Experiments

Fluctuation Relations for Anomalous Stochastic Dynamics: From Theory to Cell Migration

Aleksei V. Chechkin^{1,2}, Peter Dieterich³, Rainer Klages^{2,4}

1 Institute for Theoretical Physics, Kharkov, Ukraine

2 Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

3 Institute for Physiology, Technical University of Dresden, Germany

4 Queen Mary University of London, School of Mathematical Sciences

Stochastic Modelling of Transport Processes in Biology, Manchester, 31 March 2016

Outline

- Transient fluctuation relations (TFRs): motivation and warm-up
- Correlated Gaussian dynamics: check TFRs for generalized Langevin dynamics

Relations to experiments:

glassy dynamics and biological cell migration

Fluctuation Relations	Correlated Gaussian dynamics	Experiments	Summary
○●○		000000	00
Motivation: E	luctuation relations		

Consider a (classical) particle system evolving from some initial state into a nonequilibrium steady state.

Measure the probability distribution $\rho(\xi_t)$ of entropy production ξ_t during time *t*:

$$\ln \frac{\rho(\xi_t)}{\rho(-\xi_t)} = \xi_t$$

Transient Fluctuation Relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

why important? of very general validity and

- generalizes the Second Law to small systems in nonequ.
- connection with fluctuation dissipation relations
- can be checked in experiments (Wang et al., 2002)

Fluctuation relation for Langevin dynamics

warm-up: check TFR for the overdamped Langevin equation

 $\dot{\mathbf{x}} = \mathbf{F} + \zeta(\mathbf{t})$ (set all irrelevant constants to 1)

with constant field *F* and Gaussian white noise $\zeta(t)$.

entropy production ξ_t is equal to (mechanical) work $W_t = Fx(t)$ with $\rho(W_t) = F^{-1}\varrho(x, t)$; remains to solve corresponding Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

$$\varrho(\mathbf{x},t) = \frac{1}{\sqrt{2\pi\sigma_{\mathbf{x}}^2}} \exp\left(-\frac{(\mathbf{x}-\langle \mathbf{x}\rangle)^2}{2\sigma_{\mathbf{x}}^2}\right)$$

straightforward:

(work) TFR holds if
$$< x > = F \sigma_x^2/2$$

and \exists fluctuation-dissipation relation 1 (FDR1) \Rightarrow TFR

see, e.g., van Zon, Cohen, PRE (2003)

Fluctuation Relations	Correlated Gaussian dynamics	Experiments	Summary
	•oooo	000000	00
Gaussian stocha	astic dynamics		

goal: check TFR for Gaussian stochastic processes defined by the (overdamped) generalized Langevin equation

$$\int_0^t dt' \dot{\mathbf{x}}(t') \mathbf{K}(t-t') = \mathbf{F} + \zeta(t)$$

e.g., Kubo (1965)

with Gaussian noise $\zeta(t)$ and memory kernel K(t)

This dynamics can generate anomalous diffusion:

$$\sigma_x^2 \sim t^{lpha}$$
 with $lpha
eq 1$ ($t \to \infty$)

Fluctuation Relations	Correlated Gaussian dynamics	Experiments	Summary
	00000		

TFR for correlated internal Gaussian noise

consider two generic cases:

1. internal Gaussian noise defined by the FDR2,

 $<\zeta(t)\zeta(t')>\sim \mathcal{K}(t-t')$,

with non-Markovian (correlated) noise; e.g., $K(t) \sim t^{-\beta}$

solving the corresponding generalized Langevin equation in Laplace space yields $FDR2 \Rightarrow FDR1'$

and since $\rho(W_t) \sim \varrho(x, t)$ is Gaussian

$$FDR1' \Rightarrow TFR$$

for correlated internal Gaussian noise \exists TFR

Fluctuation	Relations

Correlated Gaussian dynamics

Experiments

Summary 00

Correlated external Gaussian noise

2. external Gaussian noise for which there is **no FDR2**, modeled by the (overdamped) generalized Langevin equation

 $\dot{\boldsymbol{x}} = \boldsymbol{F} + \zeta(\boldsymbol{t})$

consider two types of Gaussian noise correlated by $g(\tau) = \langle \zeta(t)\zeta(t') \rangle_{\tau=t-t'} \sim (\Delta/\tau)^{\beta}$ for $\tau > \Delta$, $\beta > 0$:

Fluctuation Relations Correlated Gaussian dynamics 000 00000		Experiments 000000	Summary 00
Results: TFRs for	or correlated external	Gaussian no	bise

 σ_x^2 and the fluctuation ratio $R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)}$ for $t \gg \Delta$ and $g(\tau) = \langle \zeta(t)\zeta(t') \rangle_{\tau=t-t'} \sim (\Delta/\tau)^{\beta}$:

	persistent		antiper	sistent *
β	σ_x^2	$R(W_t)$	$\sigma_x^2 \qquad R(W_t)$	
$0 < \beta < 1$	$\sim t^{2-\beta}$	$\sim \frac{W_t}{t^{1-\beta}}$	reg	gime
$\beta = 1$	$\sim t \ln \left(\frac{t}{\Delta} \right)$	$\sim \frac{W_t}{\ln(\frac{t}{\Delta})}$	does not exist	
$1 < \beta < 2$			$\sim t^{2-eta}$	$\sim t^{eta-1} W_t$
$\beta = 2$	$\sim 2Dt$	$\sim \frac{W_t}{D}$	$\sim \ln(t/\Delta)$	$\sim rac{t}{\ln(rac{t}{\Delta})}W_t$
$2 < eta < \infty$			= const.	$\sim t W_t$

* antipersistence for $\int_0^\infty d\tau g(\tau) > 0$ yields normal diffusion with generalized TFR; above antipersistence for $\int_0^\infty d\tau g(\tau) = 0$

Fluctuation Relations	Correlated Gaussian dynamics	Experiments 000000	Summary 00

FDR and IFR

relation between TFR and FDR I,II for correlated Gaussian stochastic dynamics: ('normal FR'= conventional TFR)

example 1: computer simulations for a binary Lennard-Jones mixture below the glass transition

Crisanti, Ritort, PRL (2013)

• $R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)} = \mathbf{f}_{\beta}(\mathbf{t}) W_t$; cp. with antipersistent TFR

similar results for other glassy systems (Sellitto, PRE, 2009)

Correlated Gaussian dynamics

Experiments

Summary 00

Brownian motion of migrating cells?

example 2: single MDCK-F (Madin-Darby canine kidney) cells crawling on a substrate; trajectory recorded with a video camera

Dieterich et al., PNAS, 2008 Brownian motion?

ff two types: wildtype (NHE^+) and NHE-deficient (NHE^-)

Fluctuation Relations	Correlated Gaussian dynamics	Experiments ooeooo	Summary 00
Experimental res	sults I: mean square	displacement	

• $msd(t) := < [\mathbf{x}(t) - \mathbf{x}(0)]^2 > \sim t^{\beta}$ with $\beta \to 2 \ (t \to 0)$ and $\beta \to 1 \ (t \to \infty)$ for Brownian motion; $\beta(t) = d \ln msd(t)/d \ln t$

• solid lines: (Bayes) fits from our model

anomalous diffusion if $\beta \neq 1$ ($t \rightarrow \infty$); here: superdiffusion

Fluctuation Relations	Correlated Gaussia	n dynamics	Experiments	Summary
000	00000		000000	00

Experimental results II: position distribution function

• $P(x, t) \rightarrow \text{Gaussian}$ ($t \rightarrow \infty$) and kurtosis $\kappa(t) := \frac{\langle x^4(t) \rangle}{\langle x^2(t) \rangle^2} \rightarrow 3 \ (t \rightarrow \infty)$ for Brownian motion (green lines, in 1d)

• other solid lines: fits from our model; parameter values as before

- crossover from peaked to broad non-Gaussian distributions
- fit functions obtained from a fractional Klein-Kramers equation

Fluctuation Relations	Correlated Gaussian dynamics	Experiments	Summary
		000000	

Cell migration without and with chemotaxis

Conclusions:

- MDCKF cells diffuse anomalously
- different dynamics on different time scales
- biological significance: optimality of intermittent dynamics?

fluctuation relations for cell migration:

experiments on murine neutrophils under chemotaxis

experim. results: position pdfs $\rho(x, t)$ are Gaussian

fluctuation ratio $R(W_t)$ is time dependent

 $< x(t) > \sim t$ and $\sigma_x^2 \sim t^{2-\beta}$ with $0 < \beta < 1$: \nexists FDR1 and

$$R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)} = \frac{W_t}{\mathbf{t}^{1-\beta}}$$

data matches to analytical results for persistent correlations

Fluctuation Relations	Correlated Gaussian dynamics	Experiments 000000	Summary ●0
Summarv			

- TFR tested for two generic cases of correlated Gaussian stochastic dynamics:
 - internal noise: FDR2 implies the validity of the 'normal' work TFR
 external noise: FDR2 is broken; sub-classes of persistent and anti-persistent noise yield both anomalous TFRs
- anomalous TFRs appear to be important for glassy aging dynamics: cf. computer simulations on various glassy models and experiments on ('gelly') cell migration

Fluctuation Relations	Correlated Gaussian dynamics	Experiments 000000	Summary ⊙●
References			

- A.V. Chechkin, F.Lenz, RK, J. Stat. Mech. L11001 (2012)
- A.V. Chechkin, RK, J. Stat. Mech. L03002 (2009)
- P.Dieterich et al., PNAS 105, 459 (2008)

Edited by R. Nages, C. Radons, and I. M. Scholov Anomalous Transport	Review of Nonforce Dynamics and Campionly Edited by R. Klages, W. Just, and C. Jarzynski Nonequilibrium Statistical Physics of Small Systems
Foundations and Applications.	Fluctuation Relations and Beyond
$f(k, n) = \frac{1 - k(n) - 1}{n} \frac{1 - \lambda(k) \psi(n)}{\lambda(k) \psi(n)}$	$\ln \frac{p(A)}{p(A)} = A$ $\int \frac{e^{-\frac{(A)}{T}}}{e^{-\frac{(A)}{T}}} e^{-\frac{(A)}{T}}$