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Motivation: Fluctuation relations

Consider a (classical) particle system evolving from some initial
state into a nonequilibrium steady state.
Measure the probability distribution ρ(ξt) of entropy production
ξt during time t :

ln
ρ(ξt)

ρ(−ξt)
= ξt

Transient Fluctuation Relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

why important? of very general validity and
1 generalizes the Second Law to small systems in nonequ.
2 connection with fluctuation dissipation relations (FDRs)
3 can be checked in experiments (Wang et al., 2002)
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Anomalous TFR for Gaussian stochastic processes

known result:
consider overdamped generalized Langevin equation

ẋ = F + ζ(t)
with force F and Gaussian power-law correlated noise

< ζ(t)ζ(t ′) >τ=t−t ′∼ (∆/τ)β for τ > ∆ , β > 0
that is external (i.e., no FDR):

dynamics can generate anomalous diffusion ,
σ2

x ∼ t2−β with 2 − β 6= 1 (t → ∞)

yields an anomalous work fluctuation relation ,

ln
ρ(Wt)

ρ(−Wt)
= fβ(t)Wt

A.V.Chechkin et al., J.Stat.Mech. L11001 (2012) and L03002 (2009)

Question: what’s about non-Gaussian processes?
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Modeling non-Gaussian dynamics

• start again from overdamped Langevin equation ẋ = F + ζ(t),
but here with non-Gaussian power law correlated noise

< ζ(t)ζ(t ′) >τ=t−t ′∼ (Kα/τ)2−α , 1 < α < 2

• ‘motivates’ the non-Markovian Fokker-Planck equation

type A: ∂̺A(x ,t)
∂t = − ∂

∂x

[

F − KαD1−α
t

∂
∂x

]

̺A(x , t)

with Riemann-Liouville fractional derivative D1−α
t (Balescu, 1997)

• two formally similar types derived from CTRW theory, for
0 < α < 1:

type B: ∂̺B(x ,t)
∂t = − ∂

∂x

[

F − KαD1−α
t

∂
∂x

]

̺B(x , t)

type C: ∂̺C(x ,t)
∂t = − ∂

∂x

[

FD1−α
t − KαD1−α

t
∂
∂x

]

̺C(x , t)

They model a different class of stochastic process!

Fluctuation Relations for Anomalous Stochastic Dynamics Rainer Klages 4



Motivation Fractional Fokker-Planck equations Experiments Summary

Properties of non-Gaussian dynamics

Riemann-Liouville fractional derivative defined by

∂γ̺

∂tγ
:=

{

∂m̺
∂tm , γ = m
∂m

∂tm

[

1
Γ(m−γ)

∫ t
0 dt ′ ̺(t ′)

(t−t ′)γ+1−m

]

, m − 1 < γ < m

with m ∈ N; power law inherited from correlation decay.

two important properties:

• FDR: exists for type C but not for A and B

• mean square displacement:

- type A: superdiffusive, σ2
x ∼ tα , 1 < α < 2

- type B: subdiffusive, σ2
x ∼ tα , 0 < α < 1

- type C: sub- or superdiffusive, σ2
x ∼ t2α , 0 < α < 1

• position pdfs: can be calculated approximately analytically
for A, B, only numerically for C
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Probability distributions and fluctuation relations

type A type B type C
• PDFs:

• TFRs:

R(Wt) = log ρ(Wt )
ρ(−Wt )

∼

{

cαWt , Wt → 0

t(2α−2)/(α−2)W α/(2−α)
t , Wt → ∞
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Relations to experiments: glassy dynamics

example 1: computer simulations for a binary Lennard-Jones
mixture below the glass transition
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Crisanti, Ritort, PRL (2013)

• again: R(Wt) = ln
ρ(Wt)

ρ(−Wt)
= fβ(t)Wt ; cp. with TFR type B

• similar results for other glassy systems (Sellitto, PRE, 2009)
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Cell migration without and with chemotaxis

example 2: single MDCKF cell
crawling on a substrate;
trajectory recorded with a video
camera

Dieterich et al., PNAS, 2008

new experiments on murine
neutrophils under chemotaxis:

Dieterich et al. (2013)
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Anomalous fluctuation relation for cell migration

preliminary experimental results:

< x(t) >∼ t and σ2
x ∼ t2−β with 0 < β < 1: 6 ∃ FDR

fluctuation ratio R(Wt) is time dependent :

R(Wt) = ln
ρ(Wt)

ρ(−Wt)
=

Wt

t1−β
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Summary

TFR tested for non-Gaussian dynamics modeled by three
cases of time fractional Fokker Planck equations :

breaking FDR implies (again) anomalous TFRs

for non-Gaussian dynamics the TFR displays a nonlinear
dependence on the (work) variable, in contrast to Gaussian
stochastic processes

anomalous TFRs appear to be important for glassy ageing
dynamics
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