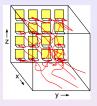
Statistical Physics and Anomalous Dynamics of Foraging

Rainer Klages

Queen Mary University of London, School of Mathematical Sciences

Principles of Biological and Robotic Navigation MPIPKS Dresden, 31 August 2016


Outline



Outline

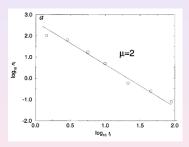
Outline

Theme of this talk:

Try to understand the search for food of biological organisms by mathematical modeling.

Two parts:

- Lévy Flight Hypotheses: review and Advanced Study Group results
- Foraging bumblebees: how to analyze biological data in view of stochastic modeling?

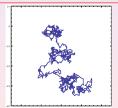

Lévy flight search patterns of wandering albatrosses

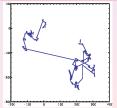
famous paper by Viswanathan et al., Nature 381, 413 (1996):

for albatrosses foraging in the South Atlantic the flight times were recorded

the histogram of flight times

was fitted by a Lévy distribution (power law $\sim t^{-\mu}$)

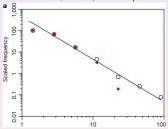

 may be due to the food distribution on the ocean surface being scale invariant: Lévy Environmental Hypothesis Outline


Optimizing the success of random searches

another paper by Viswanathan et al., Nature 401, 911 (1999):

- question posed about "best statistical strategy to adapt in order to search efficiently for randomly located objects"
- random walk model leads to the hypothesis:

Lévy flights provide an optimal search strategy for sparse, randomly distributed, immobile, revisitable targets in unbounded domains


Brownian motion (left) vs. **Lévy flights** (right)

yields the second Lévy Foraging Hypothesis

Revisiting Lévy flight search patterns

Edwards et al., Nature **449**, 1044 (2007):

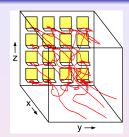
 Viswanathan et al. results revisited by correcting old data (Buchanan, Nature 453, 714, 2008):

- no Lévy flights: new, more extensive data suggests (gamma distributed) stochastic process
- but claim that truncated Lévy flights fit yet new data Humphries et al., PNAS 109, 7169 (2012)
- ongoing big debate about Lévy Hypotheses in the literature

Summary: two different Lévy Flight Hypotheses

to be published

Bartumeus, Boyer, Chechkin, Giuggioli, RK, Pitchford, Watkins (2015)

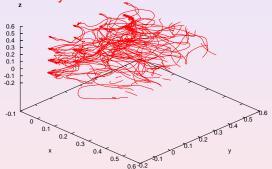

Beyond the Lévy Flight Hypothesis

to be published

Bartumeus, Boyer, Chechkin, Giuggioli, RK, Pitchford, Watkins (2015)

Outline

- tracking of bumblebee flights in the lab: foraging in an artificial carpet of flowers with or without spiders
- no test of the Lévy hypothesis but work inspired by the paradigm

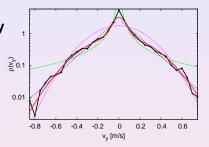

safe and dangerous flowers

three experimental stages:

- spider-free foraging
- foraging under predation risk
- memory test 1 day later Ings, Chittka (2008)

Bumblebee experiment: two main questions

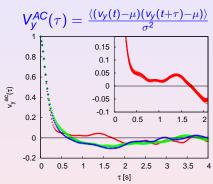
What type of motion do the bumblebees perform in terms of stochastic dynamics?


Are there changes of the dynamics under variation of the environmental conditions?

Flight velocity distributions

Outline

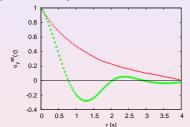
experimental **probability density** (pdf) of bumblebee *vy***-velocities** without spiders (bold black)


best fit: mixture of 2 Gaussians, cp. to exponential, power law, single Gaussian

biological explanation: models spatially different flight modes near the flower vs. far away, cf. intermittent dynamics

big surprise: no difference in pdf's between different stages under variation of environmental conditions!

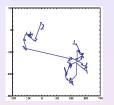
Velocity autocorrelation function ∥ to the wall

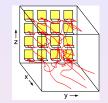

3 stages: spider-free, predation thread, memory test

all changes are in the flight correlations, *not* in the pdfs

model: Langevin equation

$$\frac{dv_y}{dt}(t) = -\eta v_y(t) - \frac{\partial U}{\partial y}(y(t)) + \xi(t)$$


 η : friction, ξ : Gauss. white noise



result: velocity correlations with repulsive interaction *U* bumblebee - spider off / on

Lenz et al. (2012,2013)

Summary

- Be careful with (power law) paradigms for data analysis.
- Other quantities may contain crucial information about foraging; example: bumblebee flights under predation thread.
- Conclusion of our Advanced Study Group:
 A more general biological embedding is needed.

Thanks to the Advanced Study Group

Statistical physics and anomalous dynamics of foraging MPIPKS Dresden, July - December 2015

F.Bartumeus (Blanes, Spain), D.Boyer (UNAM, Mexico), A.V.Chechkin (Kharkov, Ukraine), L.Giuggioli (Bristol, UK), convenor: RK (London, UK), J.Pitchford (York, UK)

ASG webpage: http://www.mpipks-dresden.mpg.de/~asg_2015

Literature:

RK, Search for food of birds, fish and insects, book chapter (review; preprint, 2016)

Lenz et al., PRL 108, 098103 (2012); PLoS ONE 8, e59036 (2013)