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Outline

single cell migration:

1 Experimental results: statistical data analysis

2 Theoretical modeling: anomalous dynamics and its

biophysical interpretation

3 Lévy motion: what is it, and search optimization - for cells

4 Fluctuation relations: experimental test of a theoretical

model
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Brownian motion of migrating cells?

Brownian motion

Perrin (1913)

three colloidal particles,

positions joined by straight

lines

Dieterich et al. (2008)

single biological cell crawling on

a substrate

Brownian motion?

conflicting results:

yes: Dunn, Brown (1987)

no: Hartmann et al. (1994)
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Why and how do cells migrate?

example:

motion of the primordium in developing

zebrafish; collective cell migration

Lecaudey et al. (2008)

either via membrane protrusions

and retractions or blebbing

here: no microscopic details

How does a cell migrate as a whole in

terms of a stochastic diffusion

process?
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Our cell types and some typical scales

renal epithelial MDCK-F (Madin-Darby canine kidney) cells;

two types: wildtype (NHE+) and NHE-deficient (NHE−)

observed up to 1000 minutes: here no limit t → ∞!

cell diameter 20-50µm; mean velocity ∼ 1µm/min;

lamellipodial dynamics ∼ seconds

movies: NHE+: t=210min, dt=3min NHE-: t=171min, dt=1min
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Measuring cell migration
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Theoretical modeling of Brownian motion

‘Newton’s law of stochastic physics’:

v̇ = −κv+
√
ζ ξ(t) Langevin equation (1908)

for a tracer particle of velocity v immersed in

a fluid

force decomposed into viscous damping and

random kicks of surrounding particles

Application to cell migration?

but: cell migration is active motion, not passively driven!

cf. active Brownian particles (e.g., Romanczuk et al., 2012)
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Mean square displacement

• msd(t) := 〈[x(t)− x(0)]2〉 ∼ tβ with β → 2 (t → 0) and

β → 1 (t → ∞) for Brownian motion; β(t) = d ln msd(t)/d ln t

anomalous diffusion if β 6= 1 (t → ∞); here: superdiffusion
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Velocity autocorrelation function

• vac(t) := 〈v(t) · v(0)〉 ∼ exp(−κt) for Brownian motion

• fits with same parameter values as msd(t)

crossover from stretched exponential to power law
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Position distribution function

• P(x , t) → Gaussian

(t → ∞) and kurtosis

κ(t) := 〈x4(t)〉
〈x2(t)〉2 → 3 (t → ∞)

for Brownian motion (green

lines, in 1d)

• other solid lines: fits from

our model; parameter values

as before

note: model needs to be

amended to explain

short-time distributions
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The model

• Fractional Klein-Kramers equation (Barkai, Silbey, 2000):

∂P

∂t
= − ∂

∂x
[vP] +

∂1−α

∂t1−α
κ

[

∂

∂v
v + v2

th

∂2

∂v2

]

P

with probability distribution P = P(x , v , t), damping term κ,

thermal velocity v2
th = kT/m and Riemann-Liouville fractional

(generalized ordinary) derivative of order 1 − α
for α = 1 Langevin’s theory of Brownian motion recovered

• analytical solutions for msd(t) and P(x , t) can be obtained

in terms of special functions (Barkai, Silbey, 2000; Schneider,

Wyss, 1989)

• 4 fit parameters vth, α, κ (plus another one for short-time

dynamics)
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What is a fractional derivative?

letter from Leibniz to L’Hôpital (1695): d1/2

dx1/2 =?

one way to proceed: we know that for integer m, n
dm

dxm xn = n!
(n−m)!x

n−m = Γ(n+1)
Γ(n−m+1)x

n−m;

assume that this also holds for m = 1/2 , n = 1

⇒ d1/2

dx1/2 x = 2√
π

x1/2

extension leads to the Riemann-Liouville fractional derivative,

which yields power laws in Fourier (Laplace) space:
dγ

dxγ F (x) ↔ (ik)γF̃ (k)

∃ well-developed mathematical theory of fractional calculus,

see Sokolov, Klafter, Blumen, Phys. Today 2002 for a short intro

Anomalous dynamics of cell migration Rainer Klages 13



Cell migration Experimental results Theoretical modeling Lévy motion Fluctuation relations Conclusions

Physical meaning of the fractional derivative?

• the generalized Langevin equation

v̇ +
∫ t

0
dt ′ κ(t − t ′)v(t ′) =

√
ζ ξ(t)

e.g., Mori, Kubo (1965/66)

with time-dependent friction coefficient κ(t) ∼ t−α generates

the same msd and vac as the fractional Klein-Kramers eq.

• fractional derivatives model power law correlations:

∂γP
∂tγ := ∂m

∂tm

[

1
Γ(m−γ)

∫ t
0

dt ′ P(t ′)
(t−t ′)γ+1−m

]

, m − 1 ≤ γ ≤ m

• cell anomalies might originate from glassy behavior of the

cytoskeleton gel, where power law exponents are conjectured

to be universal (Fabry et al., 2003; Kroy et al., 2008)

• anomalous dynamics observed for many different cell types

by at least 10 different groups
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Biological meaning of the anomalous cell migration?

• results show diffusion for short times slower than Brownian

motion while long-time motion is faster:

intermittent dynamics can minimize search times

Bénichou et al. (2006)

• question about optimal search strategy related to the Lévy

flight hypothesis; for cells: see Krummel et al. (2016)
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Optimizing the success of random searches

famous article by Viswanathan et al., Nature 401, 911 (1999):

question about “best statistical strategy to adapt in order to

search efficiently for randomly located objects”

random walk model leads to Lévy flight hypothesis:

Lévy flights provide an optimal search strategy

for sparse, randomly distributed, immobile,

revisitable targets in unbounded domains

Brownian motion (left) vs. Lévy flights (right)

big debate about the validity of this hypothesis!

Anomalous dynamics of cell migration Rainer Klages 16



Cell migration Experimental results Theoretical modeling Lévy motion Fluctuation relations Conclusions

What are Lévy flights?

a random walk generating Lévy flights:

xn+1 = xn + ℓn with steps of length |ℓn| = ℓ to the left/right, sign

determined by coin tossing; ℓn drawn from a Lévy α-stable

distribution
ρ(ℓn) ∼ |ℓn|−1−α (|ℓn| ≫ 1) , 0 < α < 2

P. Lévy (1925ff)

n

x

4

2

• fat tails: larger probability for long jumps than for a Gaussian!
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Properties of Lévy flights in a nutshell

a Markov process (no memory)

which obeys a generalized central limit theorem if the Lévy

distributions are α-stable (for 0 < α < 2)

Gnedenko, Kolmogorov, 1949

implying that they are scale invariant and thus self-similar

ρ(ℓn) has infinite variance

〈ℓ2
n〉 =

∫∞
−∞ dℓn ρ(ℓn)ℓ

2
n = ∞

Lévy flights have arbitrarily large velocities, as vn = ℓn/1

position pdf given by the fractional diffusion equation

∂f (x , t)

∂t
= Kα

∂αf (x , t)

∂ |x |α
with Riesz fract. derivative ∼ −|k |αf (k , t) in Fourier space
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Lévy walks

cure the problem of infinite moments and velocities by

introducing an additional constraint:

a Lévy walker spends a time

tn = ℓn/v , |v | = const .

to complete a step; yields finite moments and finite

velocities in contrast to Lévy flights

Lévy walks generate anomalous (super) diffusion:

〈x2〉 ∼ tγ (t → ∞) with γ > 1

see Shlesinger at al., Nature 363, 31 (1993) for an outline;

Zaburdaev et al., RMP 87, 483 (2015) for details
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Generalized Lévy walks for migrating T cells

T.H. Harris et al., Nature 486, 545 (2012):

• mean square displacement (for 3 different cell types) and

position distribution function for T cells in vivo:

• T cell motility described by a generalized Lévy walk

(Zumofen, Klafter, 1995)

• search more efficient than Brownian motion

• pdf not Lévy: how does the result fit to the Lévy hypothesis?
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Motivation: Fluctuation relations

Consider a (classical) particle system evolving from some initial

state into a nonequilibrium steady state.

Measure the probability distribution ρ(ξt) of entropy production

ξt during time t :
ln

ρ(ξt)

ρ(−ξt)
= ξt

Transient Fluctuation Relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

why important? of very general validity and

1 generalizes the Second Law to small systems in nonequ.

2 connection with fluctuation dissipation relations (FDRs)

3 can be checked in experiments (Wang et al., 2002)
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Anomalous TFR for Gaussian stochastic processes

theory:

consider overdamped generalized Langevin equation

ẋ = F + ζ(t)

with force F and Gaussian power-law correlated noise

< ζ(t)ζ(t ′) >τ=t−t ′∼ (∆/τ)β for τ > ∆ , β > 0

that is external (i.e., no FDR):

dynamics can generate anomalous diffusion,

σ2
x ∼ t2−β with 2 − β 6= 1 (t → ∞)

yields an anomalous work fluctuation relation,

ln
ρ(Wt)

ρ(−Wt)
= fβ(t)Wt

A.V.Chechkin, R.K. et al., J.Stat.Mech. L11001 (2012); L03002 (2009)

experiments: test this theory for murine neutrophil chemotaxis
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Summary: Anomalous cell migration

anomalous dynamics: superdiffusion with power law

velocity correlations and non-Gaussian position pdfs for

long times

theoretical model: coherent mathematical description of

experimental data by an anomalous stochastic process

temporal complexity: different cell dynamics on different

time scales

interpretation: possible biophysical significance of

anomalous dynamics for optimizing search; cf. Lévy flight

foraging hypothesis

second law-like relation for cell chemotaxis
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Outlook

single vs. collective cell migration?

single cell motility controls glass and jamming transition

Bi et al. (2016), or not Giavazzi et al. (2017)

significance of anomalous diffusion for collective

phenomena?

superdiffusion enhances colony formation of stem cells

Barbaric et al. (2014);

non-trivial phase transitions in models of active Brownian

particles Fodor et al. (2016)
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