Fluctuation Relations for Anomalous Dynamics Generated by Time Fractional Fokker-Planck Equations

Peter Dieterich¹, Rainer Klages^{2,3}, Aleksei V. Chechkin^{2,4}

Institute for Physiology, Technical University of Dresden, Germany
Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
Queen Mary University of London, School of Mathematical Sciences
Institute for Theoretical Physics, Kharkov, Ukraine

DPG Spring Meeting, Regensburg, 10 March 2016

mpipks

Motivation	Fractional Fokker-Planck equations	Experiments	Summary
●○		000	00
Motivatio	n: Eluctuation relations		

Consider a (classical) particle system evolving from some initial state into a nonequilibrium steady state.

Measure the probability distribution $\rho(\xi_t)$ of entropy production

 ξ_t during time t:

$$\ln \frac{\rho(\xi_t)}{\rho(-\xi_t)} = \xi_t$$

Transient Fluctuation Relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

why important? of very general validity and

- generalizes the Second Law to small systems in nonequ.
- connection with fluctuation dissipation relations (FDRs)
- can be checked in experiments (Wang et al., 2002)

Motivation	Fractional Fokker-Planck equations	Experiments	Summary
00			

Anomalous TFR for Gaussian stochastic processes

known result:

consider overdamped generalized Langevin equation

 $\dot{\mathbf{x}} = \mathbf{F} + \zeta(\mathbf{t})$

with force *F* and Gaussian power-law correlated noise $<\zeta(t)\zeta(t')>_{\tau=t-t'}\sim (\Delta/\tau)^{\beta}$ for $\tau > \Delta$, $\beta > 0$ that is external (i.e., no FDR):

- dynamics can generate **anomalous diffusion**, $\sigma_x^2 \sim t^{2-\beta}$ with $2 - \beta \neq 1 \ (t \to \infty)$
- yields an anomalous work fluctuation relation, $\ln \frac{\rho(W_t)}{\rho(-W_t)} = \mathbf{f}_{\beta}(\mathbf{t}) W_t$
- A.V.Chechkin et al., J.Stat.Mech. L11001 (2012) and L03002 (2009) **Question:** what's about non-Gaussian processes?

Motivation	Fractional Fokker-Planck equations	Experiments 000	Summary 00
Modeling no	on-Gaussian dynamic	CS	

• start again from overdamped Langevin equation $\dot{x} = F + \zeta(t)$, but here with **non-Gaussian** power law correlated noise

 $<\zeta(t)\zeta(t')>_{ au=t-t'}\sim (K_lpha/ au)^{2-lpha} \ , \ 1<lpha<2$

• 'motivates' the non-Markovian Fokker-Planck equation type A: $\frac{\partial \varrho_A(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[F - K_{\alpha} D_t^{1-\alpha} \frac{\partial}{\partial x} \right] \varrho_A(x,t)$

with Riemann-Liouville fractional derivative $D_t^{1-\alpha}$ (Balescu, 1997)

• two formally similar types derived from CTRW theory, for $0 < \alpha < 1$:

type B:
$$\frac{\partial \varrho_{\mathcal{B}}(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[\mathcal{F} - \mathcal{K}_{\alpha} D_{t}^{1-\alpha} \frac{\partial}{\partial x} \right] \varrho_{\mathcal{B}}(x,t)$$

type C: $\frac{\partial \varrho_{\mathcal{C}}(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[\mathcal{F} D_{t}^{1-\alpha} - \mathcal{K}_{\alpha} D_{t}^{1-\alpha} \frac{\partial}{\partial x} \right] \varrho_{\mathcal{C}}(x,t)$

They model a different class of stochastic process!

Motivation Fractional Fokker-Planck equations Experiments Summary of Proportion of pop Gauge in August Augu

Properties of non-Gaussian dynamics

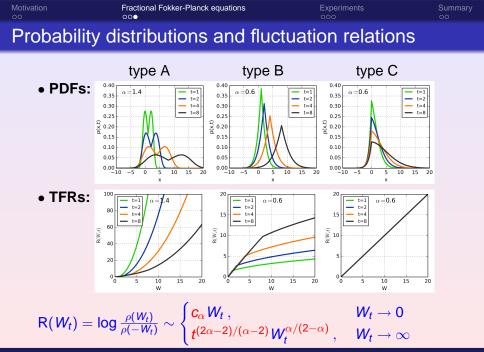
Riemann-Liouville fractional derivative defined by

$$\frac{\partial^{\gamma} \varrho}{\partial t^{\gamma}} := \begin{cases} \frac{\partial^{m} \varrho}{\partial t^{m}} & , \quad \gamma = m \\ \frac{\partial^{m}}{\partial t^{m}} \left[\frac{1}{\Gamma(m-\gamma)} \int_{0}^{t} dt' \frac{\varrho(t')}{(t-t')^{\gamma+1-m}} \right] & , \quad m-1 < \gamma < m \end{cases}$$

with $m \in \mathbb{N}$; power law inherited from correlation decay. two important properties:

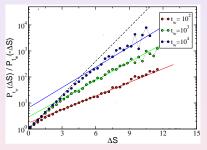
- FDR: exists for type C but not for A and B
- mean square displacement:
- type A: superdiffusive, $\sigma_x^2 \sim t^{\alpha}$, $1 < \alpha < 2$
- type B: subdiffusive, $\sigma_x^2 \sim t^{\alpha}$, $0 < \alpha < 1$
- type C: sub- or superdiffusive, $\sigma_{\rm X}^2 \sim t^{2 \alpha} \ , \ 0 < \alpha < 1$

• **position pdfs:** can be calculated approximately analytically for A, B, only numerically for C



Fluctuation Relations for Anomalous Stochastic Dynamics

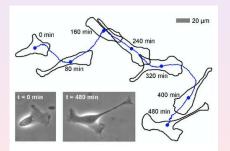
example 1: computer simulations for a binary Lennard-Jones mixture below the glass transition



Crisanti, Ritort, PRL (2013)

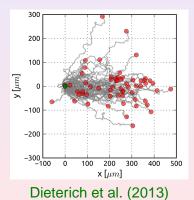
- again: $R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)} = \mathbf{f}_{\beta}(\mathbf{t}) W_t$; cp. with TFR type B
- similar results for other glassy systems (Sellitto, PRE, 2009)

example 2: single MDCKF cell crawling on a substrate; trajectory recorded with a video camera



Dieterich et al., PNAS, 2008

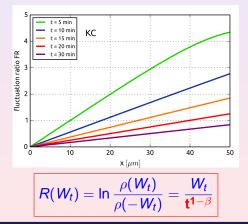
new experiments on murine neutrophils under chemotaxis:



preliminary experimental results:

• $< x(t) > \sim t$ and $\sigma_x^2 \sim t^{2-\beta}$ with $0 < \beta < 1$: $\not\exists$ FDR

• fluctuation ratio $R(W_t)$ is time dependent:



Motivation	Fractional Fokker-Planck equations	Experiments 000	Summary ●○
Summary			

TFR tested for **non-Gaussian dynamics** modeled by three cases of **time fractional Fokker Planck equations**:

- breaking FDR implies (again) anomalous TFRs
- for non-Gaussian dynamics the TFR displays a nonlinear dependence on the (work) variable, in contrast to Gaussian stochastic processes
- anomalous TFRs appear to be important for glassy ageing dynamics

Motivation	Fractional Fokker-Planck equations	Experiments 000	Summary ○●
References			

P.Dieterich, RK, A.V. Chechkin, NJP 17, 075004 (2015)

