Outline o	Normal FRs 00000	Anomalous TFRs 000000	Cell migration	Summary 00
Fluctuation relations for anomalous dynamics				

Aleksei V. Chechkin¹, Rainer Klages²

1 Institute for Theoretical Physics, Kharkov, Ukraine

2 Queen Mary University of London, School of Mathematical Sciences

Nonequilibrium Processes, Obergurgl, 1st September 2011

Outline	Normal FRs	Anomalous TFRs	Cell migration	Summary
●	00000	oooooo		00
Outline				

• 'Normal' fluctuation relations:

motivation with some history

• Anomalous fluctuation relations:

check transient fluctuation relations for three fundamental classes of anomalous stochastic processes

Biological cell migration:

brief outline and outlook towards checking these relations in experiments

Normal FRs

Anomalous TFRs

A pioneering paper...

VOLUME 71, NUMBER 15 PHYSICAL REVIEW LETTERS

11 OCTOBER 1993

Probability of Second Law Violations in Shearing Steady States

Denis J. Evans

Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2600, Australia

E. G. D. Cohen

The Rockefeller University, 1230 York Avenue, New York, New York 10021

G. P. Morriss

School of Physics, University of South Wales, Kensington, New South Wales, Australia (Received 26 March 1993)

We propose a new definition of natural invariant measure for trajectory segments of finite duration for a many-periodic system. On this basis we give an expression for the probability of Internations in the shear stress of a fluid in a nonequilibrium steady state far from equilibrium. In particular we obtain a thermodynamics. Computer simulations support this formula.

two-dimensional fluid of soft particles under shear: measure the probability distribution $\rho(\eta_t)$ of the entropy production rate $\eta_t \sim P_{xyt}$ during time *t* in a nonequilibrium steady state

ratio of the tails → Second Law for small nonequ. systems

analytical argument (for $\rho(\eta_t)$ in terms of the SRB measure) yielded the **steady state fluctuation relation**

$$\ln \frac{\rho(\eta_t)}{\rho(-\eta_t)} = t\eta_t$$

confirmed by computer simulations (for long enough *t*):

proof on basis of chaotic hypothesis by Gallavotti, Cohen (1995)

0	ut		е

Normal FRs

Anomalous TFRs

Cell migratio

Summary

A second pioneering paper

PHYSICAL REVIEW E

VOLUME 50, NUMBER 2

AUGUST 1994

Equilibrium microstates which generate second law violating steady states

Denis J. Evans and Debra J. Searles

Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 0200, Australia (Received 8 November 1993)

For reversible deterministic N-particle thermostatted systems, we examine the question of why it is so difficult to find initial microstates that will, at long times under the influence of an external dissipative field and a thermostat, lead to second law violating nonequilibrium steady states. We prove that the measure of those phases that generate second law violating phase space trajectories vanishes exponentially with time.

Consider a particle system *evolving from some initial state* into a nonequilibrium steady state.

Measure the probability distribution $\rho(\xi_t)$ of *entropy production* ξ_t during time *t*:

$$\ln \frac{\rho(\xi_t)}{\rho(-\xi_t)} = \xi_t$$

transient (Evans-Searles) fluctuation relation (TFR)

Outline

Normal FRs

Anomalous TFRs

Cell migration

Yet a third one...

Volume 89, Number 5

PHYSICAL REVIEW LETTERS

29 JULY 2002

Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales

G. M. Wang, J. E. M. Sevick-J. Emil Mittag, J. Debra, J. Scarles, ² and Denis, J. Evans¹ ¹Research School of Chemistry, The Austerialian National University, Camberon ACT 2020, Australia ²School of Science, Griffith University, Brisbane QLD 4111, Australia (Received 4 March 2002; published 15 July 2002)

We experimentally demonstrate the fluctuation theorem, which predicts appreciable and measurable violations of the second law of thermodynamics for small systems over short time scales, by following the trajectory of a colloidal particle captured in an optical trap that is translated relative to surrounding water molecules. From each particle trajectory, we calculate the entropy production/consumption over the duration of the trajectory and determine the fraction of second law-defying trajectories. Our results show entropy consumption can create our over colloidal length and time scales.

Brownian particle in a harmonic trap dragged with constant velocity v_* through a fluid:

FRs can be checked in experiments!

work on related concepts: Jarzynski (1997), Crooks (1999), Seifert (2005); experiments by Ciliberto (1998), Ritort (2002).

Normal FRs Anomalous TFRs Cell migration Summary Outline Normal FRs Anomalous TFRs Cell migration Summary Fluctuation relation for Langevin dynamics Summary Summary Summary Summary

warmup: check TFR for the overdamped Langevin equation

 $\dot{\mathbf{x}} = \mathbf{F} + \zeta(\mathbf{t})$ (set all irrelevant constants to 1)

with constant field *F* and Gaussian white noise $\zeta(t)$.

entropy production ξ_t is equal to (mechanical) work $W_t = Fx(t)$ with $\rho(W_t) = F^{-1}\varrho(x, t)$; remains to solve corresponding Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

$$\varrho(\mathbf{x},t) = \frac{1}{\sqrt{2\pi\sigma_{\mathbf{x}}^2}} \exp\left(-\frac{(\mathbf{x}-\langle \mathbf{x} \rangle)^2}{2\sigma_{\mathbf{x}}^2}\right)$$

straightforward:

(work) TFR holds if
$$< W_t >= \sigma_{W_t}^2/2$$

and \exists fluctuation-dissipation relation 1 (FDR1) \Rightarrow TFR

see, e.g., van Zon, Cohen, PRE (2003)

Outline	Normal FRs	Anomalous TFRs	Cell migration	Summary
o	00000	●00000		oo
TFR _e f	or anomalou	le dynamice		

goal: check TFR for three fundamental types of anomalous diffusion

First type: Gaussian stochastic processes defined by the (overdamped) generalized Langevin equation (Kubo, 1965)

$$\int_{0}^{t} dt' \dot{x}(t') \mathcal{K}(t-t') = \mathcal{F} + \zeta(t)$$

with Gaussian noise $\zeta(t)$ and a suitable memory kernel K(t)

examples of applications: polymer dynamics (Panja, 2010); biological cell migration (Dieterich et al., 2008)

Outline	Normal FRs	Anomalous TFRs	Cell migration	Summary
o	00000	o●oooo		00
TFR for c	orrelated inte	rnal Gaussian	noise	

split this class into two cases:

internal Gaussian noise defined by the FDR2

 $\langle \zeta(t)\zeta(t')\rangle \sim K(t-t')$,

which is correlated by $K(t) \sim t^{-\beta}$, $0 < \beta < 1$

 $\rho(W_t) \sim \rho(x, t)$ is Gaussian; solving the generalized Langevin equation in Laplace space yields subdiffusion

 $\sigma_{\rm w}^2 \sim t^{\beta}$

by preserving FDR1 which implies

 $< W_t > = \sigma_{W_t}^2 / 2$

for correlated internal Gaussian noise ∃ TFR

Outline	Normal FRs	Anomalous TFRs	Cell migration	Summary
o	00000	oo●ooo	০০০০	00
TFR for c	orrelated exte	ernal Gaussian	noise	

2. consider overdamped generalized Langevin equation

 $\dot{\mathbf{x}} = \mathbf{F} + \zeta(\mathbf{t})$

with correlated Gaussian noise defined by

 $<\zeta(t)\zeta(t')>\sim |t-t'|^{-eta},\ 0<eta<1$,

which is external, because there is no FDR2

 $\rho(W_t) \sim \varrho(x, t)$ is again Gaussian but here with **superdiffusion** by **breaking FDR1**:

$$< W_t > \sim t$$
 , $\sigma^2_{W_t} \sim t^{2-eta}$

yields the anomalous TFR

$$\ln \frac{\rho(W_t)}{\rho(-W_t)} = \mathbf{C}_{\beta} \mathbf{t}^{\beta-1} W_t \quad (0 < \beta < 1)$$

note: pre-factor on rhs not equal to one and time dependent

Outline	Normal FRs	Anomalous TFRs	Cell migration	Summary
o	00000	○○○●○○		oo
Relations	s to experi	ments		

$$\ln \frac{\rho(W_t)}{\rho(-W_t)} = \frac{\mathbf{C}_{\beta}}{\mathbf{t}^{1-\beta}} W_t \quad (0 < \beta < 1)$$

experiments on slime mold:

Hayashi, Takagi, J.Phys.Soc.Jap. (2007)

computer simulation on glassy lattice gas:

Sellitto, PRE (2009)

 \Rightarrow anomalous fluctuation relation important for glassy dynamics

 Outline
 Normal FRs
 Anomalous TFRs
 Cell migration
 Summary

 0
 0000
 0000
 0000
 0000

 TFR for Lévy flights
 Cell migration
 Summary

Second type of anomalous dynamics: consider the Langevin equation $\dot{x} = F + \zeta(t)$ with white Lévy noise $\rho(\zeta) \sim |\zeta|^{-1-\alpha} (\zeta \to \infty)$, $0 \le \alpha < 2$ **examples of applications:** fluid dynamics (Solomon et al., 1993); Lévy flights for light (Barthelemy, 2008) by solving the corresponding Fokker-Planck equation

$$\frac{\partial \rho}{\partial t} = -F \frac{\partial \rho}{\partial x} + \frac{\partial^{\alpha} \rho}{\partial |x|^{\alpha}}$$

with Riesz fractional derivative $\frac{\partial^{\alpha}\rho}{\partial|x|^{\alpha}} = \Gamma(1+\alpha)\frac{\sin(\alpha\pi/2)}{\pi}\int_{0}^{\infty} dy(\rho(x+y)-2\rho(x)+\rho(x-y))/y^{1+\alpha}$ and using the scaled variable $w_{t} = W_{t}/(F^{2}t)$ we recover $\lim_{w_{t}\to\pm\infty}\frac{\rho(w_{t})}{\rho(-w_{t})} = 1$ Touchette, Cohen, PRE (2007) i.e., large fluctuations are equally possible
 Outline
 Normal FRs
 Anomalous TFRs
 Cell migration
 Summary

 0
 00000
 00000
 0000
 0000

TFR for time-fractional kinetics

Third type of anomalous dynamics: via subordinated Langevin equation $\frac{dx(u)}{du} = F + \zeta(u)$, $\frac{dt(u)}{du} = \tau(u)$ with Gaussian white noise $\zeta(u)$ and white Lévy stable noise $\tau(u) > 0$; leads to the time-fractional Fokker-Planck equation

$$\frac{\partial \rho}{\partial t} = \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \left[-\frac{\partial F}{\partial x} + \frac{\partial^2}{\partial x^2} \right] \rho$$

with Riemann-Liouville fractional derivative

 $\frac{\partial^{\gamma} \rho}{\partial t^{\gamma}} = \frac{\partial^{m}}{\partial t^{m}} \left[\frac{1}{\Gamma(m-\gamma)} \int_{0}^{t} dt' \frac{\rho(t')}{(t-t')^{\gamma+1-m}} \right] \text{ for } m-1 < \gamma < m, \ m \in \mathbb{N}$ and $\frac{\partial^{\gamma} \rho}{\partial t^{\gamma}} = \frac{\partial^{m} \rho}{\partial t^{m}} \text{ for } \gamma = m$, which **preserves** a generalized **FDR1 examples of applications:** photo current in copy machines (Scher et al., 1975) and related systems modeled by *Continuous Time Random Walk theory* (Metzler, Klafter, 2004) for this dynamics we recover the conventional TFR

single biological cell crawling on a substrate; trajectory recorded with a video camera (Dieterich et al., 2008)

movie: MDCKF: t=210min, dt=3min

Outline	Normal FRs	Anomalous TFRs	Cell migration	Summary
			0000	
-				

Position distribution function

- two types: wildtype and deficient one
- $P(x, t) \rightarrow \text{Gaussian}$ $(t \rightarrow \infty)$ and kurtosis

$$\kappa(t) := rac{\langle x^4(t)
angle}{\langle x^2(t)
angle^2} o \mathbf{3} \, (t o \infty)$$

for Brownian motion (green lines, in 1d)

- other solid lines: fits from our model
- also extracted: mean square displacement, velocity autocorrelation fct.

 \Rightarrow crossover from peaked to broad **non-Gaussian distributions**

new experiments on murine neutrophils under chemotaxis

Schwab, Dieterich et al. (unpub.)

- linear drift in the direction of the gradient, $\langle y(t) \rangle \sim t$
- $msd(t) \langle y(t) \rangle^2 \sim t^{\beta}$ with same exponent $\beta > 1$ as in equilibrium $\Rightarrow \beta$ fluctuation dissipation relation 1
- data suggest an anomalous fluctuation relation of the type as obtained for generalized Langevin dynamics

Outline	Normal FRs	Anomalous TFRs	Cell migration	Summary
o	00000	000000	○○○●	oo
The mode	el			

cell data fit by a **fractional Klein-Kramers equation** with external force F(x) (Metzler, Sokolov, 2002):

$$\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x} \left[vP \right] + \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \kappa \left[\frac{\partial}{\partial v} v - \frac{F}{\kappa m} \frac{\partial}{\partial v} + v_{th}^2 \frac{\partial^2}{\partial v^2} \right] P$$

with probability distribution P = P(x, v, t), damping term κ , thermal velocity v_{th} and Riemann-Liouville fractional derivative of order $1 - \alpha$

for $\alpha = 1$ ordinary Klein-Kramers equation recovered

analytical solutions yield correctly drift, msd, VACF and (for large enough κ and t) the pdf's

Anomalous fluctuation relations: summary

- TFR tested for three fundamental types of anomalous stochastic dynamics:
 - Gaussian stochastic processes with correlated noise:

 $FDR2 \Rightarrow FDR1 \Rightarrow TFR$

TFR holds for internal noise, mild violation for external one

- strong violation of TFR for space-fractional (Lévy) dynamics
- TFR holds for time-fractional dynamics
- same results obtained for a particle confined in a harmonic potential dragged by a constant velocity (cf. experiment by Wang et al., 2002)
- outlook: work in progress on more generalized Gaussian processes and cell migration

Outline	Normal FRs	Anomalous TFRs	Cell migration	Summary
o	00000	000000		⊙●
Reference	es			

- A.V. Chechkin, RK, *Fluctuation relations for anomalous dynamics*, J. Stat. Mech. L03002 (2009)
- P. Dieterich et al., *Anomalous dynamics of cell migration*, PNAS **105**, 459 (2008)
- book on Nonequilibrium statistical physics of small systems currently in preparation (RK, Just, Jarzynski, Eds.; for 2012)

Happy Birthday Denis!