Aleksei V. Chechkin^{1,2}, Peter Dieterich³, Rainer Klages^{2,4}

1 Institute for Theoretical Physics, Kharkov, Ukraine 2 Max Planck Institute for the Physics of Complex Systems, Dresden, Germany 3 Institute for Physiology, Technical University of Dresden, Germany

4 Queen Mary University of London, School of Mathematical Sciences

Fluctuation driven phenomena in non-equilibrium statistical mechanics, Warwick, 24 September 2015

Outline

- Transient fluctuation relations (TFRs): motivation and warm-up
- Correlated Gaussian dynamics:
 check TFRs for generalized Langevin dynamics
- Non-Gaussian dynamics: check TFRs for time-fractional Fokker-Planck equations
- Relations to experiments: glassy dynamics and biological cell migration

Motivation: Fluctuation relations

Consider a (classical) particle system evolving from some initial state into a nonequilibrium steady state.

Measure the probability distribution $\rho(\xi_t)$ of entropy production

 ξ_t during time t:

$$\ln \frac{\rho(\xi_t)}{\rho(-\xi_t)} = \xi_t$$

Transient Fluctuation Relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

why important? of very general validity and

- generalizes the Second Law to small systems in nonequ.
- connection with fluctuation dissipation relations
- 3 can be checked in experiments (Wang et al., 2002)

Fluctuation relation for Langevin dynamics

warm-up: check TFR for the overdamped Langevin equation

$$\dot{\mathbf{x}} = \mathbf{F} + \zeta(t)$$
 (set all irrelevant constants to 1)

with constant field F and Gaussian white noise $\zeta(t)$.

entropy production ξ_t is equal to (mechanical) work $W_t = Fx(t)$

with $\rho(W_t) = F^{-1}\varrho(x, t)$; remains to solve corresponding Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

$$\varrho(x,t) = \frac{1}{\sqrt{2\pi\sigma_x^2}} \exp\left(-\frac{(x-\langle x\rangle)^2}{2\sigma_x^2}\right)$$

straightforward:

(work) TFR holds if
$$\langle x \rangle = F \sigma_x^2/2$$

and ∃ fluctuation-dissipation relation 1 (FDR1) ⇒ TFR

see, e.g., van Zon, Cohen, PRE (2003)

goal: check TFR for Gaussian stochastic processes defined by the (overdamped) **generalized Langevin equation**

$$\int_0^t dt' \dot{x}(t') K(t-t') = F + \zeta(t)$$
e.g., Kubo (1965)

with Gaussian noise $\zeta(t)$ and memory kernel K(t)

This dynamics can generate anomalous diffusion:

$$\sigma_{x}^{2} \sim t^{\alpha} \text{ with } \alpha \neq 1 \ (t \rightarrow \infty)$$

consider two generic cases:

Fluctuation Relations

1. internal Gaussian noise defined by the FDR2,

$$<\zeta(t)\zeta(t')>\sim K(t-t')$$
,

with non-Markovian (correlated) noise; e.g., $K(t) \sim t^{-\beta}$

solving the corresponding generalized Langevin equation in

Laplace space yields

$$FDR2 \Rightarrow 'FDR1'$$

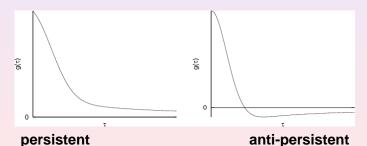
and since $\rho(W_t) \sim \rho(x, t)$ is Gaussian

for correlated **internal Gaussian noise** ∃ TFR

2. external Gaussian noise for which there is no FDR2, modeled by the (overdamped) generalized Langevin equation

$$\dot{\mathbf{x}} = \mathbf{F} + \zeta(\mathbf{t})$$

consider two types of Gaussian noise correlated by $g(\tau) = \langle \zeta(t)\zeta(t') \rangle_{\tau=t-t'} \sim (\Delta/\tau)^{\beta}$ for $\tau > \Delta$, $\beta > 0$:



it is $\langle x \rangle = Ft$ and $\sigma_x^2 = 2 \int_0^t d\tau (t - \tau) g(\tau)$

Results: TFRs for correlated external Gaussian noise

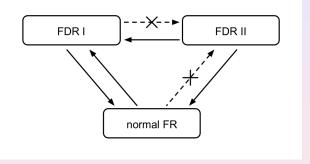
$$\sigma_{x}^{2}$$
 and the fluctuation ratio $R(W_{t}) = \ln \frac{\rho(W_{t})}{\rho(-W_{t})}$ for $t \gg \Delta$ and $g(\tau) = \langle \zeta(t)\zeta(t') \rangle_{\tau = t - t'} \sim (\Delta/\tau)^{\beta}$:

	persistent		antipersistent *	
β	σ_{X}^2	$R(W_t)$	σ_{X}^2	$R(W_t)$
$0 < \beta < 1$	$\sim t^{2-\beta}$	$\sim \frac{W_t}{t^{1-\beta}}$	regime	
$\beta = 1$	$\sim t \ln \left(\frac{t}{\Delta} \right)$	$\sim rac{W_t}{\ln(rac{t}{\Delta})}$	does not exist	
			$\sim t^{2-\beta}$	$\sim t^{\beta-1} W_t$
$\beta = 2$	\sim 2 <i>Dt</i>	$\sim rac{W_t}{D}$	$\sim \ln(t/\Delta)$	$\sim rac{t}{\ln(rac{t}{\Delta})} W_t$
$2 < \beta < \infty$			= const.	$\sim t \dot{W}_t$

^{*} antipersistence for $\int_0^\infty d\tau g(\tau) > 0$ yields normal diffusion with generalized TFR; above antipersistence for $\int_0^\infty d\tau g(\tau) = 0$

FDR and TFR

relation between TFR and FDR I,II for correlated Gaussian stochastic dynamics: ('normal FR'= conventional TFR)



in particular:

FDR2 ⇒ FDR1 ⇒ TFR

$$\exists$$
 TFR ⇒ \exists FDR2

Modeling non-Gaussian dynamics

• start again from overdamped Langevin equation $\dot{x} = F + \zeta(t)$, but here with **non-Gaussian** power law correlated noise

$$g(\tau) = <\zeta(t)\zeta(t')>_{\tau=t-t'} \sim (K_{\alpha}/ au)^{2-\alpha}\;,\;1<\alpha<2$$

'motivates' the non-Markovian Fokker-Planck equation

type A:
$$\frac{\partial \varrho_{A}(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[F - \mathcal{K}_{\alpha} D_{t}^{1-\alpha} \frac{\partial}{\partial x} \right] \varrho_{A}(x,t)$$

with Riemann-Liouville fractional derivative $D_t^{1-\alpha}$ (Balescu, 1997)

• two formally similar types derived from CTRW theory, for $0 < \alpha < 1$:

type B:
$$\frac{\partial \varrho_{\mathcal{B}}(\mathbf{x},t)}{\partial t} = -\frac{\partial}{\partial \mathbf{x}} \left[F - K_{\alpha} D_{t}^{1-\alpha} \frac{\partial}{\partial \mathbf{x}} \right] \varrho_{\mathcal{B}}(\mathbf{x},t)$$
type C: $\frac{\partial \varrho_{\mathcal{C}}(\mathbf{x},t)}{\partial t} = -\frac{\partial}{\partial \mathbf{x}} \left[F D_{t}^{1-\alpha} - K_{\alpha} D_{t}^{1-\alpha} \frac{\partial}{\partial \mathbf{x}} \right] \varrho_{\mathcal{C}}(\mathbf{x},t)$

They model a very different class of stochastic process!

Properties of non-Gaussian dynamics

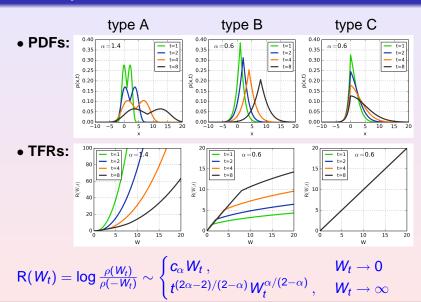
Riemann-Liouville fractional derivative defined by

$$\frac{\partial^{\gamma} \varrho}{\partial t^{\gamma}} := \begin{cases} \frac{\partial^{m} \varrho}{\partial t^{m}} &, \quad \gamma = m \\ \frac{\partial^{m}}{\partial t^{m}} \left[\frac{1}{\Gamma(m-\gamma)} \int_{0}^{t} dt' \frac{\varrho(t')}{(t-t')^{\gamma+1-m}} \right] &, \quad m-1 < \gamma < m \end{cases}$$

with $m \in \mathbb{N}$; power law inherited from correlation decay. two important properties:

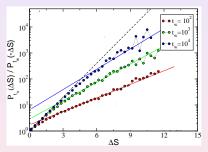
- FDR1: exists for type C but not for A and B
- mean square displacement:
- type A: superdiffusive, $\sigma_{\rm v}^2 \sim t^{\alpha}$, $1 < \alpha < 2$
- type B: subdiffusive, $\sigma_{\rm v}^2 \sim t^{\alpha}$, $0 < \alpha < 1$
- type C: sub- or superdiffusive, $\sigma_{\rm v}^2 \sim t^{2\alpha}$, $0 < \alpha < 1$
- position pdfs: can be calculated approx. analytically for A, B, only numerically for C

Probability distributions and fluctuation relations



Relations to experiments: glassy dynamics

example 1: computer simulations for a binary Lennard-Jones mixture below the glass transition



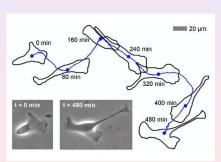
Crisanti, Ritort, PRL (2013)

- again: $R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)} = f_{\beta}(t)W_t$; cp. with TFR type B
- similar results for other glassy systems (Sellitto, PRE, 2009)

Cell migration without and with chemotaxis

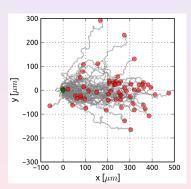
example 2: single MDCKF cell crawling on a substrate; trajectory recorded with a video camera

Fluctuation Relations



Dieterich et al., PNAS, 2008

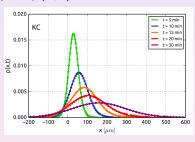
new experiments on murine neutrophils under chemotaxis:



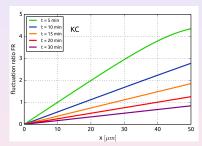
Dieterich et al. (2013)

Anomalous fluctuation relation for cell migration

experim. results: position pdfs $\rho(x, t)$ are Gaussian



fluctuation ratio $R(W_t)$ is time dependent



$$< x(t) > \sim t$$
 and $\sigma_x^2 \sim t^{2-\beta}$ with $0 < \beta < 1$: β FDR1 and

$$R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)} = \frac{W_t}{\mathbf{t}^{1-\beta}}$$

data matches to analytical results for persistent correlations

Summary

- TFR tested for two generic cases of correlated Gaussian stochastic dynamics:
 - internal noise: FDR2 implies the validity of the 'normal' work TFR
 - external noise: FDR2 is broken; sub-classes of persistent and anti-persistent noise yield both anomalous TFRs
- TFR tested for three cases of non-Gaussian dynamics: breaking FDR1 implies again anomalous TFRs
- anomalous TFRs appear to be important for glassy aging dynamics: cf. computer simulations on various glassy models and experiments on ('gelly') cell migration

References

- P.Dieterich, RK, A.V. Chechkin, NJP 17, 075004 (2015)
- A.V. Chechkin, F.Lenz, RK, J. Stat. Mech. L11001 (2012)
- A.V. Chechkin, RK, J. Stat. Mech. L03002 (2009)
- RK, A.V. Chechkin, P.Dieterich, Anomalous fluctuation relations in:

