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Outline

Standard Langevin dynamics:

very brief review for setting the scene

Generalized Langevin dynamics:

non-Markovian dynamics with memory generates

anomalous diffusion; fluctuation-dissipation relations

Fluctuation relations:

test (!) of transient work fluctuation relation
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Theoretical modeling of Brownian motion

Brownian motion (Perrin,1913)

‘Newton’s law

of stochastic physics’

mv̇ = −κv+k ζ(t) Langevin equation (1908)

for a tracer particle of velocity v immersed in a fluid

force on rhs decomposed into

viscous damping as Stokes friction

random kicks of surrounding particles modeled by

Gaussian white noise

note: Kac-Zwanzig model (1965,1973) for derivation of this eq.
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Langevin dynamics

solutions of the Langevin equation (in 1dim); here focus on:

mean square displacement (msd)

σ2
x = 〈(x(t)− 〈x(t)〉)2〉 ∼ t (t → ∞) ,

where 〈. . . 〉 denotes an ensemble average

position probability distribution function (pdf)

̺(x , t) =
1

√

2πσ2
x

exp

(

−
(x− < x >)2

2σ2
x

)

(from solving the corresponding Fokker-Planck eq.)

reflects the Gaussianity of the noise
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Langevin dynamics for earth’s surface temperature

from previous talk:

analogy between

stochastic energy balance equation

CṪ = −
1

Seq
T + F + k ζ(t)

and Langevin equation (with field F )

mv̇ = −κv + F + k ζ(t)

mathematically identical
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Generalized Langevin equation

Mori, Kubo (1965/66): generalize ordinary Langevin equation to

mv̇ = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + k ζ(t)

by using a time-dependent friction coefficient κ(t) ∼ t−β;

cf. polymer dynamics (Panja, 2010) and biological cell migration

(Dieterich et al., 2008ff)

solutions of this Langevin equation:

position pdf is Gaussian (as the noise is still Gaussian)

but for msd σ2
x ∼ tα(β) (t → ∞) with anomalous diffusion

for α 6= 1; α < 1: subdiffusion; α > 1: superdiffusion

(nb: the 1st term on the rhs defines a fractional derivative)
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Fluctuation-dissipation relations

Kubo (1966): two fundamental relations characterizing

Langevin dynamics

1 fluctuation-dissipation relation of the 2nd kind (FDR2),

< ζ(t)ζ(t ′) >∼ κ(t − t ′)

defines internal noise, which is correlated in the same

way as the friction; if broken: external noise

2 fluctuation-dissipation relation of the 1st kind (FDR1),

< x >∼ σ2
x

implies that current and msd have the same time

dependence (linear response)

(nb: some technical subtleties neglected)
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Implications of fluctuation-dissipation relations

for generalized Langevin dynamics with power-law

correlated internal (FDR2) Gaussian noise, κ(t) ∼ t−β,

FDR2 implies FDR1 (Chechkin, Lenz, RK, 2012)

see previous talk: similar generalized Langevin dynamics

used to model long-range memory effects in the earth’s

temperature dynamics

but: modeling implies breaking of FDR2; meaningful?

⇒ explore consequences of breaking/conserving FDR for

fluctuation relations
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Fluctuation Relations

Consider a (classical) particle system evolving from some initial

state into a nonequilibrium steady state.

Measure the probability distribution ρ(ξt) of entropy production

ξt during time t :

ln
ρ(ξt)

ρ(−ξt)
= ξt

Transient Fluctuation Relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

note: ξt not necessarily identical to definition via stochastic

thermodynamics (or Evans et al.)
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Fluctuation relation for normal Langevin dynamics

check TFR for the overdamped Langevin equation

ẋ = F + ζ(t) (set all irrelevant constants to 1)

for a particle at position x with constant field F and noise ζ.

entropy production ξt is equal to (mechanical) work Wt = Fx(t)
with ρ(Wt) = F−1̺(x , t); choose initial condition x(0) = 0 (!)

the position pdf is Gaussian which implies straightforwardly

(work) TFR holds if < x >= σ2
x/2

hence FDR1 ⇒ TFR

see, e.g., van Zon, Cohen, PRE (2003)
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Fluctuation relation for anomalous Langevin dynamics

check TFR for overdamped generalized Langevin equation

∫ t

0

dt ′ẋ(t ′)κ(t − t ′) = F + ζ(t)

both for internal and external power-law correlated Gaussian

noise κ(t) ∼ t−β

1. internal Gaussian noise:

• as FDR2 implies FDR1 and ρ(Wt) ∼ ̺(x , t) is Gaussian, it

straightforwardly follows the existence of the transient

fluctuation relation

for correlated internal Gaussian noise ∃ TFR

• diffusion and current may both be normal or anomalous

depending on the memory kernel
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Correlated external Gaussian noise

2. external Gaussian noise: break FDR2, modelled by the

overdamped generalized Langevin equation

ẋ = F + ζ(t)

consider two types of Gaussian noise correlated by

g(τ) =< ζ(t)ζ(t ′) >τ=t−t ′∼ (∆/τ)β for τ > ∆ , β > 0:

persistent anti-persistent

it is < x >= Ft and σ2
x = 2

∫ t
0

dτ(t − τ)g(τ)
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Results: TFRs for correlated external Gaussian noise

σ2
x and the fluctuation ratio R(Wt) = ln

ρ(Wt)

ρ(−Wt)
for t ≫ ∆ and

g(τ) =< ζ(t)ζ(t ′) >τ=t−t ′∼ (∆/τ)β :

persistent antipersistent ∗

β σ2
x R(Wt) σ2

x R(Wt)

0 < β < 1 ∼ t2−β ∼ Wt

t1−β regime

β = 1 ∼ t ln
(

t
∆

)

∼ Wt

ln( t
∆)

does not exist

1 < β < 2 ∼ t2−β ∼ tβ−1Wt

β = 2 ∼ 2Dt ∼ Wt

D ∼ ln(t/∆) ∼ t

ln( t
∆)

Wt

2 < β < ∞ = const . ∼ tWt

* antipersistence for
∫

∞

0
dτg(τ) > 0 yields normal diffusion with

generalized TFR; above antipersistence for
∫

∞

0
dτg(τ) = 0
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Summary: FDR and TFR

relation between TFR and FDR I,II for correlated Gaussian

stochastic dynamics: (‘normal FR’= conventional TFR)

in particular:
FDR2 ⇒ FDR1 ⇒ TFR

6 ∃ TFR ⇒ 6 ∃ FDR2 : check in experiments?
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Checking TFR in experiments

R(Wt) = ln
ρ(Wt)

ρ(−Wt)
= fβ(t)Wt

means by plotting R for different t the slope might change.

example: computer simulations for a binary Lennard-Jones

mixture below the glass transition

0 3 6 9 12 15
∆S

10
0

10
1

10
2

10
3

10
4

P t w
(∆

S
) 

/ P
t w

(-
∆S

)

t
w

= 10
2

t
w

=10
3

t
w

=10
4

0 0.5 11-C
0

0.2

0.4
χ

-15 0 15 30 45
∆S

10
-5

10
-4

10
-3

10
-2

10
-1

P t w
(∆

S
)

(a)

(b)

Crisanti, Ritort (2013); also Sellitto (2009)
similar results for chemotaxis of biological cells (Dieterich et al.)
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Summary

model long-range memory effects for stochastic climate

dynamics by generalized Langevin equations?

be careful of how you define your Langevin model with
respect to fluctuation-dissipation relations:

is the physics modelled correctly in view of internal/external

noise?

important consequences for (transient) fluctuation relation

testing fluctuation relations for climate dynamics?
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