Outline	Normal FRs	Anomalous TFRs	Experiments	Summary
0	0000	000000	000	00

Anomalous Fluctuation Relations

Aleksei V. Chechkin¹, Rainer Klages², Peter Dieterich³, Friedrich Lenz²

1 Institute for Theoretical Physics, Kharkov, Ukraine 2 Queen Mary University of London, School of Mathematical Sciences 3 Institute for Physiology, Technical University of Dresden, Germany

Mathematics for the Fluid Earth Newton Institute, Cambridge, 30 October 2013

Outline	Normal FRs	Anomalous TFRs	Experiments	Summary
●	0000	000000		oo
Outline				

• 'Normal' fluctuation relations:

motivation and warm-up for ordinary Langevin dynamics

• Anomalous fluctuation relations:

check transient fluctuation relations for **correlated** Gaussian stochastic dynamics

Relations to experiments:

glassy dynamics and cell migration

Outline	Normal FRs	Anomalous TFRs	Experiments	Summary
o	●ooo	000000	000	00
Motiva	tion: Fluctuat	tion relations		

Consider a (classical) particle system evolving from some initial state into a nonequilibrium steady state.

Measure the probability distribution $\rho(\xi_t)$ of entropy production

 ξ_t during time *t*:

$$\ln \frac{\rho(\xi_t)}{\rho(-\xi_t)} = \xi_t$$

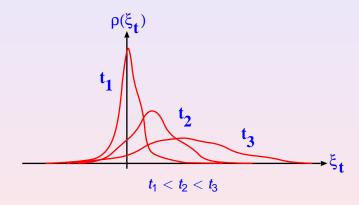
Transient Fluctuation Relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

why important? of very general validity and

- generalizes the Second Law to (small) systems in nonequ.
- connection with fluctuation dissipation relations
- can be checked in experiments (Wang et al., 2002)

meaning of TFR in terms of the Second Law:



$$\rho(\xi_t) = \rho(-\xi_t) \exp(\xi_t) \ge \rho(-\xi_t) \ (\xi_t \ge \mathbf{0}) \ \Rightarrow <\xi_t > \ge \mathbf{0}$$

Langevin equation (*Newton's law of stochastic physics'*) used to model the dynamics of the earth's surface temperature T: linearized energy-balance equation derived as

$$C\dot{T} = -rac{1}{S_{eq}}T + F + k\zeta(t)$$

K.Rypdal (2012)

with heat capacity *C*, equilibrium climate sensitivity S_{eq} , (solar) radiative influx *F* and Gaussian white noise ζ of strength *k*

note: even a long-range memory generalization proposed Rypdal, Rypdal (2013)

(many thanks to N. Watkins for pointing these refs. out to me)

Outline Normal FRs Anomalous TFRs Experiments Summary Outline 0000

warmup: check TFR for the overdamped Langevin equation

 $\dot{\mathbf{x}} = \mathbf{F} + \zeta(t)$ (set all irrelevant constants to 1)

for a particle at position x with constant field F and noise ζ .

entropy production ξ_t is equal to (mechanical) work $W_t = Fx(t)$ with $\rho(W_t) = F^{-1}\varrho(x, t)$; remains to solve corresponding Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

$$\varrho(\mathbf{x},t) = \frac{1}{\sqrt{2\pi\sigma_{\mathbf{x}}^2}} \exp\left(-\frac{(\mathbf{x}-\langle \mathbf{x} \rangle)^2}{2\sigma_{\mathbf{x}}^2}\right)$$

straightforward:

(work) TFR holds if
$$< x > = \sigma_x^2/2$$

and \exists fluctuation-dissipation relation 1 (FDR1) \Rightarrow TFR

see, e.g., van Zon, Cohen, PRE (2003)

goal: check TFR for Gaussian stochastic processes defined by the (overdamped) generalized Langevin equation

$$\int_{0}^{t} dt' \dot{\mathbf{x}}(t') \mathbf{K}(t-t') = \mathbf{F} + \zeta(t)$$

e.g., Kubo (1965)

with Gaussian noise $\zeta(t)$ and memory kernel K(t)

such dynamics can generate anomalous diffusion:

$$\sigma_x^2 \sim t^{\alpha}$$
 with $\alpha \neq 1 \ (t \to \infty)$

examples of applications: polymer dynamics (Panja, 2010); biological cell migration (Dieterich et al., 2008)

consider two generic cases:

1. internal Gaussian noise defined by the FDR2,

 $<\zeta(t)\zeta(t')>\sim K(t-t')$,

with non-Markovian (correlated) noise; e.g., $K(t) \sim t^{-\beta}$

solving the corresponding generalized Langevin equation in Laplace space yields $FDR2 \Rightarrow FDR1'$

and since $\rho(W_t) \sim \varrho(x, t)$ is Gaussian

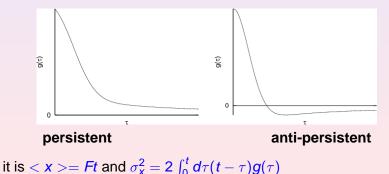
 $`\mathsf{FDR1'} \Rightarrow \mathsf{TFR}$

for correlated internal Gaussian noise \exists TFR

2. external Gaussian noise for which there is no FDR2, modeled by the (overdamped) generalized Langevin equation

 $\dot{\boldsymbol{x}} = \boldsymbol{F} + \zeta(\boldsymbol{t})$

consider two types of Gaussian noise correlated by $g(\tau) = \langle \zeta(t)\zeta(t') \rangle_{\tau=t-t'} \sim (\Delta/\tau)^{\beta}$ for $\tau > \Delta$, $\beta > 0$:



Outline Normal FRs Anomalous TFRs Experiments Summary OTFRs for correlated external Gaussian noise I

persistent noise with $g(\tau) \sim (\Delta/\tau)^{\beta}$: results for σ_x^2 and the fluctuation ratio $R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)}$

• $0 < \beta < 1$: superdiffusion $\sigma_x^2 \sim t^{2-\beta}$ with anomalous TFR $R \sim \frac{W_t}{t^{1-\beta}}$

• $\beta = 1$: weak superdiffusion $\sigma_x^2 \sim t \ln\left(\frac{t}{\Delta}\right)$ with weakly anomalous TFR $R \sim W_t / \ln\left(\frac{t}{\Delta}\right)$

• 1 < β < ∞ : normal diffusion $\sigma_x^2 \sim 2Dt$ with $D = \int_0^\infty d\tau g(\tau)$ and anomalous (generalized) TFR $R \sim \frac{W_t}{D}$

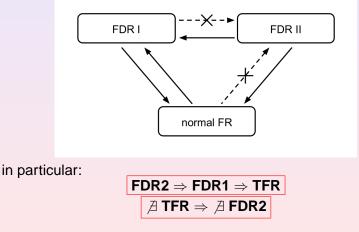
TFRs for correlated external Gaussian noise II

antipersistent noise:

 $\int_0^{\infty} d\tau g(\tau) > 0 \text{ yields normal diffusion with a generalized TFR}$ for $t \gg \Delta$; for 'pure' antipersistent case with $\int_0^{\infty} d\tau g(\tau) = 0$:

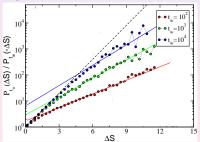
- The regime $0 < \beta < 1$ does not exist (spectral density <0)
- 1 < β < 2: subdiffusion $\sigma_x^2 \sim t^{2-\beta}$ with anomalous TFR $R \sim W_t t^{\beta-1}$
- $\beta = 2$: weak subdiffusion $\sigma_x^2 \sim \ln(t/\Delta)$ with anomalous TFR $R \sim W_t t / \ln(t/\Delta)$
- 2 < β < ∞ : localization $\sigma_x^2 = const$. with anomalous TFR $R \sim W_t t$

relation between TFR and FDR I,II for correlated Gaussian stochastic dynamics: ('normal FR'= conventional TFR)



$$R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)} = \mathbf{f}_{\beta}(\mathbf{t}) W_t$$

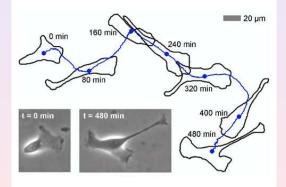
means by plotting R for different t the slope might change. example 1: computer simulations for a binary Lennard-Jones mixture below the glass transition



Crisanti, Ritort, PRL (2013) • similar results for other glassy systems (Sellitto, PRE, 2009)

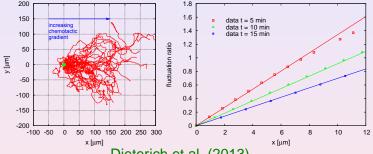
Outline	Normal FRs	Anomalous TFRs	Experiments	Summary		
o	0000	000000	○●○	oo		
Biological cell migration						

example 2: single biological cell crawling on a substrate; trajectory recorded with a video camera



Dieterich, RK et al., PNAS, 2008

experiments on murine neutrophils under chemotaxis:



Dieterich et al. (2013)

- linear drift in the direction of the gradient, $\langle x(t) \rangle \sim t$
- $\sigma_x^2 \sim t^{\beta}$ with $\beta > 1$ (long *t*): $\not\exists$ FDR1
- modeling by a generalized Langevin equation with external noise and $0 < \beta < 1$ as discussed before

Outline	Normal FRs	Anomalous TFRs	Experiments	Summary
o	0000	000000	000	●○
Summary	y			

- TFR tested for two generic cases of correlated Gaussian stochastic dynamics:
 - internal noise: FDR2 implies the validity of the 'normal' work TFR
 external noise: FDR2 is broken; sub-classes of persistent and anti-persistent noise yield both anomalous TFRs
- anomalous TFRs appear to be important for glassy aging dynamics: cf. computer simulations on various glassy models and experiments on ('gelly') cell migration

Outline	Normal FRs	Anomalous TFRs	Experiments	Summary
o	0000	000000		⊙●
Referenc	es			

- A.V. Chechkin, F.Lenz, RK, J. Stat. Mech. L11001 (2012)
- A.V. Chechkin, RK, J. Stat. Mech. L03002 (2009)

