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Outline

1 escape of particles in billiards and maps : from
experiment to theory

2 hole dependence of diffusion in a simple chaotic map:
from theory to experiment?
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Motivation: Experiments on atom-optics billiards

ultracold atoms confined by a rapidly scanning laser beam
generating billiard-shaped potentials

measure the decay of the number of atoms through a hole:

Friedmann et al., PRL (2001); see also Milner et al., PRL (2001)

⇒ decay depends on the position of the hole
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Microscopic dynamics of particle billiards

explanation: hole like a scanning device that samples different
microscopic structures in different phase space regions
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Lenz et al., PRE (2007)
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Simplify the system

Instead of a particle billiard, consider a toy model: simple
one-dimensional deterministic map
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iterate steps on the unit interval in
discrete time according to

xn+1 = M(xn)
as equation of motion with

M(x) = 2x mod 1

Bernoulli shift

note: This dynamics can be mapped onto a stochastic coin
tossing sequence (cf. random number generator)
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Ljapunov exponents and periodic orbits

Bernoulli shift dynamics again: xn = 2xn−1 mod 1

Iterate a small perturbation
∆x0 := x̃0 − x0 ≪ 1:
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∆xn = 2∆xn−1 = 2n∆x0

= enln 2∆x0

Ljapunov exponent
λ := ln 2 > 0

But there are also . . .
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. . . infinitely many periodic
orbits , and they are dense
on the unit interval.
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Deterministic chaos

Definition of deterministic chaos according to Devaney
(1989):

1 irregularity: There is sensitive dependence on initial
conditions.

2 regularity: The periodic points are dense.

3 indecomposability: The system is topologically transitive.

The Bernoulli shift is chaotic in that sense.

(nb: 2 and 3 imply 1)
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Hole and escape: a textbook problem

choose M(x) = 3x mod 1 and ‘dig a hole in the middle’:
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• There is escape from a fractal
Cantor set.

• The number of particles decays
as Nn = N0 exp(−γn)
with escape rate γ = ln(3/2).

see e.g. Ott, Chaos in dynamical
systems (Cambridge, 2002)
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Hole and escape revisited

Bunimovich, Yurchenko:

Where to place a hole to achieve a maximal escape rate?

(Isr.J.Math., submitted 2008, published 2011!)

Theorem for Bernoulli shift:
Consider holes at different positions but with equal size.
Find in each hole the periodic point with minimal period.
Then the escape will be faster through the hole where the
minimal period is bigger .

Corollary:
The escape rate may be larger through smaller holes!

more general theorem (later on) by Keller, Liverani, JSP (2009)
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Escape rate and diffusion coefficient

Solve the one-dimensional diffusion equation

∂̺

∂t
= D

∂2̺

∂x2

for particle density ̺ = ̺(x , t) and diffusion coefficient D with
absorbing boundary conditions ̺(0, t) = ̺(L, t) = 0:

̺(x , t) ≃ A exp (−γt) sin
(π

L
x
)

(t , L → ∞)

exponential decay with

D =

(

L
π

)2

γ

escape rate γ yields diffusion coefficient D
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A deterministically diffusive map

• ‘dig’ symmetric holes into the Bernoulli shift:
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• copy the unit cell spatially periodically, and couple the cells by
the holes:
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-2 -1 2 3

question: How does the diffusion coefficient of this model
depend on size and position of a hole?
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Computing hole-dependent diffusion coefficients

rewrite Einstein’s formula for the diffusion coefficient

D := lim
n→∞

< (xn − x)2 >

2n

with equilibrium average < . . . >:=
∫ 1

0 dx ρ(x) . . . , x = x0 as

Dn = 1
2

〈

v2
0

〉

+
∑n

k=1 〈v0vk 〉 → D (n → ∞)

Taylor-Green-Kubo formula

with integer velocities vk (x) = ⌊xk+1⌋ − ⌊xk⌋ at discrete time k

jumps between cells are captured by fractal functions

T (x) :=

∫ x

0
dx̃

∞
∑

k=0

vk (x̃) ,

as solutions of (de Rham-type) functional recursion relations
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Computing hole-dependent diffusion coefficients

For the Bernoulli shift M(x) the equilibrium density is ρ(x) = 1.

Define the coupling by creating a map M̃(x) : [0, 1] → [−1, 2]:

jump through left hole to the right: if x ∈ [a1, a2],
0 < a1 < a2 ≤ 0.5 then M̃(x) = M(x) + 1 yielding
vk (x) = 1

jump through right hole to the left: if x ∈ [1 − a1, 1 − a2]
then M̃(x) = M(x) − 1 yielding vk (x) = −1

otherwise no jump, M̃(x) = M(x) yielding vk (x) = 0

This map is copied periodically by M̃(x + 1) = M̃(x) + 1 , x ∈ R.

For this spatially extended model we obtain the exact result

D = 2T (a2) − 2T (a1) − h ; h = a2 − a1

Knight et al., preprint (2011)
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Diffusion coefficient vs. hole position

Diffusion coefficient D as a function of the position of the left
hole IL of size h = a2 − a1 = 1/2s , s = 3, 4, 12:

• (b), (c): for IL = [0.125, 0.25] it is D = 1/16, but for smaller
hole IL = [0.125, 0.1875] we get larger D = 5/64

• (f): at x = 0, 1/7, 2/7, 3/7 particle keeps running through
holes in one direction; at x = 1/3 particle jumps back and forth;
these orbits dominate diffusion in the small hole limit
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A fractal structure in the diffusion coefficient

resolve the irregular structure of the hole-dependent diffusion
coefficient D by defining the cumulative function

Φs(x) = 2s+1
∫ x

0 (D(y) − 2−s) dy
(subtract < Ds >= 2−s from D(x) and scale with 2s+1)

• Φs(x) converges towards a fractal structure for large s
• this structure originates from the dense set of periodic orbits
in M(x) dominating diffusion
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Diffusion for asymptotically small holes

center the hole on a standing, a non-periodic and a running
orbit and let the hole size h → 0:

dashed lines from analytical
approximation for small h

D(h) ≃











h 1+2−p

1−2−p , running

h 1−2−p/2

1+2−p/2 , standing
h , non-periodic

p : period of the orbit

• fractal parameter dependencies for D(h) (RK, Dorfman, 1995)

• violation of the random walk approximation for small holes
converging to periodic orbits!
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Summary

How does a diffusion coefficient depend on size and position
of a hole?

question answered for deterministic dynamics modeled by a
simple chaotic map ; two surprising results:

1 size: contrary to intuition, a smaller hole may yield a larger
diffusion coefficient

2 position: violation of simple random walk approximation
for the diffusion coefficient if the hole converges to a
periodic orbit
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Outlook

Can these phenomena be observed in more realistic models?

example:

periodic particle billiards such as Lorentz gas channels

. . .and perhaps even in experiments?

(particle in a periodic potential landscape on an annulus?)
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