂ is eventually periodic
but where the periodic part does neither contain − 1

2 nor b̂. (This is a countable dense set of
parameters.) In this case one can argue as above for b = 1

2 and odd a and show that

s(δ) = δ| log |δ|| Cb

log a
+ O(δ)

with Cb = ∫
I
gb(x) dµb(x) where µb is the equidistribution on the periodic part of the orbit

of b̂. Exceptionally this may be zero, but typically it will not.
Next we look at Lebesgue typical points b̂, i.e. at Lebesgue typical parameters b. For fixed

δ we interpret s(δ) as a random variable where randomness is introduced via the parameter

b ∈ (0, 1
2 ). We are going to show that the random variables δ−1N

− 1
2

δ s(δ) converge in
distribution to a mixture of Gaussians, i.e.

L(δ−1N
− 1

2
δ s(δ)) ⇒

∫ 1

0
N (0, σ 2

z ) dz as δ → 0 (45)

with suitable variances σ 2
z > 0 that depend on the fixed parameter a. This shows that

approximately s(δ) = δ| log |δ|| 1
2 Z with a random variable Z that is a mixture of Gaussians

which depends only on the fixed integer parameter a.
We start by comparing s(δ) to

∑Nδ−1
n=0 δ ·gb(T

n
a,0b̂). As gb(x) = x +χb(x), we can estimate

the difference for the x- and the χb(x)-contributions separately. For the x-contribution the
difference is easily seen to be of order O(δ). For the χb(x)-contribution we estimate each of
the last Lδ := (3/ log a) log Nδ� terms of the sum by 2 thus getting a contribution of order
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O(δ log Nδ). For the remaining terms we note the following two estimates which are obvious
from a short look at the graph of T n

a,0:

m{b ∈ I :

∣∣∣∣T n
a,0(b̂) −

(
−1

2

)∣∣∣∣ < anδ}, m{b ∈ I : |T n
a,0(b̂) − b̂| < anδ} � 4anδ ,

so that

m

{
b ∈ I : ∃n ∈ {0, . . . , Nδ − Lδ − 1} s.th.

∣∣∣∣T n
a,0(b̂) −

(
−1

2

)∣∣∣∣ < anδ or |T n
a,0(b̂) − b̂| < anδ

}
� 8

a − 1
a−Lδ = 8

a − 1
N−3

δ .

It follows that
∑Nδ−Lδ−1

n=0

∫ δ

0 χb(T
n
a,0(b̂) + ant) dt = ∑Nδ−Lδ−1

n=0 δχb(T
n
a,0b̂) except on a set of b

of Lebesgue measure at most (8/(a − 1))N−3
δ . Hence, observing that LδN

−1
δ → 0 as δ → 0,

the convergence in (45) will follow once we have proved

L(YNδ
) ⇒

∫ 1

0
N (0, σ 2

z ) dz as Nδ → ∞ (46)

where YN(b̂) := N− 1
2
∑N−1

n=0 gb(T
nb̂) and b is uniformly distributed in the interval (0, 1

2 ). (To
ease the notation we abbreviate Ta,0 by T .) As the single contributions to the sum in YN depend
on b via T n(b̂) and b itself, this is not the situation of the usual central limit theorem, so we
treat the problem in two steps:

Step 1: For fixed z ∈ (0, 1
2 ) consider Y z

N(b̂) := N− 1
2
∑N−1

n=0 gz(T
nb̂). It is a well known general

fact that, for fixed z, the Y z
N converge in distribution to some N (0, σ 2

2z) (see, e.g. [19,22,39])—
except for the strict positivity of σ 2

2z. To prove this we use [39, lemma 6]: suppose for
a contradiction that σ 2

2z = 0. Then there is a function ψ : I → R of bounded varia-
tion such that gz(x) = ψ(T x) − ψ(x) for Lebesgue-a.e. x. Let M := 2 sup |ψ |. Then∣∣∑n

k=0 gz(T
kx)

∣∣ � M for all n and a.a. x. Looking at suitable periodic orbits it is easy to see
that there are n = n0 and x = x0 for which this sum is larger than M + 2. But then, as both
T and also gz are at least one-sided continuous, there is a small interval close to x0 on which
the same sum is larger than M + 1, which contradicts the above bound that holds for all n and
Lebesgue-a.a. x.

Step 2: We need a number of preparations:

(i) Let J := (− 1
2 , − 1

2 + (1/2(a − 1))) be the interval through which b̂ ranges when b is
chosen randomly from (0, 1

2 ).

(ii) Let (rj )j>0 be any sequence of natural numbers tending to infinity and such that rj � j
1
4

for all j . For each j denote by Cj ⊂ I = [− 1
2 , 1

2 ] a set of points that subdivides I into arj

intervals of the same length which are mapped onto I bijectively by T rj . (If a is odd take
Cj := T −rj {− 1

2 }, if a is even take Cj := T −rj {0}.) For z ∈ Cj denote by I
j
z = [z, z′) the

subinterval with left endpoint z.

(iii) |Y z
N − Y z

N(T rN x)| = O(rNN− 1
2 ) = o(1) as N → ∞, uniformly in x and z, because the

two sums involved differ only by 2rN terms.
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(iv) Let f (z) = (z + 1/2)(a − 1) so that f (b̂) = b and f̂ (x) = z. Then

m{x ∈ IN
z : |Y f (x)

N (T rN x) − Y
f (z)

N (T rN x)| > r−1
N + 2a−rN /(a − 1)}

� m{x ∈ IN
z : |Y f (z′)

N (T rN x) − Y
f (z)

N (T rN x)| > r−1
N }

= a−rN m{x ∈ I : |Y f (z′)
N (x) − Y

f (z)

N (x)| > r−1
N }

� a−rN r2
N

∫
I

(Y
f (z′)
N − Y

f (z)

N )2 dm

= a−rN r2
NN−1

N−1∑
k=0

N−1∑
l=0

∫
I

(1IN
z

◦ T k − m(IN
z ))(1IN

z
◦ T l − m(IN

z )) dm

� a−rN r2
NN−1N

∞∑
k=0

∣∣∣∣∫
I

(1IN
z

◦ T k − m(IN
z ))(1IN

z
− m(IN

z ))

∣∣∣∣ dm

where, in view of (29), the integral can be estimated by 4C ′
2γ

km(IN
z ). Hence there is a

constant, not depending on z, such that, for large N ,

m{x ∈ IN
z : |Y f (x)

N (T rN x) − Y
f (z)

N (T rN x)| > 2r−1
N } � const a−rN r2

Nm(IN
z ).

In order to prove (45) we now proceed as follows: it suffices to show that for each bounded
Lipschitz function φ : R → R holds

E[φ(YN)] =
∫ 1

0

(∫
I

φ(y) dN (0, σ 2
z )(y)

)
dz + o(1) as N → ∞ . (47)

To simplify the notation we write
∫
J

φ(YN) dm instead of
∫
J

φ(YN(b)) db etc

E[φ(YN)] = 1

m(J )

∫
J

φ(Y
f (x)

N (T rN x)) dx + o(1) by (iii) for z = f (x)

=
∑
z∈CN

1

m(J )

∫
IN
z

⋂
J

φ(Y
f (z)

N (T rN x)) dx + o(1) by (iv)

=
∑

z∈CN ,IN
z ⊆J

1

m(J )
a−rN

∫
I

φ(Y
f (z)

N ) dm + o(1)

=
∑

z∈CN ,IN
z ⊆J

m(IN
z )

m(J )

∫
I

φ dN (0, σ 2
2f (z)) + o(1) by step 1

= 1

m(J )

∫
J

(∫
I

φ dN (0, σ 2
2f (z))

)
dz + o(1)

=
∫ 1

0

(∫
I

φ dN (0, σ 2
z )

)
dz + o(1) as N → ∞

where one has to choose a sufficiently slowly growing sequence (rN) in the fourth equality,
and where the continuity of σ 2

2z as a function of z is used in the fifth equality which is a simple
consequence of our proposition 1. �

Remark 7. In [15,28,33] it has been shown that for b = 0 the dynamics of ψλ can be expressed
in terms of generalized Takagi (or de Rham) functions. Analogous conclusions can be shown
to hold for the case of b �= 0. The above results are thus intimately related to continuity
properties of this class of functions under parameter variation. These functions are defined
by simple functional recursion relations and have been introduced in the literature completely
independently from the diffusion problem considered here.
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5. Numerical results

In this section we numerically quantify propositions 2 and 3 for the piecewise linear maps (34).
By this we mean that we try to recover the functional forms of the upper bounds derived in
proposition 2 in numerical box counting for D and J by furthermore determining the values
of relevant parameters. Similarly, we try to recover the functional forms for the local modulus
of continuity of D derived in proposition 3. We will see that our numerics yields additional
information that complements the previous rigorous mathematical analysis.

For our computations we use the series representations of drift J and diffusion coefficient
D from equations (73) and (74) in [16] which, for |a| > 1, converge quickly under numerical
summation7. In [31] data sets generated from these expressions were analysed by standard
numerical box counting under the assumption that

N(ε) ∼ ε−B (48)

for small enough ε [43]. Here N is the number of square boxes of side length ε needed to cover
the graph of J or D, and B = dimB(graph) defines the box (counting) dimension. Analysing
D(a) = D(a, 0) on 2 � a � 8 yielded a box dimension of B � 1.039 [31]. Computing
furthermore the local box dimension B(a) of D(a) on a regular grid of small subintervals �a

centred around a produced locally different values forming an oscillatory structure in B(a),
which became more pronounced the smaller �a, see figure 1 in [31].

5.1. Box counting for the diffusion coefficient

Motivated by proposition 2 and by [35], the numerical results of [31] are now reevaluated. We
start with the diffusion coefficient D(a). Corollary 2 states that B(a) = 1 for all intervals �a,
which is at variance with the results of [31] mentioned before. However, in contrast to (48),
proposition 2 is compatible with the existence of multiplicative logarithmic terms by giving
upper bounds for their exponents. Section 4.2 shows that these terms do indeed exist.

In detail, corollary 2 states an upper bound for the box counting function N(ε) of D(a) of

N(ε) � K4ε
−1(1 − ln ε)2 . (49)

This motivates us to plot the product Nε as a function of − ln ε: for small enough ε and in
double-logarithmic representation one should then see a straight line with the slope yielding
the exponent of the logarithmic term. Figure 1 numerically demonstrates the existence of this
term for D(a) on 2 � a � 8: that is, the exponent is clearly non-zero, however, in the numerics
− ln ε is not large enough to overcome the additive constant in (49) for producing a straight
line.

In figure 1 three data sets have been plotted consisting of different numbers of data points
for D(a). The bending off of the graphs at larger − ln ε reflects that box counting starts to
resolve the single points of the underlying data sets: from the figure one can estimate that
for 106 points of D(a) deviations set in around − ln εcut � 7 or εcut � 10−3. Compared
with a separation of δa = 6 × 10−6 between any two data points along the a-axis, this yields
a difference of about three orders of magnitude. The same order of magnitude argument
holds if one compares εcut obtained approximately for 108 data points from figure 1 with the
corresponding separation of δa = 6 × 10−8 between any two data points. This leads to the
prediction that for the set of 109 data points − ln εcut � 14 in figure 1.

Inspired by (49), we now fit the box counting results with the function

N(ε) = K5ε
−1(1 + K6 ln ε)α (50)

7 Another set of formulae was reported in [10] but only for D(a).
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Figure 1. N is the number of boxes of length ε needed to cover the graph of D(a) (a) generated
from 106, 108 and 109 data points. Motivated by (49) we plot the product Nε as a function of − ln ε

double-logarithmically. The dashed line represents a three-parameter fit for the largest data set over
0.5 � − ln ε � 12 with the functional form of (50). The inset shows results for the exponent of the
logarithmic correction α obtained from fits where we vary the upper bound εmax of the fit interval.

instead of (48). If this fit function reproduces the numerical N(ε) reasonably well, proposition 2
predicts that 0 � α � 2. However, we emphasize that this proposition only gives us a strict
upper bound—it does not actually tell us the ‘true’ functional form of the whole graph, nor
does it exclude α = 0. We have indeed checked that fit functions others than (50), which also
obey (49), work similarly well. In order to be close to proposition 2 we stick to the fit function
(50) in the following.

The dashed line in figure 1 shows a fit of the box counting results for 109 data points
of D(a) with this functional form8. The inset of figure 1 depicts results for the exponent α

computed from different fit intervals [0.5, − ln εmax] for the same data set of 109 points. It
indicates convergence towards α � 1.2 (− ln εmax → 12). The decrease for − ln εmax > 12
is well in agreement with the cutoff predicted above, which is due to the limited data set.
Note that the cutoff sets in much later than the beginning of the plateau. Hence we conclude
that for a data set of 109 points for D(a), 2 � a � 8, and by assuming the fit function
(50), the numerical value for the exponent of the logarithmic term is α � 1.2, which is in
agreement with proposition 2.9 However, we emphasize that fits by (50) do not tell the full
story: the numerically exact data in figure 1 show the existence of a non-trivial fine structure
pointing towards more complicated functional forms for the ‘true’ N(ε), which should reflect
the intricate structure of the underlying D(a), see figure 1 in [31]. These irregularities are not
numerical errors.

We now look at local variations of the exponent α, for which we do box counting of D(a)

on small intervals around integer values of a. Figure 2(a) reveals that there exist two families of
curves, one for even a which is at the bottom of this figure, whereas the one for odd a is on top.

8 For all fits the nonlinear least-squares Marquardt–Levenberg algorithm as implemented in gnuplot 4.0 has been
used.
9 We have checked that these fit results do not significantly depend on the choice of the initial seeds for our three fit
parameters and that the asymptotic standard error for them is less than 10% for − ln εmax > 10. However, in our view
quantitative error estimates are not reliable in this case, because we may not assume that the residua are normally
distributed random variables.
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Figure 2. Local variation of the product Nε needed to cover D(a) around integer values of a: (a)
shows results for parameter intervals of size �a = 0.06 centred around different a, based on 108

data points. (b) Displays results for subintervals �a all centred around a = 4, whereas in (c) all
subintervals converge towards a = 5. In (b) and (c) the graphs have been scaled by multiplying ε

with the order of magnitude difference between the different values for �a.

Additionally, graphs for larger slopes are always on top in both groups creating an oscillatory
structure. We first consider the special case a = 2.03, where according to figure 2(a) α � 0.
Note that D(2) = 0, correspondingly the parameter region just above a = 2 marks the onset of
diffusion. As described in [28, 29, 33], for a → 2 there is asymptotic convergence of D(a) to
the simple random walk solution D(a) = (a − 2)/(2a). This physical argument explains why
α → 0 (a → 2). There is a trend that larger even integer slopes in (a) give 0 � α � 1 whereas
odd a give 1 < α � 2. Unfortunately, the fits producing these results are very unstable, hence
even these rough estimates should be taken with care. In any case, the indicated order of
magnitude of α appears to be in agreement with proposition 2. Our fits furthermore suggest
that not only α is a function of a but also that the other two parameters in (50) are locally
varying. This agrees with conclusions drawn in [31].

Figures 2(b) and (c) provide a more detailed local analysis by looking at successively
smaller subintervals around two specific slopes. While (c) suggests α → 0 (�a → 0)

around a = 5, (b) with a = 4 yields approximately α → 1 (�a → 0).10 Note that
the graphs in (b) and (c) have been scaled as described in the figure. Interestingly, this
transformation leads to a collapse onto a master curve in (b), whereas it does not work that
way in (c). Similar observations have been reported in [35]. Together with proposition 3,
figure 2 thus demonstrates remarkable continuity properties of D(a, b) around integer slopes,
which strongly depend on the direction in parameter space. These differences between graphs
for odd and even a are consistent with the oscillations in the local box counting dimension
B(a) reported in figure 1 of [31]: they suggest that the structure of B(a) reflects local variations
of the parameters in (50) determining the logarithmic corrections, erroneously being fit in [31]
with (48) instead of taking the existence of logarithmic terms into account.

Such local variations of α pose a serious problem to any numerical box counting because
of monotonicity of these exponents: if E is a subset of F then α(E) � α(F ). This implies

10 Again, the fit results are highly unstable, so the latter value should be taken with care.
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Figure 3. Main graph: product Nε as a function of − ln ε for the drift J (a, b) over the interval
2 � a � 8 at b = 0.01 (‘+’ symbols, based on 109 data points) and at b = 0.49 (‘x’ symbols,
based on 108 data points). Included are two fits over the intervals 8 � − ln ε � 13 (b = 0.01)
and 4 � − ln ε � 11.5 (b = 0.49). Inset: local variation of the product Nε as a function of − ln ε

for parameter intervals of size �a = 0.06, mostly centred around integer values of a and based on
108 data points. The graph for a = 7.09 demonstrates that there exist strong local fluctuations of
the box counting functions under variation of the slope a of the map.

that α(a) should eventually converge to the largest local exponent. However, if this exponent
is exhibited on a tiny subinterval it could be extremely tedious to detect it numerically. This
argument also applies to our previous result of α � 1.2 for D(a) on 2 � a � 8, which
strictly speaking only holds for the given data set of 109 points. We cannot exclude that some
tiny interval of D(a) eventually yields a larger α. In other words, the goal of our numerical
analysis cannot be to compute unambiguous values for any exponents but rather to demonstrate
qualitative and quantitative order of magnitude agreement with proposition 2, and to check for
local variations of such exponents.

5.2. Box counting for the drift

We now numerically investigate the parameter dependence of the drift, or current, J (a, b). As
for the diffusion coefficient, both the drift and the associated local box dimension B(a) defined
by (48) display highly oscillatory structures for fixed b, see figure 4 in [31]. As before, we
now reevaluate these findings on the basis of proposition 2 by taking logarithmic terms into
account. Figure 3 shows numerically that there are non-zero exponents α for the logarithmic
corrections of J (a, b) as allowed by proposition 2. Note particularly the pronounced, different
fine structures of both curves displayed in the main part, which are much stronger than for
D(a) in figure 1. Due to these oscillations, in case of J (a, b) it is numerically very difficult
to extract reliable values for the exponents α by using (50). The two fits included in the main
graph yield an order of magnitude of α � 0.1, which matches to proposition 2.

The inset of figure 3 is analogous to figure 2(a) in that it shows box counting results
for the current J (a, b) , b = 0.01, mostly at integer values of the slope a. Note that
J (2, 0.01) � 0 [16], which marks the onset of the drift. As we have argued for the diffusion
coefficient, at a = 2.03 we are thus in a random walk regime for which one may expect α � 0,
as shown in the figure. However, α(a) �= 0 in all the other cases of the inset suggesting again
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a local variability of α for J (a, b), at least around integer values of a. As in figure 2(a) there
exist two family of curves, one for even a at the bottom and one for odd a on top of the figure.
There is also again an additional ordering, however, here it is such that curves for larger slopes
are always at the bottom in both families of graphs, except at a = 2.03. The additional graph
for a = 7.09 exemplifies the strong local variability of α around a = 7 which, as well as the
difference between odd and even slopes for box counting results of the drift, agrees with the
oscillations in the local box dimension B(a) shown in figure 4 of [31].

Fits for all the inset curves yield a trend towards small exponents around even and
somewhat larger values around odd slopes with an order of magnitude of 0 � α � 1, which
appears to be consistent with proposition 2. However, we emphasize again that these results
give only a rough indication, for the numerical reasons mentioned above. Exact results are
only available for special cases: as we have discussed in section 4.2, J (a, b) = b for constant
a ∈ N under variation of b, where we thus have α = 0, linear response and a caricature of
Ohm’s law. For general a one finds that J (a, b)/(b| log |b||) is bounded but has no limit for
b → 0 [16] pointing towards logarithmic corrections. We have also qualitatively checked
graphs of D(a, b) and J (a, b) for other parameter values, that is, by choosing different values
for a and b fixed in the parameter plane and studying the resulting functions of the remaining
free control parameters. Qualitatively, we obtain results that are analogous to the ones discussed
above.

5.3. Continuity properties of the diffusion coefficient at integer slopes

The previous two subsections demonstrated a peculiar behaviour of local box counting results
for drift and diffusion coefficient around integer slopes a at fixed values of the bias b.
Proposition 3, in turn, gave exact analytical expressions for the difference Da(b

′) − Da(b)

of the diffusion coefficient as a function of �b = b′ − b at integer a in the limit of small
�b. This suggests to numerically study the continuity properties of Da(b) at fixed integer
values of a in more detail. In order to access suitably small values of the parameter �b, we
have employed the Fortran90 library mpfun90 [1] for arbitrary-precision arithmetic. Using
this library we have calculated the difference quotient (Da(b

′) − Da(b))/(b′ − b) of D with
fixed b at values of �b down to 10−200. Figure 4(a) shows a subset of our results for a = 3 and
a = 4 at fixed b ∈ {−0.5, 0}. There is excellent coarse scale agreement between the numerical
results and the analytical observations (1) and (2) of proposition 3 predicting straight lines.
This agreement is as good to the limits of attainable precision, and has been checked for other
integer values than those shown in figure 4.

Figure 4(b) depicts the diffusion coefficient Da(b) at a = 4, which corresponds to the two
curves in (a) at this a value. There is reflection symmetry for Da(b) with respect to b = −0.5
and b = 0. One can see that at b = −0.5, where the difference quotient in (a) displays a
logarithmic correction, Da(b) in (b) exhibits a global maximum as a sharp cusp. The global
minimum at b = 0, on the other hand, is rounded-off, see the blowup in (b), reflecting the
difference quotient curve in (a) with zero logarithmic term. Observation (3) of proposition 3
generalizes observations (1) and (2) by stating that logarithmic corrections are typical for
parameter values of b yielding Markov partitions. In [16, 27, 28, 30] it was shown (for b = 0)
that Markov partition parameter values identify local maxima and minima of the parameter-
dependent diffusion coefficient by relating them to ballistic and localized orbits of the critical
points of the lifted map, respectively. In other words, in plots of the parameter-dependent
diffusion coefficient Da(b) the existence or not of local logarithmic corrections seems to be
visible in the form of characteristic shapes for the extrema as discussed above; see also [35]
for related results. This observation could be interesting for understanding irregularities in
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Figure 4. (a) Difference quotient (Da(b
′) − D(b))/(b′ − b) as a function of ln(b′ − b) at integer

values of a ∈ {3, 4} and with fixed b ∈ {−0.5, 0}. Each curve is based on 105 data points. Included
are best fit curves (dashed lines, which are almost indistinguishable from the corresponding data
points) whose fitted slopes (from bottom to top: 3/(2 ln 4), 1/ ln 3 and 1/(2 ln 3)) agree with the
analytic predictions of section 4.2 to four significant figures. The case a = 4, b = 0 clearly has
slope zero, as predicted. The barely visible fine scale oscillations of each curve reflect higher order
correlations in these quantities. (b) Diffusion coefficient Da(b) at a = 4 for −0.5 � b � 0 and a
magnification of the region around b = 0. For each curve 2000 data points have been computed
from exact analytical solutions for Da(b) [16]. These curves form the basis for the two graphs at
a = 4 displayed in (a).

the simulation results of transport coefficients in more complicated systems, where rigorous
results are not available [33]. In figure 4(a) we deliberately restricted the range of ln(b′ − b)

so that, upon close scrutiny, a fine structure of all curves can be seen on top of the straight line
behaviour. Figure 4(b) suggests that this oscillatory fine structure, which yields higher order
corrections to the analytical results of section 4.2, is induced by the fine structure of Da(b).

Finally, we numerically quantify observation (4) in proposition 2. Its main statement is
that at fixed �b and with b values taken uniformly from the interval [0, 1/2), the quantity
(D(b′) − D(b))/�b

√− ln �b should be distributed like a mixture of centred Gaussians, that
distribution being independent of the particular value of �b. In fact what is typically seen at
integer slopes is a distribution rather close to a pure Gaussian. We have tested this using the
technique of quantile–quantile plotting (qqplots) as well the standard Shapiro–Wilk normality
test. Both tools were implemented in the statistical package R [44]. Figure 5 presents results
obtained for three sets of data with the slope fixed at a = 4. For larger a, the results become
closer to a fixed Gaussian, as the function g(x) in (43) becomes more dominated by the x

term which has no b dependence. Here, however, deviations from Gaussianity can be seen,
at least for sufficiently small �b. In the three parts of figure 5, the straight line with slope
σ and zero offset µ shows the theoretical result for a Gaussian distribution with standard
deviation σ and mean µ, with those parameters here taken as those of our data set. All our
distributions show close agreement with this curve. However, the Shapiro–Wilk normality test
is more discerning: in (a) �b = 10−10 and we obtain a p-value of only 0.008, well below the
significance level for rejecting the null hypothesis of normality. In (b) �b = 10−50 and we get
a p-value of 0.25, demonstrating that this distribution is indeed very close to a pure Gaussian.
It is, however, likely that the deviations from Gaussianity in (a) are rather due to deterministic
effects arising from the relatively large value of �b chosen and not from the nature of the true
limiting distribution being a mixture of Gaussians predicted by observation (4) in proposition 3.
It seems that the dominant behaviour when the distribution seems to have converged is not
detectably different from a pure Gaussian. We note that despite this, the two distributions
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Figure 5. (a) Normal quantile–quantile plot at a = 4 for the distribution of D(b′) − D(b), scaled
by �b

√− ln �b, with chosen �b = b′ − b = 10−10 held constant and b picked from a uniform
distribution on [0, 1/2). The straight line with slope σ and zero offset µ would be the result for a
Gaussian distribution with standard deviation σ and mean µ. Here the numerically obtained values
of these parameters were used for the fit. (b) As (a) but with �b = 10−50. (c) As (b) but with the
range of b restricted to [0, 0.005).

in (a) and (b) are similar and both have mean close to zero, demonstrating that we have no
disagreement with observation (4), merely that its details are too sensitive to check numerically.

It is, however, possible to numerically go beyond proposition 3 (4). For example one can
also study the nature of the distribution obtained when b is taken from a subinterval of [0, 1/2),

which, as can be seen in figure 5(c), leads in the case of integer a to distributions with rather
more fine structure than the nice curves seen in figures 5(a) and (b). This is clear evidence of the
deterministic nature of the underlying system in the form of strong correlations at fine scales. In
this case the Shapiro–Wilk p-value is about 0.001. Furthermore, away from integer values of a

quite different behaviour is seen thus clarifying that proposition 3 (4) is rather to be considered
atypical. Here the distribution of D—differences is centred around zero still, but with a more
sharply peaked and heavily tailed distribution than a Gaussian. These deviations persist even
very close to the integer cases (e.g. at a = 3 + 10−50), though Gaussian behaviour does appear
to be approached slowly in the limit of integer values. These numerical methods can also be
used to investigate variation of the continuity of the transport coefficients as b is held fixed
and a varies, as considered in [35] and already looked at using box counting in figure 2. Here
the maximal exponent of logarithmic correction, i.e. D(a′) − D(a) ∼ |a′ − a|(ln |a′ − a|)2,

can be seen for odd a, and though this might appear to be in contradiction to the third part of
figure 2 for a = 5, in fact arbitrarily close to a = 5 the exponent tends locally to zero. Thus
the box counting only sees the ‘typical’ local behaviour and the current method is more suited
for picking out atypical behaviour at specific points.

6. Conclusions and outlook

(1) We proved rigorously that the diffusion coefficient of deterministic random walks
generated by piecewise expanding interval maps depends continuously on the maps. More
precisely, for ‘natural’ parametrizations of the maps by some parameter λ, the diffusion
coefficient as a function of the parameters has a modulus of continuity not worse than
|δλ|(log |δλ|)2. The detailed analysis of section 4.2 shows that this modulus of continuity
cannot be expected to be better than |δλ · log |δλ|| even if all maps have a common smooth
invariant density and the drift depends smoothly on a parameter. Comparing this to a
detailed study of the parameter dependence of the averages of observables in [4] one
might ask whether it is a more common effect in uniformly hyperbolic systems that the
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modulus of continuity of the diffusion coefficient is one logarithmic order worse than that
of the drift11.
These rigorous results are intimately related to the question of under which mathematical
conditions in simple models physical observables such as transport coefficients may
behave regularly or irregularly under parameter variation. Such information is important,
e.g. for a detailed understanding of the origin of linear response in chaotic dynamical
systems [4, 20, 21, 33].

(2) The logarithmic corrections obtained by our mathematical theory were quantified
numerically in the box counting data of both the parameter-dependent drift and diffusion
coefficients. This numerical analysis revealed the existence of strong local variations of the
parameters governing the logarithmic Lipschitz continuity, partially we computed values
for them. It furthermore showed that numerically there exist non-trivial fine structures on
top of the coarse functional forms derived in our mathematical propositions.
These new numerical results correct and amend the previous box counting analysis of
Klages and Klauß [31] along the lines conjectured by Koza [35]. Our model thus generates
very unusual examples of fractals yielding a box counting dimension of one, where the
fractality can be understood in terms of multiplicative logarithmic terms that amend the
usual box counting power law. We conclude that the (local) non-integer variations of
the standard box counting dimension reported in [31] actually reflect non-trivial local
variations of the parameters of these logarithmic corrections.
We have furthermore numerically quantified analytical results for the difference quotient
of the diffusion coefficient as a function of the bias at integer slopes. Our computations
suggest that the existence or not and the strength of local logarithmic corrections is directly
visible in plots of the parameter-dependent diffusion coefficient in form of characteristic
shapes of the local extrema.

(3) In [34] a nonlinear generalization of our present model has been studied, which exhibits
anomalous diffusion generated by marginal fixed points. Computer simulations led to
conjecture that the anomalous diffusion coefficient of this map is discontinuous on a dense
set of parameter values. It would be interesting to check this conjecture mathematically.
These fractal transport coefficients also seem to provide a nice testing ground for methods
of multifractal analysis [12].
Another important problem is to check whether such logarithmic corrections in transport
coefficients might also be expected to occur in more ‘physical’ systems, which are perhaps
even accessible experimentally. This seems to be strongly related to the question of
whether a family of physical dynamical systems shares the same topological conjugacy
class under parameter variation.
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