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Abstract. The periodic Lorentz gas is a paradigmatic model to examine
how macroscopic transport emerges from microscopic chaos. It consists
of a triangular lattice of circular hard scatterers with a moving point
particle. Recently this system became relevant as a model for electronic
transport in low-dimensional nanosystems such as molecular graphene.
However, to more realistically mimic such dynamics, the hard Lorentz
gas scatterers should be replaced by soft potentials. Here we study
diffusion in a soft Lorentz gas with Fermi potentials under variation
of the total energy of the moving particle. Our goal is to understand
the diffusion coefficient as a function of the energy. In our numerical
simulations we identify three different dynamical regimes: (i) the onset
of diffusion at small energies; (ii) a transition where for the first time a
particle reaches the top of the potential, characterized by the diffusion
coefficient abruptly dropping to zero; and (iii) diffusion at high energies,
where the diffusion coefficient increases according to a power law in the
energy. All these different regimes are understood analytically in terms
of simple random walk approximations.

1 Introduction

The need for smaller and more efficient electronic devices challenges both science
and technology by pushing their boundaries. In order to understand the structure
and dynamics of matter on very small scales, simple mathematical models have been
constructed. An important example concerns the transport of matter by diffusion:
Typically this problem is studied by methods of conventional non-equilibrium statis-
tical mechanics, where a stochastic process is assumed to govern the collisions between
particles. However, starting from microscopic deterministic equations of motion helps
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to understand the origin of diffusion within the framework of dynamical systems the-
ory. Employing this approach it is possible to derive a macroscopic irreversible process
out of reversible microscopic equations of motion [1–3].

By understanding diffusion in simple dynamical systems it is possible to learn
about the transport properties of more complex models. For example, in piecewise
linear one-dimensional chaotic maps it has been found that the diffusion coefficient
is a fractal function of control parameters [4–6]. A relatively simple two-dimensional
map with similarly irregular diffusion coefficients is the standard map [7,8], which
can be derived as a time discrete version of a chaotic nonlinear pendulum equation
[9,10]. Here it has been observed that normal diffusion is interrupted by regions
in parameter space which are related to accelerator modes yielding superdiffusive
transport [11–13]. Normal diffusion means that the mean square displacement of an
ensemble of particles increases linearly with time while superdiffusion refers to a time
dependence that grows faster than linear in time. A nonlinear time dependence of
the mean square displacement is generally called anomalous diffusion [14].

Another class of dynamical systems with highly interesting transport properties
is given by Hamiltonian particle billiards [15]. In the paradigmatic two-dimensional
Lorentz gas a point particle performs specular reflections with circular scatterers dis-
tributed in the plane [16]. Originally constructed to model the motion of electrons
in metals, the Lorentz gas has been widely investigated from both mathematical
and physical points of view [1–3,17,18]. In periodic versions of the Lorenz gas it
has been found that the diffusion coefficient is an irregular function of the density
of scatteres as a parameter [19–21]. This relates to the line of work on irregular
parameter-dependent diffusion coefficients in simple maps referred to above. How-
ever, it is an open question whether the diffusion coefficient in the periodic Lorentz
gas exhibits a fractal structure under variation of control parameters [3,22]. A related
billiard is a one-dimensional corrugated floor, where a particle experiences a vertical
force and collides with arcs positioned horizontally [23]. Here the diffusion coefficient
was numerically computed as a function of the energy, and islands in phase space were
found for particular energies yielding superdiffusion. When no islands were present
diffusion was normal. Altogether the diffusion coefficient displayed an intricate depen-
dence on the energy. A related systems was the bouncing ball billiard, where a particle
diffused on a vibrating corrugated floor by losing energy at collisions. Again diffu-
sion was detected numerically to be highly irregular under variation of the particle’s
energy [24]. All these studies point to the conjecture that under certain conditions
the diffusion coefficient in deterministic dynamical systems may exhibit a non-trivial,
often fractal-like dependence on control parameters [3,5,25].

To model more realistic particle collisions, the hard Lorentz gas scatterers should
be softened. When the walls of a scattering billiard are smoothened by using a soft
repulsive potential, periodic orbits appear near a special class of trajectories in the
original system [26,27]. These new periodic orbits are accompanied by periodic islands
of stability yielding a mixed phase space. As a mixed phase space is decomposable into
disjoint invariant sets, ergodicity is no longer present in such systems [28]. Singular
trajectories inducing islands of stability in the phase space have also been reported for
atom-optic billiards studied both numerically and experimentally [29]. For periodic
billiards with scatterers softened by attractive Coulombic potentials, a mathematical
proof states that for energies above a certain threshold the motion of particles is
diffusive [30]. By exploring the dependence of the diffusion coefficient D on the energy
E in such a system a relation of D(E) ∼ E3/2 for large energies has been derived
[31]. Moreover, a soft inelastic periodic Lorentz gas with time-dependent scatterers
was proposed in reference [32]. Here it was found that the diffusion coefficient grows
like D(E) ∼ E5/2 for large energies. In both cases results from computer simulations
were supported by constructing different simple random walk models from which the
diffusion coefficient could be calculated analytically as a function of the energy.
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Different models were considered to replace the hard walls in Lorentz gases by
soft potentials, most notably by using trigonometric functions yielding an egg-crate
potential [33–37], by a Lennard-Jones potential [38], or simply by a finite potential
height [39]. The first type of systems was designed to model experiments on elec-
trons in lateral superlattices under magnetic fields [35]. Here it was experimentally
observed that the magnetoresistance varies highly irregularly as a function of the
magnetic field strength [40,41]. It was then shown in computer simulations combined
with dynamical systems and stochastic theory that specific peaks in the magnetore-
sistance are due to periodic orbits with associated islands of stability in phase space,
which correspond to electrons circling around specific sets of scatterers [42,43]. A
similar type of system that attracted much attention recently is artificial graphene,
where electrons are confined to a hexagonal configuration of scatterers by using, e.g.,
semiconductor quantum dots [44,45] or molecules on a metallic surface [46,47]. The
latter system is often referred to as molecular graphene, which is topologically equiv-
alent to the triangular Lorentz gas. Hence, the study of periodic billiard systems with
soft potentials has direct relevance not only in the theory of dynamical systems and
diffusion, but also in present nanotechnology.

In this work we study the diffusion coefficient as a function of the energy as a
control parameter in a soft Lorentz gas. While in a conventional hard-wall system
the energy generates only a trivial scaling of the diffusion coefficient, as the velocity
is constant, the scenario is completely different for a soft potential. In a recent work
by the present authors [48] it was shown that a soft Lorentz gas modeled by Fermi
potentials exhibits an intricate interplay between normal and anomalous diffusion as
a function of the density of scatterers. Here we investigate the same system, however,
we are now interested in its diffusive properties under variation of the energy of the
moving particle as a control parameter while we keep the density of scatterers fixed.
We resort to extensive numerical simulations supplemented by analytical random
walk approximations to explain our numerical results.

Our article is organized as follows: In Section 2 we construct a softened version
of the Lorentz gas and describe our numerical methods. In Section 3 we present
our simulation results in the small-energy regime, where we develop ad hoc ran-
dom walk approximations for the diffusion coefficient based on a simple phase space
argument [49] as well as on a collision length approach. In Section 4 we explore
an intermediate regime where the energy is close to the maximum of a scatterers
and derive another random walk model. In Section 5 we characterize the asymptotic
form of the diffusion coefficient for high energies. We also discuss the complicated
structure of the phase space and the appearance of islands of stability by varying
the energy parameter. Finally, in Section 6 we conclude our work and present open
questions.

2 Model and numerical methods

2.1 Soft Lorentz gas

For our study we use the soft model introduced in reference [48], which has the
advantage that it reproduces the conventional triangular Lorentz gas with hard cir-
cular scatterers in a specific limit of the softness parameter. For this model each
circular scatterer is defined by a Fermi potential of the form

VF(r) =
1

1 + exp
( |r|−ro

σ

) , (1)
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Fig. 1. Left panel: profile of the potential of our soft Lorentz gas defined in equations (1)
and (2). A(E) is the area inside a unit cell enclosed by equipotential lines with radius r(E),
where E is the total energy of a particle. Right panel: potential V = V1 +V2 along the x-axis
(bottom boundary of the parallellogram unit cell in the left panel). The gap size W (E) and
the radius r1(E) are defined by the energy E, cf. equations (3) and (4). E∗ holds for the
energy threshold as explained in the text.

where σ and ro are the softness and the radius of a scatterer, respectively. The
complete potential field consisting of an infinite triangular array of scatterers is given
by

V (r) =
∑
n

VF(r− rn), (2)

where rn is the position vector to the n-th point of the lattice in the plane. The
maxima and minima of the potential are located at the vertices and centers of the
triangles, respectively, whereas the edges of the triangles have saddle points; see
Figure 1.

If the particle has total energy E > E∗ it can escape from the region enclosed by
three scatterers through the available space between r(E) and r(E) +W (E), where
the gap W (E) is given by

W (E) = L− 2r(E). (3)

Here L is the fixed distance between the centres of two adjacent scatterers. This
scenario is visualized in Figure 1.

The exact radius r should be computed by considering the contribution of all
potentials located at each point of the lattice. If we use the contribution of two
adjacent potentials as shown in Figure 1, it would be necessary to solve for r(x)
and r(x− L) when V1(x) + V2(x) = E. Alternatively, considering only V1(x) we can
obtain an analytical expression for the radius. By solving V1(x) = E for r(x) we get
the radius in terms of the energy. For simplicity we will label this new radius with
r1, and it is given by

r1(E) = σ ln(1/E − 1) + ro. (4)

Note that due to the overlapping potentials the radius r1 is an underestimation
of the real radius r in equation (3), since r1 has been computed considering only
one potential. Hence, the real gap size W (E) given by equation (3) with r1 yields
an overestimation. This effect is enhanced when E → E∗, as the difference r − r1
increases.
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Finally, we connect W (E) with the separation of the scatterers in the hard Lorentz
gas w. These two quantities are related by the lattice length

L = 2ro + w = 2r(E) +W (E),

where r0 is the radius of a hard Lorentz gas scatterer and w is the minimal distance, or
gap size, between two adjacent scatterers. Therefore we can use either the parameter
L or w to define the density of the scatterers. In our random walk model introduced
in Section 3 we use the radius of equation (4), bearing in mind that there is a greater
error the closer E is to the threshold E∗. In this work we set the softness parameter
in equation (1) to σ = 0.01 and the lattice distance to L = 2ro + w with ro = 1
and w = 0.05. These values enable normal diffusion in a relatively large interval of
energies as discussed in detail in Section 5.

2.2 Computation of the diffusion coefficient

The diffusion coefficient is defined by [1–3]

D = lim
t→∞

〈(r(t)− r(0))2〉
4t

, (5)

where r(t) is the position of a particle at time t and 〈(r(t)− r(0))2〉 yields the mean
square displacement (MSD) with the ensemble average of particles denoted by the
angular brackets. If the limit in equation (5) exists or, equivalently, the growth of the
MSD is linear in time, we have normal diffusion.

According to equation (5) one can obtain D from calculating the MSD. For our
model we first computed the MSD from computer simulations, which were carried
out with the bill2d software package [50] at different values of the energy. The force
acting on the particles is given by the gradient of equation (2). Here we sum only
over lattice points of scatterers that are in a rhomboid unit cell, see Figure 1. An
ensemble of particles is uniformly distributed in the coordinate space associated to
such a unit cell. Trivially, only energetically valid combinations of (x, y, vx, vy) are
allowed. In an ergodic dynamical system the selection of initial conditions is not
important, as in the long run all regions in phase space will be sampled for any given
initial condition [1]. However, since in Hamiltonian dynamical systems with a mixed
phase space ergodicity is broken, cf. our discussion in Section 1, we need to make sure
that our ensemble of initial points is large enough such that it adequately samples
different disjoint regions in phase space to reflect the full dynamics [28].

For reliably extracting the MSD from simulations we use the following input
parameters: For energies E < 2 the computing time is t = 5000 and the ensemble size
of the particles N = 20 000. For energies E > 2 we set the ensemble size to N = 40 000
and the iteration time to t = 40 000. The time step is ∆t10−3. By increasing the
ensemble size, using a smaller time step, etc., we have tested that these parameter
values yield good convergence of the MSD to an asymptotic limit where it grows
linearly in time t in parameter regions (w, σ) where islands in phase space do not seem
to exist [52]. In Figure 2 we present results for the diffusion coefficient obtained from
simulations. We can distinguish two different regimes for small and large energies, as
well as a distinctive transition point around E = Vmax = 1. In the following we will
analyse these different regimes in full detail. We also note that there are parameter
values where the diffusion coefficient was not computable from simulations, that is,
the MSD did not reach a linear regime within the computing time. These parameter
regions where the MSD grows faster than linear are marked as red dots. We elaborate
on the physical mechanism generating this specific dynamics in Section 5.
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Fig. 2. Diffusion coefficientD as a function of energy E in a double-logarithmic plot obtained
from simulations according to equation (5); see the text for the simulation parameters. Red
circles denote energies where the model exhibits superdiffusion, i.e., D(E) does not exist.

3 Diffusion coefficient for small energies

In previous literature random walks have been used as simple models to reproduce
analytically computer simulations results for the diffusion coefficient in the hard
Lorentz gas as a function of the density of scatterers [19,21,49]. This comparison clar-
ifies whether the deterministic diffusive dynamics generated in the chaotic Lorentz
gas can be understood in terms of a simple stochastic process, which elucidates the
origin and the type of the diffusive dynamics. On this basis similarities and differ-
ences between deterministic and stochastic diffusive processes can be explored [1–3].
In this section we test to which extent the diffusion coefficient in our soft Lorentz gas
can be explained by simple random walks for small energies, i.e., close to the onset
of diffusion. For this purpose we construct a random walk model for diffusion as a
function of the energy and compare our analytical results to computer simulations.

3.1 Analytical random walk approximations

For small energies E < Vmax = 1 we first approximate the diffusion coefficient as
a function of the total energy by means of a phase space argument [19,21,49],
and secondly employing a collisionless flight or Boltzmann approach [19]; see also
reference [48]. For random walks on two-dimensional lattices the diffusion coefficient
is obtained from

D =
l2

4τ
, (6)

where l is the distance travelled in one step during the time interval τ of the random
walk.

In order to construct a random walk model by using this equation, the starting
point is to identify what we call a “trap” in our model. In the soft Lorentz gas this is
the region that is available for a particle in the position space inside a triangular unit
cell, corresponding to what was called a trap in the hard Lorentz gas [19,21,49]. As
is shown in the left panel of Figure 1 there are three exits from a trap. The width of
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an exit, respectively the minimal gap size between two nearby scatterers, is defined
in the right panel of Figure 1.

3.1.1 Machta-Zwanzig random walk and phase space argument

According to a random walk approximation put forward by Machta and Zwanzig [49],
a particle travels from one trap to another by a random walk yielding the diffusion
coefficient of equation (6). For a soft Lorentz gas the escape time τ expressed in terms
of the energy E leads to

DMZ(E) =
l2

4τ(E)
, (7)

where the distance l between two adjacent traps is constant, as we are not including a
variation of the lattice. Hence, l can be calculated by geometrical means. The average
escape time from a trap τ−1 is given by the quotient of the total phase space Ω and
the fraction of phase space ω that escapes from the gap during time τ ,

τ−1 =
ω

Ω
. (8)

Here the velocity space is 2πv(E), where v(E) is to be determined. The total volume
of the phase space is thus

Ω = Atrap2πv(E), (9)

where Atrap is the area available in position space which is also a function of the
energy, Atrap = A(W (E)). This area depicted in Figure 1 depends on the radius
r1(E) as expressed by equation (4).

We can calculate the available area for a particle in the position space by geo-
metrical means in analogy to the conventional (hard-wall) Lorentz gas. The area is
determined by the equipotential lines with V1(r) = E and the three exits of the trap.
We take the area of the unit cell and subtract three times the area formed by semicir-
cles with radius r1(E) as in equation (4). We find that A(W (E)), simplified to A(E),
is given by the expression

A(E) =
√

3(2ro + w/2)2 − π

2
(σ ln(1/E − 1) + ro)

2.

Strictly speaking A(E) has a more complicated dependence on E due to the overlap-
ping of the potentials. However, here we use A(E) as a first approximation. Let us
suppose that the velocity v of a particle is constant at the moment of exiting a trap.
Then the particle flux is given by∫

|n||v| cos θvdθ = 2v2, (10)

where θ is the angle between the velocity vector at the moment of exiting the unit
cell and the normal to the boundary defining the gap; the speed |v| = v needs to be
determined. There are three exits of width W (E) leading to

ω = 3W (E)2v2(E). (11)
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Substituting these quantities into equation (8) and proceeding with equation (7)
yields our final result

DMZ(E) =
3l2W (E)

4πA(W (E))
v(E). (12)

3.1.2 Random walk approximation based on collisionless flights

We now construct a second random walk approximation, which is based on
collisionless flights. The starting point is the formula

DB =
l2c

4τc
(13)

for the diffusion coefficient, where τc stands for the mean free time between collisions
and lc is the corresponding mean free path between collisions. Note that in systems
composed of smooth potentials strictly speaking collisions are not defined, as at any
instant of time there is a force acting on the particle. For the following approximate
analytical calculations, we thus define a collision for a particle with total energy E
as the moment where it hits an equipotential line of energy E. We remark, however,
that for computational purposes (not carried out here) one should define a collision
differently, e.g., by a particle having a zero velocity component perpendicular to an
equipotential line. In order to calculate τc for the soft Lorentz gas we straightforwardly
adapt the phase space argument of equation (8): instead of considering the length of
the exits to calculate ω we replace them by the length of the walls inside the trap.
For this we use the arc length that originates from the angle π/3 and the radius r(E)
of the equipotential line determined by V (r) = E. There are three arcs leading to
l = πr(E) and

ω = πr(E)2v2(E),

in analogy to equation (11). The total volume of the phase space Ω is the same as in
equation (9). If an average constant velocity v is assumed as before, then

τc =
A(W (E))

r(E)v
. (14)

Considering an average velocity given by vave = lc/τc, substituting lc = τcvave in
equation (13) and using equation (14) leads to our final expression

DB(E) =
A(W (E))

4r(E)
vave(E). (15)

3.2 Estimation of the velocities at the exit of a trap

Generally the velocity of a particle in a soft Lorentz gas is not constant, and it is not
possible to obtain analytical forms for it. Here we work out three approximations for
the velocity when a particle leaves a trap.
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– We assume that a particle has a maximum velocity at the moment of exiting a
trap. Using energy conservation we find

v(E) =
√

2(E − V (r)).

The potential is given by equation (1) at each point of the lattice. Consider
the base of a triangle in the array as the x-axis and let us take into account
the contributions of two adjacent potentials V1 and V2, as shown to the right
of Figure 1. For simplicity we continue our analysis by considering only the
contribution of the potential on the x-axis, denoted as

V (x) = V1(x) + V2(x) =
1

1 + exp((|x| − ro)/σ)
+

1

1 + exp(|x− L| − ro)/σ)
.

(16)

According to the right panel of Figure 1 the minimum of the potential along
the x-axis (y = 0) is located in the middle of the gap, xmin = r(E) +W (E)/2
or xmin = ro + w/2. The energy threshold is then given by

E∗ = V (ro + w/2) = V1(ro + w/2) + V2(ro + w/2) = 2/(1 + exp(w/(2σ))).

Correspondingly, the maximum velocity is

vmax(E) =
√

2(E − V (ro + w/2)). (17)

This is a function of the energy and independent of the gap size.

– Alternatively we can define an average velocity according to an average potential
in the gap. Due to symmetry, we can calculate the integral of the potential
V1(x) + V2(x), again along the x-axis, in the first half of the region and average
over W (E)/2,

Vave(W (E)) =
2

W (E)

∫ ro+w/2

r(E)

(V1(x) + V2(x))dx.

Plugging in the functional forms for V1 and V2 we obtain

Vave(E,W (E)) = 2 +
2σ

W (E)
ln

[
1 + exp(r(E)− r0)/σ)

1 + exp((L− r(E)− ro)/σ)

]
. (18)

This yields an expression for the velocity that is a function of the energy and
the average potential Vave at the exit of the trap,

vave(E,W (E)) =
√

2(E − Vave(W (E)). (19)

– Finally, let us approximate the average velocity in a gap of size W (E) by

v =
2

W (E)

∫ r(E)+W (E)/2

r(E)

√
2(E − V (r))dr, (20)

where V (r) = V1(r) + V2(r). This integral is not solvable analytically, but we
can compute it numerically.
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Fig. 3. Diffusion coefficient D(E) as a function of the energy E in the small energy regime
E < 1. The black (non-smooth) line shows the simulation results obtained from the same
input parameters as in Figure 2. Left panel: Machta-Zwanzig random walk approximation
DMZ(E) given by equation (12). Right panel: Boltzmann random walk approximationDB(E)
given by equation (15). For each case three different approximations of the velocities have
been used as described in the text.

Next, we compare our random walk approximations DMZ(E) and DB(E) with our
numerical results by using these three estimates for the velocities.

3.3 Comparison between random walk approximations and numerical results

The approximations based on DMZ with different velocities are compared to simu-
lation results for the diffusion coefficient with E ≤ 1 in the left panel of Figure 3.
As expected, DMZ with an average velocity does not reproduce the onset of diffusion
where D = 0 while DMZ that uses a maximum velocity recovers the threshold (see the
inset). The approximation DMZ with the maximum velocity is not accurate indicat-
ing that not many particles travel with the maximum velocity but with some average
velocity instead. According to the inset, DMZ(E, vnum) captures the threshold and
especially gives the correct asymptotics when E → E∗.

The approximations of DB with three different velocities are shown in the right
panel of Figure 3. The result obtained by using the average velocity agrees well with
the numerical data at larger energies E → 1. Note that in this system we use a
smoothness of σ = 0.01, which produces a smooth steep potential similar in structure
to the hard Lorentz gas, at least for energies smaller than the maximum of the poten-
tial. Therefore particles are more likely to travel by “free flights” before getting close
to a scatterer. This explains why DB is a better approximation than DMZ. However,
our Boltzmann approximation fails to reproduce D(E) as the energy approaches the
onset of diffusion, since the approximation is based on collisionless flights, and τc
is defined even when E < E∗. DB still manages to capture the threshold with vmax

and vave, but the shapes of the curves do not match (see the inset). We remark that
the impact of varying the smoothness on diffusion in the soft Lorentz gas has been
investigated in references [48,52].

4 Diffusion coefficient for intermediate energies

Next we explore the regime of intermediate energies, i.e., 1 < E < 2. According to
Figure 2 the diffusion constant has a clear kink with changing curvature at E = 1
suggesting a mechanism of diffusion that is different from the small energy regime as
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the energy passes this value. A key feature of this regime is that at energies below
E = 1 particles cannot pass the maxima of the potential but are restricted to a certain
area in configuration space, which we called traps. However, when the total energy
starts to exceed E = 1 a particle can cross all these maxima, which generates a novel
regime of diffusion.

In Figure 4 we first show numerical results of the MSD as a function of time t
around E = 1. In all cases the MSD shows normal diffusion in the long time limit,
although there are some features that distinguish the regimes of E < 1 from E > 1.
In particular, there is a transient in the MSD at energies E ≥ 1.001, which is not
present at E ≤ 1. Note that at E = 1+ ε, ε > 0, the area available in the configuration
space becomes unbounded, that is, particles with energies E > 1 are allowed to travel
everywhere, even in regions very close to the centre of a scatterer. When reaching this
position, however, particles have very small but non-zero kinetic energy. This causes
an unstable trapping mechanism, which suppresses diffusion when E → 1.

We can now construct a random walk approximation for diffusion in this regime
based on traps of slow motion. For this purpose, we need to redefine a trap on a
scatterer and also to compute the average rate at which a particle leaves this trap. It
is not straightforward to exactly determine the area where this trapping occurs, since
this depends on how one defines “slow motion”. The potential is radially symmetric
at each lattice point, hence let us assume that the trapping mechanism takes place
on a circle with some radius rs centered at each scatterer. According to the definition
of our Fermi-type scatterer, σ → 0 corresponds to enlarging the top of the potential.
Let us take a constant value rs = 1 = ro as our first approximation for the radius of
the circle.

We first need to calculate the velocity of a particle in this region. In order to do
so, we assume that inside the circle, or trap, the velocity is constant. The potential
energy is (close to) maximal in this circle, therefore the kinetic energy as well as the

velocity are (close to) minimal. Hence, vmin =
√

2(E − Vmax). The total phase space
of the trap is Ω = A•2πv, where A•(rs) is the area of the circle with radius rs, and
v is some constant minimal velocity. Then the available phase space where particles
leave the trap in time ∆t is

ω = C2v2,

where v is the constant velocity defined above and C is the length of the available
portion of the trap where particles escape, i.e., the length of the circumference with
radius rs. Using equation (8) we obtain the escape time as

τ(E) =
A•(rs)

2rsvmin
. (21)

We can now substitute equation (21) into the random walk approximation for D
equation (7), where l is considered to be the distance between two traps or centres
of scatteres, which in this case is given simply by the geometry of the problem as
l = L = 2ro + w. Finally we get

Ds(E) =
ro(2ro + w)2

2A•(rs)
vmin(E). (22)

In this approximation we see that

Ds(E) = const. · vmin(E) = const.
√

2(E − Vmax).
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Fig. 4. Numerical results for the mean square displacement (MSD) as a function of time t
for different energies E in the transition zone close to E = 1. The input parameters are the
same as in Figure 2.

Choosing a constant potential V = 1 this expression yields

Ds(E) ∼
√
E − 1. (23)

Let us now compare our numerical results to this approximation when E → 1+. In
the left panel of Figure 5 we show the numerically obtained diffusion coefficient in
the transition regime together with a numerical fit to the data of the form

D(E) = a(E − 1)b. (24)

With this fit we find an exponent of b = 0.518 in the energy interval (1.0001, 1.2). This
agrees quite well with the analytical description of equation (22). Our approximation
makes assumptions on the radius rs and does not match exactly to the shape of D(E).
On the other hand, it reveals the asymptotic form

√
E − 1 as E → 1+. This implies

that the motion of particles is dominated by slow motion close to the centres of the
scatterers leading to a full suppression of D(E). To see this more clearly, the right
panel of Figure 5 shows logD(E) as a function of log(E − 1). We observe a regime
where the data matches the red line with slope m = 1/2, equivalent to the square-root
behavior in the linear graph in the left panel. In addition, we find the transition to a
different regime where m = 5/2 (green line), which we discuss in Section 5.

At small values E → 1+ there is a discrepancy between the simulation data and
the randow walk approximation. This is a delicate regime in terms of numerical
accuracy. Moreover, our approximation assumes that v is constant in a circle with
radius rs of area A•. While in the approximation there is an abrupt jump at rs,
the potential that we use for the simulations is a smooth function of the position.
Performing numerical simulations with higher precision in this regime and modelling
Vmax as accurately as possible could reduce the difference between the approximation
and the data enhanced by the logarithmic scale.

The functional form of D(E) reflects a dynamics where particles travel with small
velocity over the top of the scatterers and randomize in the middle of the zones
with minimum potential energy, see the inset of Figure 5. This is supplemented by a
contribution from particles that travel in straight lines until they get scattered. The
last effect is more pronounced as the energy increases, as we discuss in the following.
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Fig. 5. Diffusion coefficient D(E) in the transition regime E → 1+ obtained from simu-
lations (black dotted lines) together with our random walk approximation in this regime
equation (22). Results are given both on linear (left panel) and log–log scales (right panel).
In the right panel the red line has a slope 1/2, the green line has slope 5/2, and red circles
indicate the presence of islands of stability in phase space. The inset in the left panel shows
a typical trajectory in this diffusive regime.

5 Diffusion coefficient for high energies

Our final quest is to characterize the diffusion coefficient D(E) for large energies.
Here we compare our numerical results to theoretical approximations put forward by
Aguer et al. [32] and Nobbe [31]. For this purpose we need to make sure that we deal
with an interval of the energy parameter that exhibits normal diffusion. To illustrate
the problem of identifying such energies, we show a typical trajectory at high energies
in the left panel of Figure 6: we see that the particle travels in the same direction for
long periods of time by then changing its direction, it repeats this and in the long
run generates a random pattern at large scale. This corresponds to the fact that as
the energy parameter is increased the particles move faster and consequently travel
long distances before changing their direction, meaning the randomization process
takes longer than in the small energy regime. But this purely qualitative picture
does not guarantee that normal diffusion exists for this or other energy parameters.
Quantitatively, the MSD should tell whether there is normal diffusion, which is what
we explore next.

In the right panel of Figure 6 we show the MSD for energies 2 ≤ E ≤ 30, which
roughly corresponds to the high energy regime of diffusion shown in Figure 2. The
black line indicates a slope equal to one yielding normal diffusion, where according
to equation (5) the diffusion coefficient D(E) exists. For all these energies the MSD
eventually appears to grow linearly in time in the long-time limit yielding D(E)
plotted in Figure 2. However, we see that for higher energies the transition time to
the onset of the linear asymptotic regime shifts to considerably longer times: while
for E = 2 the MSD appears to be linear starting from around t ∼ 102, for E = 30
values of t larger than 103 are required. It is thus not entirely clear whether there
is a linear asymptotic regime for arbitrarily high energies, or whether there exists
an energy value starting from which a diffusion coefficient does not exist anymore.
Secondly, we can not tell whether the trend of linear growth in time really continues
at longer simulation times. That the situation is indeed more subtle becomes clear
by looking in detail at the phase space of our model, which gives us a more precise
method than simply plotting the MSD to decide about normal diffusion.

Our aim is to check for periodic islands of stability in phase space, which are known
to have a major impact on transport properties [11,13,14]. This holds in particular
for so-called accelerator mode islands [12,28,53], which in our model originate from
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Fig. 6. Left panel: example of a trajectory at E = 40 with iteration time t = 40 000. Right
panel: time dependence of the mean square displacement (MSD) in the high energy regime.
The black line indicates a slope of one.

quasi-ballistic (q-b) trajectories. With a q-b trajectory we mean the path of a particle
that travels on average in one direction across the lattice, that is, the path wiggles
periodically around a straight line, where the wiggles are due to specific microscopic
scattering events; see Figure 3 in reference [48] for explicit examples and reference [52]
for full details. But even initial conditions outside these stable component that ‘stick’
to the boundary of an island can have an effect on averages of observables [51,53].
Therefore, if we find islands of stability due to q-b trajectories in configuration space
we cannot expect to have normal diffusion in the long time limit [11,13,14,28]. For
this reason we need to exclude any parameter values where we find q-b periodic orbits
from an analysis of an energy-dependent diffusion coefficient D(E).

In order to find islands of stability in phase space we use the approach via Poincaré
surfaces of section (PSoS) as described in references [48,52]. In our case the PSoS is
defined by the plane (x, sin θ), where x is the position of a particle when it leaves the
rhomboid unit cell (see Fig. 1), and as before θ is the angle between its velocity vector
and the normal to the boundary. As a constraining numerical factor a given ensemble
of initial conditions does not necessarily catch tiny islands of stability: The smaller
the island, the more difficult it is to detect it numerically, as it only appears if we
choose initial conditions that are in the island. The islands of stability that we find
are indeed very tiny, and they correspond to two different types of periodic motion:
there are islands related to q-b trajectories, as discussed above, but also other islands
that display localized motion. While the latter do not yield anomalous diffusion, the
q-b trajectories do [11–14,28,53]. Islands of stability exist for many energy values in
our model, in particular, trivial islands generated by the main symmetry channels
due to the focusing of the potential walls, and other islands where particles fly over
the top of the scatterers.

Our results are summarised in Figure 7, which shows parameter values where
we detect periodic islands of stability. The shapes of their corresponding trajectories
vary depending on the energy. The right panel of Figure 7 depicts a region of the
PSoS at E = 44 where a stability island is found. The coordinate space trajectories
corresponding to this island are almost straight lines, as can be expected due to the
high total energy, hence they are not shown. As accordingly the diffusion coefficient
D(E) does not exist at these energies, we have plotted red filled circles between
respective values of the diffusion coefficient curve in Figure 2. A more detailed analysis
[52] reveals that the structure of the phase space is rich, even for smaller energies.

To find the normal diffusion coefficient D(E) as a function of the energy, Figure 7
suggests to consider an interval of energies 14 < E < 19 or 21 < E < 40. If we ignore
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Fig. 7. Islands of stability in phase space: Each circle in both plots represents a potentially
stable island in phase space for a given energy parameter E. Left panel: the y-axis indicates
the sine of the angle θ between the velocity vector at the moment of exiting the gap and the
normal to the boundary. Right panel: as in the left panel but with the velocity component vx,
displaying a backward bifurcation. Inset: stability island due to a quasi-ballistic trajectory
at E = 44.

Fig. 8. Diffusion coefficient D(E) obtained from simulations as a function of the energy E.
The numerical data is the same as in Figure 2. The green line indicates a slope of m = 5/2
as predicted in reference [32].

the peak at E = 20 we can choose 14 < E < 40. Figure 8 shows numerical results on
a double-logarithmic scale together with an error estimate; for details of this estimate
see reference [52]. The error bars are relatively small. The green line indicates a slope
of m = 5/2 as predicted in reference [32]. Fitting a function of the form aEm to the
numerical data in the intervals of energy (21, 35) yields m = 2.54. More fits and their
resulting exponents in different energy regimes, together with error estimates, are
presented in Table 1.

In reference [32] it was concluded that at sufficiently large energies D(E) ∝ E5/2

while reference [31] which, however, applies to attractive potentials, yields D(E) ∝
E3/2. Overall, the behaviour detected here seems to be very close to the one predicted
by the former theory but very different from the latter. By observations of trajectories
in configuration space (see the right panel of Fig. 6), our model behaves similarly to
the dynamics underlying the model in reference [32], where particles travel for long
times before changing the direction by a small angle. In contrast, for the model in
reference [31] particles travel over short distances and change the direction of the path
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Table 1. Exponent m in D(E) = aEm obtained from fits to the simulation data over
different intervals of energies E. The last column indicates the error of the fits.

Energy m +/−

2 < E < 35 2.524 0.0188
14 < E < 40 2.540 0.0186
21 < E < 35 2.521 0.0376
21 < E < 40 2.545 0.0257

by a large angle. This difference was also noted in reference [32]. We note that the
simulations in the latter work always yielded normal diffusion even for large energies.
This is due to the model used therein, where there is no mechanism of generating
islands in phase space.

6 Conclusions

We have studied diffusion in a soft periodic Lorentz gas in which the hard walls of
the conventional Lorentz gas scatterers were replaced by repulsive Fermi potentials.
Our goal was to understand how diffusion depends on varying the energy as a control
parameter in this system. For this purpose we computed the diffusion coefficient
as a function of the total energy of a particle from simulations. We compared our
numerical results with simple analytical random walk approximations.

We distinguished three different diffusive regimes: (1) for small energies, i.e., when
the energy is less than the maximum of the Fermi potential, there is an onset of
diffusion which is well approximated by a random walk approximation put forward
by Machta and Zwanzig [49] based on a simple phase space argument. For slightly
larger energies the energy dependence of the diffusion coefficient is well explained by
a Boltzmann-type random walk approximation which employs a collisionless flight
argument. (2) There is a specific value of the energy at which a particle can for the
first time travel over the top of a Fermi potential. This defines the onset of a second
diffusive regime, where a particle is getting trapped on the top of each potential. In
this regime we observe a full suppression of diffusion with a square root dependence on
the energy, as is explained by another simple random walk argument similar to the
one of Machta and Zwanzig. (3) For large energies the energy-dependent diffusion
coefficient yields a power law D(E) ∝ E5/2 in agreement with the random walk
argument presented in reference [32]. On top of this dynamics there are parameter
regions exhibiting superdiffusion which, however, were not the focus of our present
study.

We remark that we have also studied energy-dependent diffusion in this soft
Lorentz gas with a second, different setting of parameters modeling a shallower
potential. Here we observed that for small energies the Boltzmann approximation
is in general a better approximation outperforming the one by Machta and Zwanzig
for all energies even at the onset of diffusion [52]. However, for these parameters q-b
islands start to appear even at smaller energies. Our numerical results furthermore
suggest that islands of stability in phase space are ubiquitous for large enough ener-
gies, irrespective of particular values of the other parameters. We also observed that
at large enough energies the size of the islands increases with the energy, in agreement
with reference [37]. This will profoundly obscure the underlying dependence of the
diffusion coefficient as a function of the energy in this regime.

An interesting open question is to determine the precise type of superdiffusion
for parameter regions with islands in phase space by matching the simulation data
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to predictions of a stochastic model, such as Lévy walks [54]. Secondly, it would be
exciting if these different diffusive regimes could be detected in experiments, e.g., of
diffusion in molecular graphene. Here perhaps the temperature of the system could
be varied mimicking our variation of the total energy of a particle. Especially the
suppression of diffusion at intermediate energies should be a phenomenon that would
be interesting to be observed in experiments.
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