How does a diffusion coefficient depend on size and position of a hole?

G. Knight¹ O. Georgiou² C.P. Dettmann³ R. Klages¹

¹Queen Mary University of London, School of Mathematical Sciences ²Max-Planck-Institut f
ür Physik komplexer Systeme, Dresden ³University of Bristol, School of Mathematics

Meeting of the Sächsische Forschergruppe, Chemnitz 20 March 2012

Outline

hole dependence of diffusion in a simple chaotic map: from theory to experiment?

Escape, chaos and diffusion

Hole dependence of diffusion

Summary 000

Motivation: Experiments on atom-optics billiards

ultracold atoms confined by a rapidly scanning *laser beam* generating *billiard-shaped potentials*

measure the decay of the number of atoms through a hole:

Friedmann et al., PRL (2001); see also Milner et al., PRL (2001)

⇒ decay depends on the position of the hole

Hole dependence of diffusion

Summary

Microscopic dynamics of particle billiards

explanation: hole like a *scanning device* that samples different microscopic structures in different phase space regions

Lenz et al., PRE (2007)

Hole dependence of diffusion

Summary

Simplify the system

Instead of a particle billiard, consider a toy model: simple one-dimensional **deterministic map**

iterate steps on the unit interval in discrete time according to

 $x_{n+1} = M(x_n)$ as equation of motion with

 $M(x) = 2x \mod 1$

Bernoulli shift

note: This dynamics can be mapped onto a stochastic *coin tossing sequence* (cf. random number generator)

Hole dependence of diffusion

Summary

Ljapunov exponents and periodic orbits

Bernoulli shift dynamics again: $x_n = 2x_{n-1} \mod 1$

Iterate a small perturbation

 $\Delta x_n = 2\Delta x_{n-1} = 2^n \Delta x_0$ = $e^{n \ln 2} \Delta x_0$ Ljapunov exponent $\lambda := \ln 2 > 0$ But there are also ...

... infinitely many **periodic orbits**, and they are dense on the unit interval.

Deterministic chaos

Definition of deterministic chaos according to Devaney (1989):

- irregularity: There is sensitive dependence on initial conditions.
- **regularity:** The periodic points are dense.
- **indecomposability:** The system is topologically transitive.

The Bernoulli shift is **chaotic** in that sense.

(**nb:** 2 and 3 imply 1)

Hole dependence of diffusion

Summary

Hole and escape: a textbook problem

choose $M(x) = 3x \mod 1$ and 'dig a hole in the middle':

• There is escape from a fractal Cantor set.

• The number of particles decays as $N_n = N_0 \exp(-\gamma n)$ with escape rate $\gamma = \ln(3/2)$.

see e.g. Ott, Chaos in dynamical systems (Cambridge, 2002)

Hole dependence of diffusion

Summary

Hole and escape revisited

Bunimovich, Yurchenko:

Where to place a hole to achieve a maximal escape rate? (Isr.J.Math., submitted 2008, published 2011!)

Theorem for Bernoulli shift:

Consider holes at *different positions* but with *equal size*. Find in each hole the *periodic point with minimal period*. Then the escape will be **faster** through the hole where the minimal period is **bigger**.

Corollary:

The escape rate may be larger through smaller holes!

more general theorem (later on) by Keller, Liverani, JSP (2009)

Hole dependence of diffusion

Summary

Escape rate and diffusion coefficient

Solve the one-dimensional diffusion equation

$$\frac{\partial \varrho}{\partial t} = D \frac{\partial^2 \varrho}{\partial x^2}$$

for particle density $\rho = \rho(\mathbf{x}, t)$ and diffusion coefficient *D* with absorbing boundary conditions $\rho(0, t) = \rho(L, t) = 0$:

$$\varrho(\mathbf{x}, t) \simeq A \exp\left(-\gamma t\right) \sin\left(\frac{\pi}{L}\mathbf{x}\right) \quad (t, L \to \infty)$$

exponential decay with

$$\mathsf{D} = \left(\frac{\mathsf{L}}{\pi}\right)^2 \gamma$$

escape rate γ yields diffusion coefficient D

Escape, chaos and diffusion ○○○○○○○● Hole dependence of diffusion

Summary

A deterministically diffusive map

• 'dig' symmetric holes into the Bernoulli shift:

• copy the unit cell spatially periodically, and couple the cells by the holes:

question: How does the diffusion coefficient of this model depend on size and position of a hole?

Escape, chaos and diffusion

Hole dependence of diffusion

Summary

Computing hole-dependent diffusion coefficients

rewrite Einstein's formula for the diffusion coefficient

$$D:=\lim_{n\to\infty}\frac{<(x_n-x)^2>}{2n}$$

with equilibrium average $< \ldots > := \int_0^1 dx \ \rho(x) \ldots, \ x = x_0$ as

$$D_n = \frac{1}{2} \left\langle v_0^2 \right\rangle + \sum_{k=1}^n \left\langle v_0 v_k \right\rangle \to D \quad (n \to \infty)$$

Taylor-Green-Kubo formula

with integer velocities $v_k(x) = \lfloor x_{k+1} \rfloor - \lfloor x_k \rfloor$ at discrete time *k*

jumps between cells are captured by fractal functions

$$T(x) := \int_0^x d\tilde{x} \sum_{k=0}^\infty v_k(\tilde{x}) \,,$$

as solutions of (de Rham-type) functional recursion relations

Computing hole-dependent diffusion coefficients

For the Bernoulli shift M(x) the equilibrium density is $\rho(x) = 1$.

Define the coupling by creating a map $\tilde{M}(x) : [0, 1] \rightarrow [-1, 2]$:

- jump through *left* hole to the *right*: if $x \in [a_1, a_2]$, $0 < a_1 < a_2 \le 0.5$ then $\tilde{M}(x) = M(x) + 1$ yielding $v_k(x) = 1$
- jump through *right* hole to the *left*: if $x \in [1 a_1, 1 a_2]$ then $\tilde{M}(x) = M(x) 1$ yielding $v_k(x) = -1$
- otherwise no jump, $\tilde{M}(x) = M(x)$ yielding $v_k(x) = 0$

This map is copied periodically by $\tilde{M}(x+1) = \tilde{M}(x) + 1$, $x \in \mathbb{R}$.

For this spatially extended model we obtain the exact result

$$D = 2T(a_2) - 2T(a_1) - h; h = a_2 - a_1$$

Knight et al., preprint (2011)

Hole dependence of diffusion

Summary

Diffusion coefficient vs. hole position

Diffusion coefficient *D* as a function of the position of the left hole I_L of size $h = a_2 - a_1 = 1/2^s$, s = 3, 4, 12:

• (b), (c): for $I_L = [0.125, 0.25]$ it is D = 1/16, but for smaller hole $I_L = [0.125, 0.1875]$ we get larger D = 5/64

• (f): at x = 0, 1/7, 2/7, 3/7 particle keeps running through holes in one direction; at x = 1/3 particle jumps back and forth; these orbits dominate diffusion in the small hole limit

Escape, chaos and diffusion

Hole dependence of diffusion

Summary

A fractal structure in the diffusion coefficient

resolve the irregular structure of the hole-dependent diffusion coefficient *D* by defining the cumulative function

$$p_s(x) = 2^{s+1} \int_0^x (D(y) - 2^{-s}) \, dy$$

(subtract $< D_s >= 2^{-s}$ from D(x) and scale with 2^{s+1})

- $\Phi_s(x)$ converges towards a fractal structure for large s
- this structure originates from the dense set of periodic orbits in M(x) dominating diffusion

Escape, chaos and diffusion

Hole dependence of diffusion

Summary

Diffusion for asymptotically small holes

center the hole on a standing, a non-periodic and a running orbit and let the hole size $h \rightarrow 0$:

dashed lines from analytical approximation for small *h*

$$\mathcal{D}(h)\simeq \left\{egin{array}{c} hrac{1+2^{-
ho}}{1-2^{-
ho}}\,, ext{ running}\ hrac{1-2^{-
ho/2}}{1+2^{-
ho/2}}\,, ext{ standing}\ h\,, ext{ non-periodic} \end{array}
ight.$$

p: period of the orbit

• fractal parameter dependencies for D(h) (RK, Dorfman, 1995)

• violation of the random walk approximation for small holes converging to periodic orbits!

Summary

How does a diffusion coefficient depend on **size** and **position** of a hole?

question answered for **deterministic dynamics** modeled by a simple **chaotic map**; two surprising results:

- size: contrary to intuition, a smaller hole may yield a larger diffusion coefficient
- position: violation of simple random walk approximation for the diffusion coefficient if the hole converges to a periodic orbit

Outlook

Can these phenomena be observed in more realistic models?

example:

periodic particle billiards such as Lorentz gas channels

...and perhaps even in *experiments*? (particle in a periodic potential landscape on an annulus?)

References

new results reported in:

G.Knight, O.Georgiou, C.P.Dettmann, R.Klages, preprint arXiv:1112.3922 (2011)

background literature:

R.Klages, **From Deterministic Chaos to Anomalous Diffusion** book chapter in: **Reviews of Nonlinear Dynamics and Complexity**, Vol. 3 H.G.Schuster (Ed.), Wiley-VCH, Weinheim, 2010

(nb: talk and references available on homepage RK)