A simple non-chaotic map generating subdiffusive, diffusive and superdiffusive dynamics

Model

Results

L. Salari¹ L. Rondoni^{1,2} C. Giberti³ R. Klages^{4,5}

¹Dipartimento di Scienze Matematiche, Politecnico di Torino ²GraphenePoliTO Lab, Politecnico di Torino and INFN Sezione di Torino ³Dipt. di Scienze e Metodi dell Ingegneria, Universita di Modena e Reggio E. ⁴Max Planck Institute for the Physics of Complex Systems, Dresden ⁵Queen Mary University of London, School of Mathematical Sciences

7th Joint Chemnitz-Dresden Focus Meeting

Motivation

Outline

21 January 2016

Outline	Motivation	Model	Results	Summary
•	০০০০০০	୦୦୦	00000	oo
Outline				

- Motivation: chaos, diffusion and polygonal billiards
- Model: mimick diffusion in polygonal billiards by a simple non-chaotic map
- Results: non-trivial diffusive properties matching to different known stochastic processes

Outline	Motivation	Model	Results	Summary
o	●ooooo	000	00000	00
Microscopic	chaos in a	a glass of w	vater?	

water molecules droplet of ink

• dispersion of a droplet of ink by diffusion

- chaotic collisions between billiard balls
- chaotic hypothesis:

microscopic chaos ↓ macroscopic diffusion

Gallavotti, Cohen (1995)

P.Gaspard et al. (1998): experiment on small colloidal particle in water; diffusion due to microscopic chaos based on positive pattern entropy per unit time $h(\epsilon, \tau) \leq h_{KS} = \sum_{\lambda_i > 0} \lambda_i$

Outline	Motivation	Model	Results	Summary
	00000			

The random wind tree model

counterexample:

Ehrenfest, Ehrenfest (1959)

no positive Lyapunov exponent, hence non-chaotic dynamics

Dettmann et al. (1999): generates trajectories and $h(\epsilon, \tau)$ indistinguishable from the colloidal particle dynamics

Artuso et al. (1997,2000); Casati et al. (1999)

rational billiards: all angles are rational multiples of π irrational billiards: otherwise

non-trivial ergodic properties: rational billiards are not ergodic; phase space splits into invariant manifolds wrt initial angle of trajectory (e.g., Gutkin, 1996)

Outline	Motivation	Model	Results	Summary
o	○○○●○○	০০০	00000	00
Pseudoir	ntegrability			

joining all identical edges yields compact invariant surfaces:

genus g = 1: billiard is integrable

g > 1: pseudointegrable (Richens, Berry, 1981); \exists isolated saddles resembling hyperbolic fixed points imposing a 'chaotic character' onto the flow

asymptotic growth of displacement of two trajectories $\Delta(t) \sim t$

Zwanzig (1983), Zaslavsky et al. (2001), Li et al. (2002)

mean square displacement $\langle x^2 \rangle := \int dx \ x^2 \rho(x, t) \sim t^{\gamma}$ from simulations: sub- ($\gamma < 1$), super- ($\gamma > 1$) or normal ($\gamma = 1$) diffusion depending on parameters; partially conflicting results Alonso et al. (2002), Jepps et al. (2006), Sanders et al. (2006)

Outlin	е	Motivation	Model	Results	Summary
		000000			
		 -			

Particle dispersion in polygonal billiards

simple picture:

diffusion in these channels may be crucially determined by how scatterers slice a beam

this should be captured by interval exchange transformations (Hannay, McCraw, 1990)

a simple one-dimensional *spatially dependent* interval exchange transformation:

zero Lyaponuv exponent: different points neither converge nor diverge from each other in time; slicer points are of Lebesgue measure zero; hence non-chaotic dynamics

Outline Motivation Model Results Summary o o o o o

• consider a chain of intervals $\widehat{M} := M \times \mathbb{Z}$, M := [0, 1] with point $\widehat{X} = (x, m)$ in \widehat{M} , where $\widehat{M}_m := M \times \{m\}$ is the *m*-th cell of \widehat{M}

• subdivide each \widehat{M}_m in 4 subintervals, separated by 3 points called slicers: $\{1/2\} \times \{m\}$, $\{\ell_m\} \times \{m\}$, $\{1 - \ell_m\} \times \{m\}$, where $0 < \ell_m < 1/2$ for every $m \in \mathbb{Z}$ with

$$\ell_m(\alpha) = \frac{1}{\left(|m|+2^{1/\alpha}\right)^{\alpha}}, \ \alpha > 0$$

• slicer map: $S: \widehat{M} \to \widehat{M}, \ \widehat{X}_{n+1} = S(\widehat{X}_n), \ n \in \mathbb{N}$ with

$$S(x,m) = \begin{cases} (x,m-1) & \text{if } 0 \le x < \ell_m \text{ or } \frac{1}{2} < x \le 1 - \ell_m, \\ (x,m+1) & \text{if } \ell_m \le x \le \frac{1}{2} \text{ or } 1 - \ell_m < x \le 1. \end{cases}$$

 Outline
 Motivation
 Model
 Results
 Summary

 Spreading under slicer action

choose initial density as $\hat{\rho}_0\left(\widehat{X}\right) = \begin{cases} 1, & \text{if } \widehat{X} \in \widehat{M}_0\\ 0, & \text{otherwise} \end{cases}$

which is chopped under the action of S to

$$\hat{
ho}_n(\widehat{X}) = \left\{egin{array}{cc} 1 & ext{ if } \widehat{X} \in \mathcal{S}^n \widehat{M}_0 \ 0 & ext{ otherwise} \end{array}
ight.$$

the sets $\widehat{R}_j := S^n \widehat{M}_0 \cap \widehat{M}_j$, j = -n, ..., n, constitute the total phase space volume occupied at time *n* in cell \widehat{M}_j

the (Lebesgue) measure $A_j = \hat{\mu}(\hat{R}_j)$ of \hat{R}_j equals the probability of being in cell *j* at time *n* yielding the coarse grained distribution

$$\rho_n^{G}(j) = \begin{cases} A_j & \text{if } j \in \{-n, \dots, n\}, \\ 0 & \text{otherwise} \end{cases}$$

Outline	Motivation	Model	Results	Summary
	000000	000	•0000	00

Diffusion in the slicer map

based on ρ_n^G define the mean square displacement $\langle \Delta \hat{X}_n^2 \rangle := \sum_{j=-n}^n A_j j^2$ with distance *j* travelled by a point in \widehat{M}_j at time *n*

Proposition

Given $\alpha \in [0, 2]$ and a uniform initial distribution in \widehat{M}_0 , we have

- (1) $\alpha = 0$: ballistic motion with $\langle x_n^2 \rangle \sim n^2$
- 2 $0 < \alpha < 1$: superdiffusion with MSD $\langle x_n^2 \rangle \sim n^{2-\alpha}$
- 3 $\alpha = 1$: normal diffusion with linear MSD $\langle x_n^2 \rangle \sim n$ note: non-chaotic normal diffusion with non-Gaussian density
- **a** $1 < \alpha < 2$: subdiffusion with MSD $\langle x_n^2 \rangle \sim n^{2-\alpha}$ **note:** subdiffusion with ballistic peaks
- **(5)** $\alpha = 2$: logarithmic subdiffusion with MSD $\langle x_n^2 \rangle \sim \log n$

(b) $\alpha > 2$: localisation in the MSD with $\langle x_n^2 \rangle \sim \text{const.}$

Outline	Motivation	Model	Results	Summary
	000000	000	00000	00

The higher order moments in the slicer

Theorem

For $\alpha \in (0, 2]$ the moments $\langle \Delta \hat{X}_n^p \rangle = \sum_{j=-n}^n A_j j^p$ with p > 2 even and initial condition uniform in \widehat{M}_0 have the asymptotic behavior

 $\langle \Delta \hat{X}^{p}_{n} \rangle \sim n^{p-lpha}$

while the odd moments (p = 1, 3, ...) vanish.

Outline	Motivation	Model	Results	Summary
o	000000	୦୦୦	oo●oo	00
Example: α	= 1/3			

we have $\langle \Delta \hat{X}_n^p \rangle \sim n^{p-1/3}$ and especially $\langle \Delta \hat{X}_n^2 \rangle \sim n^{5/3}$: superdiffusion; plot of analytic $\rho_n^G(m)$ (continuous line):

Outline	Motivation	Model	Results	Summary
o	০০০০০০	୦୦୦	ooo●o	00
Matching to	stochastic dy	namics?		

• one-dimensional stochastic Lévy Lorentz gas:

point particle moves ballistically between static point scatterers on a line from which it is transmitted / reflected with probability 1/2

distance r between two scatterers is a random variable iid from the Lévy distribution

$$\lambda(\mathbf{r}) \equiv \beta \mathbf{r}_0^{\beta} \frac{1}{\mathbf{r}^{\beta+1}} , \ \mathbf{r} \in [\mathbf{r}_0, +\infty) \ , \ \beta > \mathbf{0}$$

with cutoff ro

 \rightarrow model exhibits only superdiffusion

 \rightarrow all moments scale with the slicer moments for $\alpha \in (0, 1]$ (piecewise linearly depending on parameters)

Outline Motivation Model Results Summary 0 000000 00000 00000 00000

• Lévy walk modeled by CTRW theory:

 \rightarrow moments calculated to $\sim t^{p+1-\beta}$ for $p > \beta$, $1 < \beta < 2$: match to slicer superdiffusion with $\beta = 1 + \alpha$

- \rightarrow but conceptually a totally different process
- correlated Gaussian stochastic processes:

modeled by a generalized Langevin equation with a power law memory kernel

- \rightarrow formal analogy in the subdiffusive regime
- \rightarrow but Gaussian distribution and a conceptual mismatch

Outline	Motivation	Model	Results	Summary
o	೦೦೦೦೦೦	୦୦୦	00000	●○
Summary				

• central theme:

diffusion generated by non-chaotic dynamics

• main result:

slicer model generates 6 different types of diffusive dynamics under parameter variation covering the whole spectrum of diffusion

 this result might help to explain a controversy about different stochastic models for diffusion in polygonal billiards: sensitive dependence of diffusion on parameters matching to different stochastic processes

Outline	Motivation	Model	Results	Summary
o	000000	୦୦୦	00000	○●
References				

- slicer:
- L.Salari, L.Rondoni, C.Giberti, RK, Chaos 25, 073113 (2015)
- review about polygonal billiards: Section 17.4 in R.Klages, *Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics* (World Scientific, 2007)

