Fluctuation Relations for Anomalous Stochastic Dynamics

Aleksei V. Chechkin^{1,2}, Peter Dieterich³, Rainer Klages^{2,4}

Institute for Theoretical Physics, Kharkov, Ukraine
 Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
 Institute for Physiology, Technical University of Dresden, Germany
 Queen Mary University of London, School of Mathematical Sciences

Probability, Non-Local Operators and Applications University of Sussex, 2 June 2016

Fluctuation Relations ●○○	Correlated Gaussian dynamics	Non-Gaussian dynamics	Experiments	Summary 00
Outline				

• Transient fluctuation relations (TFRs): *motivation* and *warm-up*

- Correlated Gaussian dynamics: check TFRs for generalized Langevin dynamics
- Non-Gaussian dynamics:

check TFRs for time-fractional Fokker-Planck equations

Relations to experiments:

glassy dynamics and biological cell migration

		the second		
Fluctuation Relations	Correlated Gaussian dynamics	Non-Gaussian dynamics	Experiments	Summary 00

Motivation: Fluctuation relations

Consider a (classical) particle system evolving from some initial state into a nonequilibrium steady state.

Measure the probability distribution $\rho(\xi_t)$ of entropy production

 ξ_t during time t:

$$\ln \frac{\rho(\xi_t)}{\rho(-\xi_t)} = \xi_t$$

Transient Fluctuation Relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

why important? of very general validity and

- generalizes the Second Law to small systems in noneq.
- connection with fluctuation dissipation relations
- can be checked in experiments (Wang et al., 2002)

Fluctuation relation for Langevin dynamics

warm-up: check TFR for the overdamped Langevin equation

 $\dot{\mathbf{x}} = \mathbf{F} + \zeta(t)$ (set all irrelevant constants to 1)

with constant field *F* and Gaussian white noise $\zeta(t)$.

entropy production ξ_t is equal to (mechanical) work $W_t = Fx(t)$ with $\rho(W_t) = F^{-1}\varrho(x, t)$; remains to solve the corresponding Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

$$\varrho(\mathbf{x},t) = \frac{1}{\sqrt{2\pi\sigma_{\mathbf{x}}^2}} \exp\left(-\frac{(\mathbf{x}-\langle \mathbf{x} \rangle)^2}{2\sigma_{\mathbf{x}}^2}\right)$$

straightforward:

(work) TFR holds if
$$< x > = F \sigma_x^2/2$$

and \exists fluctuation-dissipation relation 1 (FDR1) \Rightarrow TFR

O	a facal sa a film a la sa a			
	00000			
Fluctuation Relations	Correlated Gaussian dynamics	Non-Gaussian dynamics	Experiments	Summary

Gaussian stochastic dynamics

goal: check TFR for Gaussian stochastic processes defined by the (overdamped) generalized Langevin equation

$$\int_{0}^{t} dt' \dot{x}(t') \mathcal{K}(t-t') = \mathcal{F} + \zeta(t)$$

e.g., Kubo (1965)

with Gaussian noise $\zeta(t)$ and memory kernel K(t)

This dynamics can generate anomalous diffusion:

$$\sigma_x^2 \sim t^{lpha}$$
 with $lpha
eq 1 (t
ightarrow \infty)$

Fluctuation Relations	Correlated Gaussian dynamics	Non-Gaussian dynamics	Experiments	Summary 00
TED		<u> </u>		

TFR for correlated internal Gaussian noise

consider two generic cases:

1. internal Gaussian noise defined by the FDR2,

 $<\zeta(t)\zeta(t')>\sim \mathcal{K}(t-t')$,

with non-Markovian (correlated) noise; e.g., $K(t) \sim t^{-\beta}$

solving the corresponding generalized Langevin equation in Laplace space yields $FDR2 \Rightarrow FDR1'$

and since $\rho(W_t) \sim \varrho(x, t)$ is Gaussian

 $`\mathsf{FDR1'} \Rightarrow \mathsf{TFR}$

for correlated internal Gaussian noise \exists TFR

Fluctuation Relations Correlated Gaussian dynamics Non-Gaussian dynamics Experiments Summary oco

2. external Gaussian noise for which there is no FDR2, modeled by the (overdamped) generalized Langevin equation

 $\dot{\boldsymbol{x}} = \boldsymbol{F} + \zeta(\boldsymbol{t})$

consider two types of Gaussian noise correlated by $g(\tau) = \langle \zeta(t)\zeta(t') \rangle_{\tau=t-t'} \sim (\Delta/\tau)^{\beta}$ for $\tau > \Delta$, $\beta > 0$:

Fluctuation Relations Correlated Gaussian dynamics Non-Gaussian dynamics Experiments Summary

 σ_x^2 and the fluctuation ratio $R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)}$ for $t \gg \Delta$ and $g(\tau) = \langle \zeta(t)\zeta(t') \rangle_{\tau=t-t'} \sim (\Delta/\tau)^{\beta}$:

	persis	tent	antiper	sistent *
β	$\sigma_{\rm X}^2$	$R(W_t)$	$\sigma_{\rm X}^2$	$R(W_t)$
0 < β < 1	$\sim t^{2-\beta}$	$\sim \frac{W_t}{t^{1-\beta}}$	reg	gime
$\beta = 1$	$\sim t \ln \left(\frac{t}{\Delta} \right)$	$\sim \frac{W_t}{\ln(\frac{t}{\Delta})}$	does r	not exist
$1 < \beta < 2$			$\sim t^{2-eta}$	$\sim t^{eta-1} W_t$
$\beta = 2$	$\sim 2Dt$	$\sim \frac{W_t}{D}$	$\sim \ln(t/\Delta)$	$\sim rac{t}{\ln(rac{t}{\Delta})}W_t$
$2 < eta < \infty$			= const.	$\sim t W_t$

* antipersistence for $\int_0^\infty d\tau g(\tau) > 0$ yields normal diffusion with generalized TFR; above antipersistence for $\int_0^\infty d\tau g(\tau) = 0$

Fluctuation Relations	Correlated Gaussian dynamics	Non-Gaussian dynamics	Experiments	Summary 00
FDR and T	FR			

relation between TFR and FDR I,II for correlated Gaussian stochastic dynamics: ('normal FR'= conventional TFR)

Fluctuation Relations	Correlated Gaussian dynamics	Non-Gaussian dynamics ●੦੦	Experiments	Summary 00
	• • • •			

Modeling non-Gaussian dynamics

• start again from overdamped Langevin equation $\dot{x} = F + \zeta(t)$, but here with **non-Gaussian** power law correlated noise

$$m{g}(au)=<\zeta(t)\zeta(t')>_{ au=t-t'}\sim(m{K}_lpha/ au)^{2-lpha}\,,\,1$$

• 'motivates' the non-Markovian Fokker-Planck equation type A: $\frac{\partial \varrho_A(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[F - K_{\alpha} D_t^{1-\alpha} \frac{\partial}{\partial x} \right] \varrho_A(x,t)$

with Riemann-Liouville fractional derivative $D_t^{1-\alpha}$ (Balescu, 1997)

• two formally similar types derived from CTRW theory, for $0 < \alpha < 1$:

type B:
$$\frac{\partial \varrho_{\mathcal{B}}(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[\mathcal{F} - \mathcal{K}_{\alpha} D_{t}^{1-\alpha} \frac{\partial}{\partial x} \right] \varrho_{\mathcal{B}}(x,t)$$

type C: $\frac{\partial \varrho_{\mathcal{C}}(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[\mathcal{F} D_{t}^{1-\alpha} - \mathcal{K}_{\alpha} D_{t}^{1-\alpha} \frac{\partial}{\partial x} \right] \varrho_{\mathcal{C}}(x,t)$

They model a very different class of stochastic process!

Fluctuation Rela	Correlated Ga	ussian dynami	Non-Gaussian	dynamics	Experiments	Summary
			000			

Properties of non-Gaussian dynamics

Riemann-Liouville fractional derivative defined by

$$\frac{\partial^{\gamma} \varrho}{\partial t^{\gamma}} := \begin{cases} \frac{\partial^{m} \varrho}{\partial t^{m}} & , \quad \gamma = m \\ \frac{\partial^{m}}{\partial t^{m}} \left[\frac{1}{\Gamma(m-\gamma)} \int_{0}^{t} dt' \frac{\varrho(t')}{(t-t')^{\gamma+1-m}} \right] & , \quad m-1 < \gamma < m \end{cases}$$

with $m \in \mathbb{N}$; power law inherited from correlation decay. two important properties:

- FDR1: exists for type C but not for A and B
- mean square displacement:
- type A: superdiffusive, $\sigma_x^2 \sim t^{\alpha}$, $1 < \alpha < 2$
- type B: subdiffusive, $\sigma_x^2 \sim t^{\alpha}$, $0 < \alpha < 1$
- type C: sub- or superdiffusive, $\sigma_{\rm X}^2 \sim t^{2 lpha} \ , \ 0 < lpha < 1$

• **position pdfs:** can be calculated approx. analytically for A, B, only numerically for C

Fluctuation Relations for Anomalous Stochastic Dynamics

Relations to experiments: glassy dynamics

example 1: computer simulations for a binary Lennard-Jones mixture below the glass transition

Crisanti, Ritort, PRL (2013)

- again: $R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)} = f_{\beta}(t) W_t$; cp. with TFR type B
- similar results for other glassy systems (Sellitto, PRE, 2009)

example 2: single MDCKF cell crawling on a substrate; trajectory recorded with a video camera

Dieterich et al., PNAS, 2008

new experiments on murine neutrophils under chemotaxis:

experim. results: position pdfs $\rho(x, t)$ are Gaussian

fluctuation ratio $R(W_t)$ is time dependent

 $< x(t) > \sim t$ and $\sigma_x^2 \sim t^{2-\beta}$ with $0 < \beta < 1$: \nexists FDR1 and

$$R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)} = \frac{W_t}{\mathbf{t}^{1-\beta}}$$

data matches to analytical results for persistent correlations

Fluctuation Relations for Anomalous Stochastic Dynamics

Fluctuation Relations	Correlated Gaussian dynamics	Non-Gaussian dynamics	Experiments 000	Summary ●○
Summary				

- TFR tested for two generic cases of correlated Gaussian stochastic dynamics:
 - internal noise:
 FDR2 implies the validity of the 'normal' work TFR
 - external noise: FDR2 is broken; sub-classes of persistent and anti-persistent noise yield both anomalous TFRs
- TFR tested for three cases of non-Gaussian dynamics: breaking FDR1 implies again anomalous TFRs
- anomalous TFRs appear to be important for glassy aging dynamics: cf. computer simulations on various glassy models and experiments on ('gelly') cell migration

Fluctuation Relations	Correlated Gaussian dynamics	Non-Gaussian dynamics	Experiments	Summary ○●
References				

- P.Dieterich, RK, A.V. Chechkin, NJP **17**, 075004 (2015)
- A.V. Chechkin, F.Lenz, RK, J. Stat. Mech. L11001 (2012)
- A.V. Chechkin, RK, J. Stat. Mech. L03002 (2009)

Edited by	Review of Noninera: bywarnes and Complexity
R. Kages, C. Radons, and J. M. Sokolov	R. Klages, W. Just, and C. Jarzynski
Anomalous	Nonequilibrium Statistical
Transport	Physics of Small Systems
Foundations and Applications	Fluctuation Relations and Beyond In $\frac{\rho(A)}{\rho(A)} = A$ $\langle e^{-\frac{N}{2}} \rangle = e^{-\frac{N}{2}}$

Fluctuation Relations for Anomalous Stochastic Dynamics