Introduction	The Lévy flight hypothesis	Lévy or not Lévy?	Foraging bumblebees	Stochastic modeling	Conclusion

Statistical Physics and Anomalous Dynamics of Foraging

Rainer Klages

Queen Mary University of London, School of Mathematical Sciences

Patterns and control in stochastic systems SFB 910 Symposium TU Berlin, 12 January 2018

The problem

analyse foraging movement patterns

from: Chupeau et al., Nature Physics (2015) News & Views in: RK, Physik Journal **14**, 22 (2015) Introduction
o●oThe Lévy flight hypothesis
oocooLévy or not Lévy?
oocooForaging bumblebees
oocoStochastic modeling
ooConclusion
oo

Another movement pattern

my own scientific foraging; and my food sources:

chaos, complexity and nonequilibrium statistical physics with applications to nanosystems and biology

Statistical Physics and Anomalous Dynamics of Foraging

Understand **foraging movement patterns** of biological organisms in terms of **stochastic processes**.

- Lévy flight foraging hypothesis: overview
- biological data: analysis and interpretation
- foraging bumblebees: experiment and theory
- foraging as a mathematical problem

A mathematical theory of random migration

Karl Pearson (1906):

The Lévy flight hypothesis

Introduction

model movements of biological organisms by a **random walk** in one dimension: position x_n at discrete time step n

 $x_{n+1} = x_n + \ell_n$

- *here:* steps of length $|\ell_n| = \ell$ to the left/right; sign determined by coin tossing
- Markov process: the steps are *uncorrelated*
- generates Gaussian distributions for *x_n* (central limit theorem)

Lévy flight search patterns of wandering albatrosses

famous paper by Viswanathan et al., Nature 381, 413 (1996):

for albatrosses foraging in the South Atlantic the flight times were recorded

The Lévy flight hypothesis

the histogram of flight times

was fitted by a Lévy distribution (power law $\sim t^{-\mu}$)

 assuming that the velocity is constant yields a power law step length distribution contradicting Pearson's hypothesis

Statistical Physics and Anomalous Dynamics of Foraging

What are Lévy flights?

Introduction

The Lévy flight hypothesis

a random walk generating Lévy flights:

 $x_{n+1} = x_n + \ell_n$ with ℓ_n drawn from a Lévy α -stable distribution

• fat tails: larger probability for long jumps than for a Gaussian!

Properties of Lévy flights in a nutshell

The Lévy flight hypothesis

- a Markov process (no memory)
- which obeys a generalized central limit theorem if the Lévy distributions are α-stable (for 0 < α ≤ 2) Gnedenko, Kolmogorov (1949)
- implying that ρ(ℓ_n) and ρ(x_n) are scale invariant and thus self-similar
- for $\alpha \leq 2 \rho(x_n)$ and $\rho(\ell_n)$ have infinite variance $\langle \ell_n^2 \rangle = \int_{-\infty}^{\infty} d\ell_n \rho(\ell_n) \ell_n^2 = \infty$
- Lévy flights have arbitrarily large velocities, as $v_n = \ell_n/1$

cure the problem of infinite moments and velocities:

• a Lévy walker spends a time

 $t_n = \ell_n / v$, |v| = const.

to complete a step; yields finite moments and finite velocities in contrast to Lévy flights

• Lévy walks generate anomalous (super) diffusion:

 $\langle x^2
angle \sim t^{\gamma} \ (t
ightarrow \infty)$ with $\gamma > 1$,

Zaburdaev et al., RMP **87**, 483 (2015) RK, Radons, Sokolov (Eds.), *Anomalous transport* (Wiley, 2008)

Optimizing the success of random searches

another paper by Viswanathan et al., Nature 401, 911 (1999):

- question posed about "best statistical strategy to adapt in order to search efficiently for randomly located objects"
- random walk model leads to Lévy flight hypothesis:

Lévy flights provide an *optimal search strategy* for *sparse, randomly distributed, immobile, revisitable targets in unbounded domains*

Brownian motion (left) vs. Lévy flights (right)

The Lévy flight hypothesis

00000

Revisiting Lévy flight search patterns

Lévy or not Lévy?

The Lévy flight hypothesis

Edwards et al., Nature 449, 1044 (2007):

• Viswanathan et al. results revisited by correcting old data (Buchanan, Nature **453**, 714, 2008):

- no Lévy flights: new, more extensive data suggests (gamma distributed) stochastic process
- but claim that truncated Lévy flights fit yet new data Humphries et al., PNAS 109, 7169 (2012)

Lévy Paradigm: Look for power law tails in pdfs

Lévy or not Lévy?

Humphries et al., Nature 465, 1066 (2010): blue shark data

blue: exponential; red: truncated power law

⊖ velocity pdfs extracted, not the jump pdfs of Lévy walks

- environment explains Lévy vs. Brownian movement
- data averaged over day-night cycle, cf. oscillations

The Lévy flight hypothesis

Bartumeus, Boyer, Chechkin, Giuggioli, RK, Pitchford, Watkins (tbp)

Bartumeus, Boyer, Chechkin, Giuggioli, RK, Pitchford, Watkins (tbp)

Statistical Physics and Anomalous Dynamics of Foraging

Foraging bumblebees: the experiment

• tracking of **bumblebee flights** in the lab: foraging in an artificial carpet of **flowers with or without spiders**

The Lévy flight hypothesis

• **no test** of the Lévy hypothesis but work inspired by the *paradigm*

safe and dangerous flowers

three experimental stages:

spider-free foraging

Foraging bumblebees

0000

- Ioraging under predation risk
- memory test 1 day later

Ings, Chittka (2008)

What type of motion do the bumblebees perform in terms of stochastic dynamics?

Are there changes of the dynamics under variation of the environmental conditions?

Introduction The Lévy flight hypothesis Lévy or not Lévy? Foraging bumblebees Stochastic modeling Conclusion

Flight velocity distributions

experimental **probability density** (pdf) of bumblebee *v_y*-**velocities** without spiders (bold black) **best fit:** mixture of 2 Gaussians, cp. to exponential, power law, single Gaussian

biological explanation: models spatially different flight modes near the flower vs. far away, cf. intermittent dynamics

big surprise: no difference in pdf's between different stages under variation of environmental conditions!

Introduction The Lévy flight hypothesis Lévy or not Lévy? Foraging bumblebees Stochastic modeling Conclusion of Stochastic modeling Conclusion

3 stages: spider-free, predation thread, memory test

all changes are in the flight correlations, *not* in the pdfs

model: Langevin equation $\frac{dv_y}{dt}(t) = -\eta v_y(t) - \frac{\partial U}{\partial y}(y(t)) + \xi(t)$ η : friction, ξ : Gauss. white noise

result: velocity correlations with repulsive interaction *U* bumblebee - spider off / on Lenz, RK et al., PRL (2012)

Searching for a single target

The Lévy flight hypothesis

two basic types of foraging (James et al., 2010):

cruise forager: detects a target while moving

Stochastic modeling

First passage and first arrival: solutions

Brownian motion: $\varrho_{FP}(t) \sim t^{-3/2} \sim \varrho_{FA}(t)$

Sparre-Andersen Theorem (1954)

2 Lévy flights:

The Lévy flight hypothesis

Introduction

 $\varrho_{FP}(t) \sim t^{-3/2}$ (Chechkin et al., 2003; numerics only) $\varrho_{FA}(t) = 0 (0 < \alpha \le 1); \ \varrho_{FA}(t) \sim t^{-2+1/\alpha} (1 < \alpha < 2)$ Palyulin et al. (2014)

Lévy walks:

 $\varrho_{FP}(t) \sim t^{-1-\alpha/2} (0 < \alpha \le 1); \ \varrho_{FP}(t) \sim t^{-3/2} (1 < \alpha < 2)$ Korabel, Barkai (2011); Artuso et al., 2014 $\varrho_{FA}(t)$: the same as for Lévy flights, cf. simulations
Blackburn, RK et al. (tbp)

 combined Lévy-Brownian motion: Brownian motion regularizes Lévy search for 0 < α ≤ 1
 Palyulin, RK et al., JPA (2016); EPJB (2017)

Stochastic modeling

- Be careful with (power law) paradigms for data analysis.
- A profound biological embedding is needed to better understand foraging.
- Much work to be done to test other types of anomalous stochastic processes for modeling foraging problems.

• Lévy Flight Hypothesis: Advanced Study Group on Statistical physics and anomalous dynamics of foraging, MPIPKS Dresden (2015); F.Bartumeus (Blanes), D.Boyer (UNAM), A.V.Chechkin (Kharkov), L.Giuggioli (Bristol), *convenor:* RK (London), J.Pitchford (York) http://www.mpipks-dresden.mpg.de/~asg_2015

• **bumblebee flights:** F.Lenz, T.Ings, L.Chittka (all QMUL), A.V.Chechkin (Kharkov)

Literature:

RK, *Search for food of birds, fish and insects*, book chapter (Springer, 2018); available on my homepage