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Motivation: Fluctuation relations

Consider a particle system evolving from some initial state into
a nonequilibrium steady state.
Measure the probability distribution ρ(ξt) of entropy production
ξt during time t :

ln
ρ(ξt)

ρ(−ξt)
= ξt

transient fluctuation relation (TFR)

Evans et al. (1993/94); Gallavotti, Cohen (1995)
why important? Of very general validity and

1 generalizes the Second Law to small noneq. systems
2 yields nonlinear response relations
3 connection with fluctuation dissipation relations
4 can be checked by experiments (Wang et al., 2002)
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Fluctuation relation and the Second Law

meaning of TFR in terms of Second Law:

ξ

ρ(ξ  )
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t
ξ t−ξ t
t1 < t2 < t3

ρ(ξt) = ρ(−ξt) exp(ξt) ≥ ρ(−ξt) (ξt ≥ 0) ⇒ < ξt >≥ 0

goal: sample specifically the tails of the pdf...
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Fluctuation relation and scaling I

look at the pdf of the scaled variable ξ̃t =
ξt

< ξt >
for eliminating

the drift (Touchette, Cohen, 2009):

ξ

ρ(ξ  )

t1

t2
t3

t

~
t

~

1
⇒ρ(ξ̃t) is now centered at ξ̃t = 1
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Fluctuation relation and scaling II

look at pdf of the scaled time average ξ̂t =
ξt

t < ξt >
(Gallavotti,

Cohen, 1995):
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ρ(ξ̂t) → δ(1 − ξ̂t) (t → ∞) ⇒ ξt
t →< ξt >≥ 0 (t → ∞)

illustrates the Second Law again
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A hierarchy of fluctuation relations

• there are steady state FRs, which are formally equivalent to
the TFR (van Zon, Cohen, 2003; Gallavotti, Cohen, 1995)

• the Jarzynski work relation expresses the free energy
difference between two equilibrium states in terms of the
performed nonequilibrium work (Jarzynski, 1997)

• the Crooks relation is similar to the TFR but formulated in
terms of forward and backward pdf’s of entropy production
(Crooks, 1999); the previous two FRs are derived from it

• there is another fluctuation relation by Seifert based on
stochastic thermodynamics that implies all three (Seifert, 2005)

all these FRs have been tested in (computer and real)
experiments , particularly for biomolecules (Ritort, 2003)
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Fluctuation relation for Langevin dynamics

check TFR for the overdamped Langevin equation

ẋ = F + ζ(t) (set all irrelevant constants to 1)

with constant field F and Gaussian white noise ζ(t).

entropy production ξt is equal to (mechanical) work Wt = Fx(t)
with ρ(Wt) = F−1ρ(x , t); remains to solve corresponding
Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

ρ(x , t) = 1√
2πσ2

x

exp
(

− (x−<x>)2

2σ2
x

)

easy to see:
TFR holds if < Wt >=< σ2

Wt
> /2

i.e., ∃ fluctuation-dissipation relation 1 (FDR1) ⇒ TFR

see, e.g., van Zon, Cohen, PRE (2003)
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TFRs for anomalous dynamics

FRs widely verified for ‘Brownian motion-type’ dynamics; only
specific violations (Harris et al., 2006; Evans et al., 2005)

goal: check TFR for three fundamental types of anomalous
dynamics, where the mean square displacement < σ2

x >∼ tα

does not grow linearly in time: α < 1 subdiffusion, α > 1
superdiffusion

First type: Gaussian stochastic processes defined by the
(overdamped) generalized Langevin equation (Kubo, 1965)

∫ t

0
dt ′ẋ(t ′)K (t − t ′) = F + ζ(t)

with Gaussian noise ζ(t) and a suitable memory kernel K (t)

examples of applications: biological cell migration (Dieterich
et al., 2008); polymer dynamics (Panja, 2010)
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TFR for correlated internal Gaussian noise

split this class into two cases:

1. internal Gaussian noise defined by the FDR2

< ζ(t)ζ(t ′) >∼ K (t − t ′) ,

which is correlated by K (t) ∼ t−β , 0 < β < 1

ρ(Wt) ∼ ρ(x , t) is Gaussian; solving the generalized Langevin
equation in Laplace space yields subdiffusion

< σ2
x >∼ tβ

by preserving FDR1,
< Wt >=< σ2

Wt
> /2

for correlated internal Gaussian noise ∃ TFR
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TFR for correlated external Gaussian noise

2. consider overdamped generalized Langevin equation

ẋ = F + ζ(t)

with correlated Gaussian noise defined by

< ζ(t)ζ(t ′) >∼ |t − t ′|−β , 0 < β < 1 ,

which is external, because there is no FDR2

ρ(Wt) ∼ ρ(x , t) is again Gaussian but here with superdiffusion
by breaking FDR1 :

< Wt >∼ t , < σ2
Wt

>∼ t2−β

yields the anomalous TFR

ln
ρ(Wt)

ρ(−Wt)
= Cβtβ−1Wt (0 < β < 1)

note: pre-factor on rhs not equal to one and time dependent
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Relations to experiments

ln
ρ(Wt)

ρ(−Wt)
=

Cβ

t1−β
Wt (0 < β < 1)

experiments on slime mold:

Hayashi, Takagi,
J.Phys.Soc.Jap. (2007)

computer simulation on
glassy lattice gas:

Sellitto, PRE (2009)

⇒ anomalous fluctuation relation important for glassy dynamics
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TFR for Lévy flights

Second type of anomalous dynamics: consider the Langevin
equation ẋ = F + ζ(t)
with white Lévy noise ρ(ζ) ∼ ζ−1−α (ζ → ∞) , 0 ≤ α < 2

examples of applications: fluid dynamics (Solomon et al.,
1993); foraging of biological organisms (Vishwanathan, 1996)

by solving the corresponding Fokker-Planck equation

∂ρ

∂t
= −F

∂ρ

∂x
+

∂αρ

∂|x |α
with Riesz fractional derivative
∂αρ
∂|x|α = Γ(1+α)sin(απ/2)

π

∫ ∞
0 dy(ρ(x +y)−2ρ(x)+ρ(x−y))/y1+α

and using the scaled variable wt = Wt/(F 2t) we recover

lim
wt→±∞

ρ(wt)

ρ(−wt)
= 1 Touchette, Cohen, PRE (2007)

i.e., large fluctuations are equally possible
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TFR for time-fractional kinetics

Third type of anomalous dynamics: via subordinated Langevin
equation dx(u)

du = F + ζ(u) , dt(u)
du = τ(u)

with Gaussian white noise ζ(u) and white Lévy stable noise
τ(u) > 0; leads to the time-fractional Fokker-Planck equation

∂ρ

∂t
=

∂1−α

∂t1−α

[

−∂F
∂x

+
∂2

∂x2

]

ρ

with Riemann-Liouville fractional derivative
∂γρ
∂tγ = ∂m

∂tm

[

1
Γ(m−γ)

∫ t
0 dt ′ ρ(t ′)

(t−t ′)γ+1−m

]

for m − 1 < γ < m , m ∈ N

and ∂γρ
∂tγ = ∂mρ

∂tm for γ = m

examples of applications: photo current in copy machines (?)
(Scher et al., 1975), microsphere diffusion in cell membrane
(?); cf. Metzler, Klafter (2004)

for this dynamics we recover the conventional TFR
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TFR for a dragged particle

experiment by Wang et al., 2002: Brownian particle dragged
through a fluid by a harmonic force with constant velocity v∗,

note: for this potential one needs to distinguish between work
and heat for checking FRs (van Zon, Cohen, 2003)

in this case and for (total) work, same results obtained for (two
plus one) types of anomalous dynamics as before

⇒ check anomalous FR experimentally for dragging particle
through polymer gel?
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Summary

TFR tested for three fundamental types of anomalous
stochastic dynamics :

1 Gaussian stochastic processes with correlated noise:
FDR2 ⇒ FDR1 ⇒ TFR

TFR holds for internal noise, mild violation for external one

2 strong violation of TFR for space-fractional (Lévy) dynamics

3 TFR holds for time-fractional dynamics

question: anomalous TFRs of atoms in optical lattices?

Reference:
A.V. Chechkin, R. Klages, Fluctuation relations for anomalous
dynamics, J. Stat. Mech. L03002 (2009)
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