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Outline

two parts:

© cell migration
@ bumblebee foraging
in both cases:
@ motivation and experiment
@ experimental results and statistical analysis

@ theoretical stochastic modeling and summary
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Part 1:

Cell Migration
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Cell migration
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Brownian motion of migrating cells?

Brownian motion
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VAN TN Dieterich et al. (2008)
S single biological cell crawling on

a substrate

h :Teglr; (191.3|) Brownian motion?
three colloidal particles, conflicting results:

I[_)ositions joined by straight yes: Dunn, Brown (1987)
Ines no: Hartmann et al. (1994)
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- Why cell migration?

motion of the primordium in developing zebrafish:

Gilmour (2008)
positive aspects: negative aspects:
@ morphogenesis @ tumor metastases
@ immune defense @ inflammation reactions
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Cell migration
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How do cells migrate?

@ membrane protrusions and
retractions ~ force generation:

o lamellipodia (front)
@ uropod (end)
@ actin-myosin network

@ formation of a polarized state
front/end

@ cell-substrate adhesion
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Cell migration
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Our cell types and some typical scales

@ renal epithelial MDCK-F (Madin-Darby canine kidney) cells;
two types: wildtype (NHE ™) and NHE-deficient (NHE ™)

@ observed up to 1000 minutes: here no limitt — oo!

@ cell diameter 20-50um; mean velocity ~ 1um/min;
lamellipodial dynamics ~ seconds

movies: |NHE+: t=210min, dt=3min | |NHE-: t=171min, dt=1min |
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Measuring cell migration

images
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perimeter, area,
structure index

image processing e

http://www.amiravis.com
(~100-1000 MB)
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Theoretical modeling of Brownian motion

‘Newton’s law of stochastic physics’

V = —kV+y/C £(t)| Langevin equation (1908)

[}
for a tracer particle of velocity v immersed in * ® oo
a fluid « = e
. . . [ )
force decomposed into viscous damping and (g ¢ “f‘
random kicks of surrounding particles .' o \‘
[}

Application to cell migration?
but: cell migration is active motion, not passively driven!
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Cell migration
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Mean square displacement

e msd(t) := ([x(t) — x(0)]?) ~ t% with 3 — 2 (t — 0) and
B — 1 (t — oo) for Brownian motion; 5(t) = d Inmsd(t)/d Int

data NHE'] FKK miodel NHE! —— ]
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anomalous diffusion if 5 # 1 (t — o0); here: superdiffusion
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Results
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Velocity autocorrelation function

o Vac(t) := (v(t) - v(0)) ~ exp(—~t) for Brownian motion
o fits with same parameter values as msd(t)

jat}

e data NHE*

iy OL model

\‘x\F KK model

I Lo T

V(L fum®imin]
o

0.01 ‘
1 ko time [min] 100
LIRS T I
ey R e s Ol model
ik | i FHKK modal
™ - H —
£ 3 .
5 01 : : K‘"—'{“\-ﬁw
'C"'_é : k\\ Hxh‘.‘!a_-.»..“__
> I ' I I11AN 2
0.01 s e e STt |
1 10 time [min] 100

crossover from stretched exponential to power law
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Position distribution

e P(x,t) — Gaussian

(t — oo) and kurtosis e
) xA(t
k() == <<X2((t))>>2 — 3 (t — o)
for Brownian motion (green 0 o
lines, in 1d) R
1—480m|n;
e other solid lines: fits from
our model; parameter values i :
as before 200 [Em] 200
Cc T

g r data NHE”
note: model needs to be x 7 dataNHE ]
amended to explain £ st P o e — |
short-time distributions 2L : : !

0 100 200 300 400 500

time [min]

crossover from peaked to broad non-Gaussian distributions
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The model

Fractional Klein-Kramers equation  (Barkai, Silbey, 2000):

opP ol 19 , 02
T = o WP+ G [6\/V+Vth8vz]P

with probability distribution P = P(x,v,t), damping term &,
thermal velocity vy, and Riemann-Liouville fractional derivative
of order 1 — « defined by

P 0 1 /t , P(t)

Z - 2= dt—

otr ot |I(1—7)Jy (t—t)
with 0 < v < 1; for @ = 1 ordinary Klein-Kramers equation
recovered

4 fit parameters vy, «, k (plus another one for ‘biological noise’
on short time scales)
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Solutlons for thls model

analytical solutions (Barkai, Silbey, 2000):

@ mean square displacement:
msd (t) = 2vZt?E,, 3(—#t%) — 2'?(; 5y (t = c0)
with Da = v#/x and generallzed Mittag-Leffler function
ap(Z) = ke 0Fak+6 ,a,B3>0,zeC,
note that E11(z) = exp(z): Eo3(z) is a generalized
exponential function

@ velocity autocorrelation function:
Vac(t) = ViEa1(—Kt*) = crptaye (t — )

@ for k — oo fractional Klein-Kramers reduces to a fractional
diffusion equation yielding P(x,t) in terms of a Fox
function (Schneider, Wyss, 1989)
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Possible physical interpretation

Physical meaning of the fractional derivative?

the generalized Langevin equation

Vo [5dt’ m(t - U)v(t) = VCE(t)
e.g., Mori, Kubo (1965/66)

with time-dependent friction coefficient x(t) ~ t~ generates
the same msd (t) and vac(t) as the fractional Klein-Kramers
eguation

cell anomalies might originate from glassy behavior of the
cytoskeleton gel, where power law exponents are conjectured
to be universal (Fabry et al., 2003; Kroy et al., 2008)

nb: anomalous dynamics observed for many different cell types

Statistical physics of biological motion Rainer Klages 15



Summary
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Possible biological interpretation

Biological meaning of the anomalous cell migration?

experimental data and theoretical modeling suggest slower
diffusion for small times while long-time motion is faster

compare with intermittent optimal search strategies of foraging
animals (Bénichou et al., 2006)

 Non reactive —
) [ eeemmee=en B !

e N )
Reactive Reactive

note: controversy about modeling the migration of foraging
animals (albatros, bumblebees, fruitflies,...)
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Summary: Anomalous cells

@ different cell dynamics on different time scales
(cp. with Lévy hypothesis, which suggests scale-freeness)

@ for long times cells crawl superdiffusively with power law
decay of velocity correlations and non-Gaussian position
pdfs

@ stochastic modeling of experimental data by a generalized
Klein-Kramers equation
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Part 2:

Bumblebee Foraging
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Motivation

bumblebee foraging - two very
practical problems:

1. find food (nectar, pollen) in
complex landscapes

2. try to avoid
predators

What type of motion?
Study bumblebee foraging in a laboratory experiment.
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The bumblebee experiment

Ings, Chittka, Current Biology 18, 1520 (2008):
bumblebee foraging in a cube of ~ 75cm side length

@ artificial yellow flowers: 4x4 grid on

Summary Bumblebee foraging s Summary

one wall

@ two cameras track the position

(50fps) of a single bumblebee &Q

(Bombus terrestris) N

y—>
@ advantages: systematic variation of the environment;
easier than tracking bumblebees on large scales
@ disadvantage: no ‘free flight’ of bumblebees

Statistical physics of biological motion

Conclusion

Rainer Klages 20



Bumblebee foraging
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Variation of the environmental conditions

Life-sized 3D

spider model

three experimental stages:
© spider-free foraging
@ foraging under predation risk

© memory test 1 day later

flowers

#bumblebees=30 , #data per bumblebee for each stage ~ 7000
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Bumblebee foraging
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Bumblebee experiment: two main questions

@ What type of motion do the bumblebees perform in terms
of stochastic dynamics?

0.60.2 ’

@ Are there changes of the dynamics under variation of the
environmental conditions?
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left: experimental pdf of vy-velocities of a single bumblebee in
the spider-free stage (black crosses) with max. likelihood fits of
mixture of 2 Gaussians; exponential; power law; single
Gaussian

right: quantile-quantile plot of a Gaussian mixture against the
experimental data (black) plus surrogate data
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Velocity distributions: interpretation

@ best fit to the data by a mixture of two Gaussians with
different variances (quantified by information criteria with
resp. weights)

@ biological explanation: models spatially different flight
modes near the flower vs. far away, cf. intermittent
dynamics

big surprise: no difference in pdf’s between different
stages under variation of environmental conditions!

Statistical physics of biological motion Rainer Klages 24



Outline N 0 S Summary 3umblebee foraging Results Summary
5 00®00

Velocity autocorrelation function L to the wall
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@ plot: spider-free stage, predation thread, memory test

@ d anti-correlations for 7 ~ 0.5: bees return to flowers

@ only small quantitative changes under predation thread,
cf. shift of minimum in V/\¢(7) and changes in pdf of flight
times (inset): more flights with long durations
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Velocity autocorrelation function || to the wall
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@ plot: spider-free stage, predation thread, memory test
@ 1 profound qualitative change  of correlations from
positive for spider-free to negative in case of spiders

@ resampling of data (inset) confirms existence of positive
correlations

= ‘ all changes are in the velocity correlations , not the pdf’s! ‘

Statistical physics of biological motion Rainer Klages 26



Outline N 0 Summary 3 bee foraging RENIIS Summary
5 0000® o

Predator avoidance and a simple model

modeled by Langevin equation
predator avoidance as WMy 1) — v (t) — QY (v (1) & £t
difference in position pdfs a (1) = =nvy (1) = 57 (y (1)) +£(1)

spider / no spider from data: - frlctlon_ coefﬂ(_:lent,'
&: Gaussian white noise

App(Xre:Yrel) 1
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positive spike: hovering; R
negative region: avoidance simulated velocity correlations with

repulsive interaction potential U
bumblebee - spider off / on
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Summary: Clever bumblebees

@ mixture of two Gaussian velocity distributions reflects
spatial adjustment of bumblebee dynamics to flower carpet

@ all changes to predation thread are contained in the
velocity autocorrelation functions , which exhibit highly
non-trivial temporal behaviour

(nb: Lévy hypothesis suggests that all relevant foraging
information is contained in pdf’s)

@ change of correlation decay in the presence of spiders due
to experimentally extracted repulsive force  as
reproduced by generalized Langevin dynamics
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Collaborators and literature

work performed with:

1. cells: P.Dieterich, R.K., R.Preuss, A.Schwab,
Anomalous Dynamics of Cell Migration, PNAS 105, 459 (2008)

2. bees: FLenz, T.Ings, A.V.Chechkin, L.Chittka, R.K.,
Spatio-temporal dynamics of bumblebees foraging under
predation risk, Phys. Rev. Lett. 108, 098103 (2012) &
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