Motivation	The Lévy flight hypothesis	Lévy or not Lévy?	Two own works	Summary

Statistical physics and anomalous dynamics of foraging

Rainer Klages

Queen Mary University of London, School of Mathematical Sciences

Evolutionary Dynamics and Complexity City University London, 13 June 2014

Motivation	The Lévy flight hypothesis	Lévy or not Lévy?	Two own works	Summary 00		
Motivation						

Statistical physics of foraging:

Can biologically relevant search strategies be identified by mathematical modeling?

3 parts:

- the albatross story and the Lévy flight hypothesis
- biological data: analysis and interpretation
- own research in this direction

Lévy flight search patterns of wandering albatrosses

famous paper by Viswanathan et al., Nature 381, 413 (1996):

for albatrosses foraging in the South Atlantic the flight times were recorded

the distribution of flight times was fitted with a Lévy flight model (power law)

Lévy flights have well-defined mathematical properties:

- a Markovian stochastic process (no memory)
- with probability distribution function of flight lengths exhibiting power law tails, ρ(ℓ) ~ ℓ^{-1−α}, 0 < α < 2;
- it has infinite variance, $<\ell^2>=\infty$,
- satisfies a generalized central limit theorem (Gnedenko, Kolmogorov, 1949) and
- is scale invariant

for an outline see, e.g., Shlesinger at al., Nature 363, 31 (1993)

(remark: ∃ the more physical model of *Lévy walks*)

another paper by Viswanathan et al., Nature 401, 911 (1999):

- question posed about "best statistical strategy to adapt in order to search efficiently for randomly located objects"
- random walk model leads to Lévy flight hypothesis:

Lévy flights provide an optimal search strategy for sparsely, randomly distributed, revisitable targets

Brownian motion (left) vs. Lévy flights (right)

• Lévy flights also obtained for bumblebee and deer data

Revisiting Lévy flight search patterns

Edwards et al., Nature 449, 1044 (2007):

• Viswanathan et al. results revisited by correcting old data (Buchanan, Nature **453**, 714, 2008):

- no Lévy flights: new, more extensive data suggests (gamma distributed) stochastic process
- **but** claim that truncated Lévy flights fit yet new data Humphries et al., PNAS **109**, 7169 (2012)

Lévy paradigm: Look for power law tails in pdfs!

 Sims et al., Nature 451, 1098 (2008): scaling laws of marine predator search behaviour; > 10⁶ data points!

prey distributions also display Lévy-like patterns...

 Humphries et al., Nature 465, 1066 (2010): environmental context explains Lévy and Brownian movement patterns of marine predators; > 10⁷ data points!; for blue shark:

blue: exponential; red: truncated power law

 note: ∃ day-night cycle, cf. oscillations; suggests to fit with two different pdfs (not done)

strictly speaking two different Lévy flight hypotheses:

Lévy flights represent an (evolutionary) adaptive optimal search strategy Viswanathan et al. (1999) the 'conventional' Lévy

flight hypothesis

Lévy flights emerge from the interaction with a scale-free food source distribution

Viswanathan et al. (1996)

more recent reasoning

Bénichou et al., Rev. Mod. Phys. 83, 81 (2011):

• for *non-revisitable targets* **intermittent** search strategies minimize the search time

 popular account of this work in Shlesinger, Nature 443, 281 (2006): "How to hunt a submarine?"; cf. also protein binding on DNA

Summary:

- two different Lévy flight hypothesis: adaptive and emergent
- scale-free Lévy flight paradigm
- problems with the data analysis
- intermittent search strategies as alternatives

\Rightarrow **discussion is ongoing:** spider monkeys (2004); mussels (2011); ...

Motivation o	The Lévy flight hypothesis	Lévy or not Lévy?	Two own works ●੦	Summary 00
Foraging	bumblebees			

- tracking of **bumblebee flights** in the lab
- foraging in an artificial carpet of flowers with or without spiders

note: no test of the Lévy hypothesis but work inspired by the 'paradigm'

main result of data analysis and stochastic modeling: no change in the **velocity pdf** under predation thread; only change in the **velocity autocorrelation function**

F.Lenz, T.Ings, A.V.Chechkin, L.Chittka, R.K., Phys. Rev. Lett. **108**, 098103 (2012)

 Motivation
 The Lévy flight hypothesis
 Lévy or not Lévy?
 Two own works
 Summary

 0
 000
 000000
 00
 00

Lévy motion of migrating cells?

single biological cell crawling on a substrate:

- T-cells perform (generalized) Lévy walks: T.H. Harris et al., Nature **486**, 545 (2012)
- our (earlier) finding for kidney cells:
 - for long times superdiffusion but not Lévy
 - different dynamics on different time scales instead of scale-free

Dieterich et al., PNAS 105, 459 (2008)

Statistical physics and anomalous dynamics of foraging

Motivation o	The Lévy flight hypothesis	Lévy or not Lévy?	Two own works	Summary ●○
Summarv				

• Be careful with (power law) paradigms for data analysis:

'... the better fit of the complex model ... trades off with the elegance and clarity of the simpler model.' (?) de Jager et al., Science (2012)

• Other quantities (correlation functions) can contain crucial information about interactions between forager and environment

suggestion: replace the question

What is the mathematically **most efficient search strategy**?

by the more fundamental question

How can we **statistically quantify** changes in foraging dynamics due to **interactions with the environment**?

Motivation	The Lévy flight hypothesis	Lévy or not Lévy?	Two own works	Summary ⊙●
Outlook				

This conclusion fits to the Movement Ecology Paradigm:

Nathan et al., PNAS 105, 19052 (2008)

Mathematically, this suggests a state space approach $\mathbf{u}_{t+1} = F(\Omega, \Phi, \mathbf{r}_t, \mathbf{w}_t, \mathbf{u}_t)$ for the location \mathbf{u}_t of an organism at time t.