Bumble	bee flights	Data analysis 00000	The stochastic model	Summary o
	Cons	structing a S	Stochastic Model	
	of Rumbleb	ee Flights f	rom Experimental	Data
				Bala

Friedrich Lenz¹ Aleksei V. Chechkin² Rainer Klages¹

¹Queen Mary University of London, School of Mathematical Sciences

²Institute for Theoretical Physics NSC KIPT, Kharkov, Ukraine

DPG Spring Meeting, Dresden, 2 April 2014

Bumblebee flights	Data analysis	The stochastic model	Summary
●○○	০০০০০		o
Motivation			

bumblebee foraging:

find food (nectar, pollen) in complex landscapes

What type of motion?

Study bumblebee foraging in a laboratory experiment.

•••• 	00000	00	
•••	00000	00	
Bumblebee flights	Data analysis	The stochastic model	Summary

Bumblebee experiment

Ings, Chittka, Current Biology **18**, 1520 (2008): **bumblebee foraging** in a cube of \simeq 75cm side length

- artificial yellow flowers: 4x4 grid on one wall
- two cameras track the position (50fps) of a single bumblebee (*Bombus terrestris*)
- #bumblebees=30, #data points \approx 49000

nb: Here we only focus on one aspect of the full experiment.

Bumblebee flights	Data analysis	The stochastic model	Summary
○O●	ooooo		o
The main quest	tion		

What **type of motion** do the bumblebees perform *away from the flower carpet* in terms of **stochastic dynamics**?

nb: The foraging dynamics *in interaction with the flowers* has been studied in Lenz et al., PRL **108**, 098103 (2012).

Bumblebee flights Data analysis The stochastic model Summary oo o

Reorientation (or CRW) model

describe biological movements in a plane by speed s(t) = |v(t)| and turning angle β in comoving frame: Correlated Random Walk model

 $\beta(t) = \xi(t), \ \mathbf{s}(t) = \mathbf{const.}$

where $\xi(t)$ is typically drawn i.i.d. from a wrapped normal distribution; model captures directional biological persistence

goal: construct a **generalized CRW model from experimental data** for reproducing 'free' bumblebee flights by using Langevin-type dynamics: drift terms plus noise

$$\frac{d\beta(t)}{dt} = h(\beta(t), s(t)) + \tilde{\xi}(t)$$
$$\frac{ds(t)}{dt} = g(\beta(t), s(t)) + \psi(t)$$

Bumblebee flights	Data analysis o●ooo	The stochastic model	Summary o
Drift coefficients:	phase space of	lynamics	

assume Markovianity for estimating **Fokker-Planck drift** coefficients *h* and *g*; normalized drift vector field:

indicates that the cross-dependencies of $h(\beta(t), s(t))$ on s and of $g(\beta(t), s(t))$ on β are weak; vector field splits into

$$d\beta/dt = h(\beta(t)) + \tilde{\xi}(t)$$

$$ds/dt = g(s(t)) + \psi(t)$$

Estimation of drift terms from data

extract projection $h(\beta)$ from data: $h(\beta) \simeq -k\beta$ with $k \approx 1/\Delta t$ integrating $d\beta/dt = h(\beta(t)) + \tilde{\xi}(t)$ wrt Δt yields $\beta(t) = \xi(t)$

extract projection g(s) from data: \exists preferred speed s_0 ; piecewise linear approximation for g(s) in $ds/dt = g(s(t)) + \psi(t)$ yields $g(s) \approx (s - s_0) \cdot \begin{cases} -d_1, s < s_0 \\ -d_2, s \ge s_0 \end{cases}$ with $d_1 > d_2 > 0$

Bumblebee flights	Data analysis ooo●o	The stochastic model	Summary o
X / 1 1/	1 I I I I I I		

Velocity-dependent angle noise

pdf for the **turning angles** β at each speed s is approximated by a Gaussian;

however, the **variance** σ_{β} is s-dependent (cf. naive reasoning):

$$\begin{array}{rcl} \beta(t) &=& \xi_s(t) \\ \xi_s(t) &\sim& \mathcal{N}(0, f(s(t))) \\ f(s) &=& c_1 e^{-c_2 s} + c_3 \end{array}$$

Noise autocorrelation functions

noise $\xi_s(t)$ of turning angles β is a steep power law:

noise of speed changes $\psi(t) = ds/dt - g(s(t))$ is Gaussian with anti-correlations:

Bumblebee flights	Data analysis	The stochastic model	Summary
	০০০০০	●○	o
Summary: Th	ne complete m	odel	

$$egin{array}{rcl} eta(t)&=&\xi_{s}(t)\ \displaystylerac{ds}{dt}&=&g(s(t))+\psi(t) \end{array}$$

- turning angles β given by power law-correlated Gaussian noise $\xi_s(t) \sim \mathcal{N}(0, \sigma_{\xi}(s)))$ with $\sigma_{\xi}(s) = c_1 e^{-c_2 s} + c_3$
- piecewise linear drift g(s) for speed s
- ψ Gaussian noise and anti-correlated via sum of exponentials

Bumblebee flights	Data analysis 00000	The stochastic model	Summary ●	
Summary and Potoronoo				

- Summary and Reference
 - We have constructed a generalized Langevin-type correlated random walk model that well reproduces bumblebee flights in a small cube.
 - Question 1: Does it also work for bee flights in the wild?
 - Question 2: Can we model other animal flights with it?

Reference:

F.Lenz, A.V.Chechkin, R.K., PLoS ONE 8, e59036 (2013)

