Introduction O	I he bouncing ball billiard	Irregular diffusion 00000000	Spiral modes 0000000000	Summai O	
	Diff oscillating diss	usion on an ipative corruç	gated floor		
	Laszlo Matyas ¹ R	ainer Klages ²	Imre F. Barna ³		
¹ Sapientia University, Dept. of Technical and Natural Sciences, Miercurea Ciuc, Romania					
	² Queen Mary University of Lo	ndon, School of Mathe	matical Sciences, UK		
	³ Central Physical Re	search Institute, Budap	best, Hungary		
	Fermi Acceleratior	n Workshop, Imp	erial College		

08 December 2014

Introduction	The bouncing ball billiard	Irregular diffusion	Spiral modes	Summary o
Outline				

- **2** Frequency locking, diffusion and correlated random walks
- Spiral modes and diffusion

The bouncing ball: experiments

Pieranski (1983ff) Tufillaro (1986ff) Young Reseacher Competition (Germany, 2003)

Pieranski, J.Phys. (1985) Luck, Mehta (1993): "chattering" bifurcations into chaotic motion? Linz (2003)

Introduction	The bouncing ball billiard ○●○	Irregular diffusion	Spiral modes	Summary o		
The bouncing hall: 'theory'						

linear stability analysis of the exact (implicit) equations of motion yields frequency locking regions ('tongues'):

high bounce approximation: for displacement amplitude $A \ll y_{max}$ ball's max. height eom's become

$$\theta_{k+1} = \theta_k + v_k$$

 $\mathbf{v}_{k+1} = \alpha \mathbf{v}_k + \gamma \cos \theta_{k+1}$

dissipative standard map

with θ_k : phase of the table; v_k : ball velocity at the *k*th collision and $\gamma = 2\omega^2(1 + \alpha)A/g$

Tufillaro (1986ff) cp. with driven pendulum and Fermi acceleration

Introduction	The bouncing ball billiard	Irregular diffusion	Spiral modes	Summary o
The hou	incing hall hilliar	Ч		

study gas of granular particles on vibrating surface coated with periodic scatterers:

Farkas et al. (1999) Urbach et al. (2002) motivated our one dimensional bouncing ball billiard:

at collision: two friction coefficients α perpendicular and β tangential to the surface

Q: ∃ frequency locking in diffusion?

Introduction The bouncing ball billiard Irregular diffusion Spiral modes OCCOCCCCC The second second

parameters: scatterer radius R = 25mm, amplitude A = 0.1mm, restitution $\alpha = 0.5$, $\beta = 0.99$ **diffusion coefficient** D(f) from MD computer simulations:

• frequency locking \leftrightarrow largest maxima of D(f)

∃ two types of attractors; projections at collisions:

circumference position s

- ∃ 1/1-resonance vertically, irregular motion horizontally
- traces of harmonic oscillator separatrix
- fan-shaped structure by chaotic scatterers

 \Rightarrow defines regime (b)(ii)

circumference position s

- non-resonant irregular motion in x and y
- long creeps: sequences of correlated tiny jumps along the surface: regime (c)

both types of dynamics can be linked to each other ergodically (d) or exist on different attractors non-ergodically (b)(i)

diffusion as a random walk on the line:

distance d between wedges and escape time τ out of wedge

 $D_{\rm rw}(f)$ for τ numerically:

 $\tau \simeq d/ < v_x > \simeq d/\sqrt{2E_x}$ links $D_{rw}(f)$ to kinetic energy $E_x(f)$ dotted line: energy balance $E = E_x + E_y + E_{pot}$ with $E_{pot} \simeq g\overline{y} \simeq gA, E \simeq A^2 \omega^2/2$ and $E_y \simeq 19E_x$ leads to $D_{stoch}(f) \simeq \frac{d}{2}\sqrt{2E_x} \simeq \frac{d}{2}\sqrt{\frac{A^2\omega^2}{20} - \frac{gA}{10}}$

Introduction	The bouncing ball billiard	Irregular diffusion	Spiral modes	Summary	
O		00000000	০০০০০০০০০০	o	

Correlated random walk approximation

diffusion via Taylor-Green-Kubo formula:

$$D(f) = rac{d^2}{2 au} + rac{1}{ au} \sum_{k=1}^{\infty} < h(x_0) \cdot h(x_k) >$$

with lattice vectors $h(x_k) = \pm d$ and equilibrium ensemble average $< \ldots >$ (R.K., Korabel, 2002)

truncate series and express it by conditional probabilities

$$D_n(f) = d^2/2\tau + \frac{1}{\tau} \sum_{s_1...s_n} p(s_1s_2...)h \cdot h(s_1s_2...)$$

examples: 1st order approximation by forward- and backward scattering: $D_1 = D_0 + 2D_0(p_f - p_b) = D_0 + 2D_0(1 - 2p_b)$ 2nd order approximation: $D_2 = D_1 + 2D_0(p_{ff} - p_{fb} + p_{bf} - p_{bb})$

compute probabilities numerically and check convergence of higher-order terms to D(f):

Hamiltonian billiard without vibrations and friction:

Harayama, Gaspard (2001) fractal diffusion coefficient in energy *E* Introduction The bouncing ball billiard Irregular diffusion Spiral modes Summary

Irregular diffusion for other parameters

2nd set of parameters closer to experiments: R = 15mm, A = 0.1mm, $\alpha = 0.7$, $\beta = 0.99$

D(f) from simulations:

• highly irregular diffusion coefficient, but very different from previous one projections of velocities v_y^+ around y = 0:

- local extrema \leftrightarrow frequency locking?
- cp. 'bifurcations' \leftrightarrow local extrema!

Introduction The bouncing ball billiard Irregular diffusion Spiral modes Summary

Spiral modes and diffusion 1

projections of orbits onto the (y, v_v^+) -plane:

(A) **onset of diffusion:** particles oscillate harmonically with the surface

(B) **onset of 1/1-resonance**: enhancement of diffusion; coexistence with creeping orbits

(C) **destruction of** 1/1**-resonance:** existence of a local minimum in the diffusion coefficient

(D) **new type of resonance:** a virtual harmonic oscillator mode (VHO) is forming; explains the second peak in D(f); unstable around $f \simeq 62$

Introduction The bouncing ball billiard Irregular diffusion Spiral modes Summary occore cooo

Spiral modes and diffusion 3

(E) the VHO spirals out: further enhancement of diffusion

(F) two-loop spiral

(G) onset of a third loop around $f \simeq 76$: explains third local maximum

(H) onset of a fourth loop: related to fourth local maximum

Introduction o	The bouncing ball billiard	Irregular diffusion	Spiral modes oooooooooo	Summary o		

Spiral modes quantitatively

frequency locking condition: $k := T_p/T_f = 2v_y^+ f/g$ with T_p particle time of flight and T_f period of vibration numerical finding: D(f) has local maxima with complete VHO loops at half-integer k

spiral equation: assume flat surface and no correlations between collisions; from eom's (Luck, Mehta, 1993):

 $y = -A\sin(2\pi ft_1), v_y = \alpha g/2(t_1 - t_0) - A2\pi f(1 + \alpha)\cos(2\pi ft_1)$ with particle launched at time t_0 and first collision at t_1 , cp. with simulations for f = 72, 78:

Introduction o	The bouncing ball billiard	Irregular diffusion	Spiral modes ০০০০০০০০০০	Summary ●
Summary				

• bouncing ball billiard models diffusion of a granular particle on a vibrating corrugated floor

• computer simulations show a highly irregular frequency-dependent diffusion coefficient; main impact by frequency locking and spiral modes

• highly correlated nonlinear dynamics yields further irregularities on fine scales, understood by correlated random walk approximations

References:

L. Matyas, R. Klages, Physica D **187**, 165 (2004) R.Klages, I.F.Barna, L.Matyas, Physics Letters A **333**, 79 (2004)