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Diffusion in polygonal billiard channels
(a) (b)

(c) (d)
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Zwanzig (1983), Zaslavsky et al. (2001), Li et al. (2002)

• mean square displacement < x2 >:=
∫

dx x2ρ(x , t) ∼ tγ

• from simulations: sub- (γ < 1), super- (γ > 1) or normal
(γ = 1) diffusion depending on parameters with partially
conflicting results

Alonso et al. (2002), Jepps et al. (2006), Sanders et al. (2006)
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Non-chaotic dynamics in polygonal billiards

zero Lyapunov exponent: different points separate
linearly but not exponentially in time, hence non-chaotic
dynamics
instead, edges of scatterers slice a beam: non-trivial
diffusion in these channels generated by this mechanism
slicing is captured by interval exchange transformations

Hannay, McCraw (1990)
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The slicer map: basic idea

a 1-dim spatially dependent interval exchange transformation;
diffusion of a density of points from uniform initial density in
space-time diagram:

-3 -2 -1 0 1 2 3

 0

 3

 2

 1

m

n

again zero Lyaponuv exponent: slicer points of Lebesgue
measure zero split the density; no stretching
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Definition of the slicer model

• consider a chain of intervals M̂ := M × Z, M := [0, 1]

with point X̂ = (x , m) in M̂, where M̂m := M × {m} is the
m-th cell of M̂

• subdivide each M̂m in subintervals, separated by points called
slicers: {1/2} × {m} , {ℓm} × {m} , {1 − ℓm} × {m}, where
0 < ℓm < 1/2 for every m ∈ Z with

ℓm(α) = 1
(|m|+21/α)

α , α > 0

• slicer map: S : M̂ → M̂ , X̂n+1 = S(X̂n) , n ∈ N with

S(x , m) =

{
(x , m − 1) if 0 ≤ x < ℓm or 1

2 < x ≤ 1 − ℓm,

(x , m + 1) if ℓm ≤ x ≤ 1
2 or 1 − ℓm < x ≤ 1.
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Main result: Diffusion in the slicer map

Proposition (Salari et al., 2015)

Given α ≥ 0 and a uniform initial distribution in M̂0, we have

1 α = 0: ballistic motion with MSD 〈X̂ 2
n 〉 ∼ n2

2 0 < α < 1: superdiffusion with MSD 〈X̂ 2
n 〉 ∼ n2−α

3 α = 1: normal diffusion with linear MSD 〈X̂ 2
n 〉 ∼ n

non-chaotic normal diffusion with non-Gaussian density

4 1 < α < 2: subdiffusion with MSD 〈X̂ 2
n 〉 ∼ n2−α

subdiffusion with ballistic peaks

5 α = 2: logarithmic subdiffusion with MSD 〈X̂ 2
n 〉 ∼ log n

6 α > 2: localisation in the MSD with 〈X̂ 2
n 〉 ∼ const .

non-trivial phenomenon
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The higher order moments in the slicer

Theorem (Salari et al., 2015)

For α ∈ (0, 2] the moments 〈X̂ p
n 〉 with p > 2 even and uniform

initial distribution in M̂0 have the asymptotic behavior

〈X̂ p
n 〉 ∼ np−α

while the odd moments (p = 1, 3, ...) vanish.
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Example: α = 1/3

We have 〈X̂ p
n 〉 ∼ np−1/3 with superdiffusion 〈X̂ 2

n 〉 ∼ n5/3;
plot of probability to find a particle in the m-th cell:
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blue line: simulations; red circles: asymptotics

ρα
n (m) =






Cα

(m + 21/α)α+1 , m < n

0 , m > n

with normalisation Cα; note peak in the traveling area
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Matching to stochastic dynamics?

curiously, the slicer moments bear formal similarity with
different stochastic models:

one-dimensional stochastic Lévy Lorentz gas:
matching of all moments in the superdiffusive regime by a
non-trivial scaling

Lévy walk modeled by CTRW theory:
matching of all moments in the superdiffusive regime by a
different simple scaling

correlated Gaussian stochastic process:
same MSD in the subdiffusive regime
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Summary

central theme:
diffusion generated by non-chaotic dynamics

main result:
slicer model generates 6 different types of diffusion
covering the whole spectrum of anomalous diffusion

slicer might help to explain a controversy about different
stochastic models for diffusion in polygonal billiards
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