Contribution submission to the conference Regensburg 2016

Fluctuation relations for anomalous dynamics generated by time fractional Fokker-Planck equations — PETER DIETERICH¹, •RAINER KLAGES^{2,3}, and ALEKSEI V. CHECHKIN^{2,4,5} — ¹Institut fuer Physiologie, Technische Universitaet Dresden — ²Max Planck Institute for the Physics of Complex Systems, Dresden — ³Queen Mary University of London, School of Mathematical Sciences — ⁴Institute for Theoretical Physics NSC KIPT, Kharkov, Ukraine — ⁵Institute of Physics and Astronomy, University of Potsdam

Anomalous dynamics characterized by non-Gaussian probability distributions (PDFs) and/or temporal long-range correlations can cause subtle modifications of conventional fluctuation relations (FRs). As prototypes we study three variants of a generic time-fractional Fokker-Planck equation with constant force. Type A generates superdiffusion, type B subdiffusion and type C both super- and subdiffusion depending on parameter variation. Furthermore type C obeys a fluctuationdissipation relation whereas A and B do not.We calculate analytically the position PDFs for all three cases and explore numerically their strongly non-Gaussian shapes. While for type C we obtain the conventional transient work FR, type A and type B both yield deviations by featuring a coefficient that depends on time and by a nonlinear dependence on the work.We discuss possible applications of these types of dynamics and FRs to experiments.

P. Dieterich et al., New J. Phys. 17, 075004 (2015)

BP
Vortrag;Talk
Anomalous Diffusion in Complex
Environments (focus session)
r.klages@qmul.ac.uk