Spatio-temporal dynamics of bumblebees foraging under predation risk

Friedrich Lenz ${ }^{1}$ Thomas C. Ings ${ }^{2}$ Lars Chittka ${ }^{2}$ Aleksei V. Chechkin ${ }^{3} \quad$ Rainer Klages ${ }^{1}$
${ }^{1}$ Queen Mary University of London, School of Mathematical Sciences
${ }^{2}$ Queen Mary University of London, Biological and Chemical Sciences
${ }^{3}$ Institute for Theoretical Physics NSC KIPT, Kharkov, Ukraine
Spring Meeting of the DPG, TU Berlin, 26 March 2012

Motivation

bumblebee foraging - two very practical problems:

1. find food (nectar, pollen) in complex landscapes

2. try to avoid predators

What type of motion?

Study bumblebee foraging in a laboratory experiment.

The bumblebee experiment

Ings, Chittka, Current Biology 18, 1520 (2008): bumblebee foraging in a cube of $\simeq 75 \mathrm{~cm}$ side length

- artificial yellow flowers: 4×4 grid on one wall
- two cameras track the position (50fps) of a single bumblebee (Bombus terrestris)

- advantages: systematic variation of the environment; easier than tracking bumblebees on large scales
- disadvantage: no 'free flight' of bumblebees

Variation of the environmental conditions

three experimental stages:

(1) spider-free foraging
(2) foraging under predation risk
(3) memory test 1 day later
safe and dangerous
flowers
\#bumblebees=30, \#data per bumblebee for each stage ≈ 7000

Bumblebee experiment: two main questions

(1) What type of motion do the bumblebees perform in terms of stochastic dynamics?

(2) Are there changes of the dynamics under variation of the environmental conditions?

Velocity distributions: analysis

left: experimental pdf of v_{y}-velocities of a single bumblebee in the spider-free stage (black crosses) with max. likelihood fits of mixture of 2 Gaussians; exponential; power law; single Gaussian
right: quantile-quantile plot of a Gaussian mixture against the experimental data (black) plus surrogate data

Velocity distributions: interpretation

- best fit to the data by a mixture of two Gaussians with different variances (quantified by information criteria with resp. weights)
- biological explanation: models spatially different flight modes near the flower vs. far away, cf. intermittent dynamics
big surprise: no difference in pdf's between different stages under variation of environmental conditions!

Velocity autocorrelation function || to the wall

$$
V_{y}^{A C}(\tau)=\frac{\left\langle\left(v_{y}(t)-\mu\right)\left(v_{y}(t+\tau)-\mu\right)\right\rangle}{\sigma^{2}} \text { with average over all bees: }
$$

- plot: spider-free stage, predation thread, memory test
- correlations change from positive (spider-free) to negative (spiders)
\Rightarrow all changes are in the velocity correlations, not in pdf's!

Predator avoidance and a simple model

predator avoidance as difference in position pdfs spider / no spider from data: $\Delta \rho_{p}\left(x_{\text {rel }} y_{r e l}\right)$

positive spike: hovering; negative region: avoidance modeling by the Langevin equation

$$
\frac{d v_{y}}{d t}(t)=-\eta v_{y}(t)-\frac{\partial U}{\partial y}(y(t))+\xi(t)
$$

η : friction coefficient, ξ : Gaussian white noise
U : repulsive interaction potential bumblebee - spider that
reproduces the change in the velocity correlations

Summary: Clever bumblebees!

- mixture of two Gaussian velocity distributions reflects spatial adjustment of bumblebee dynamics to flower carpet
- all changes to predation thread are contained in the velocity autocorrelation functions, which exhibit highly non-trivial temporal behaviour
(nb: Lévy hypothesis suggests that all relevant foraging information is contained in pdf's)
- change of correlation decay in the presence of spiders due to experimentally extracted repulsive force as reproduced by generalized Langevin dynamics

Reference

F.Lenz, T.Ings, A.V.Chechkin, L.Chittka, R.Klages Spatio-temporal dynamics of bumblebees foraging under predation risk

