A simple non-chaotic map generating subdiffusive, diffusive and superdiffusive dynamics

Model

L. Salari¹ L. Rondoni^{1,2} C. Giberti³ R. Klages^{4,5}

¹Dipartimento di Scienze Matematiche, Politecnico di Torino ²GraphenePoliTO Lab, Politecnico di Torino and INFN Sezione di Torino ³Dipt. di Scienze e Metodi dell Ingegneria, Universita di Modena e Reggio E. ⁴Max Planck Institute for the Physics of Complex Systems, Dresden ⁵Queen Mary University of London, School of Mathematical Sciences

DPG Spring Meeting, Regensburg, 8 March 2016

Motivation

Zwanzig (1983), Zaslavsky et al. (2001), Li et al. (2002)

• mean square displacement $< x^2 >:= \int dx \ x^2
ho(x,t) \sim t^{\gamma}$

• from simulations: sub- ($\gamma < 1$), super- ($\gamma > 1$) or normal ($\gamma = 1$) diffusion depending on parameters with partially conflicting results

Alonso et al. (2002), Jepps et al. (2006), Sanders et al. (2006)

Motivation	Model	Results	Summary
o●	oo	oooo	00
Non-chaotic dyna	amics in polydor	al billiards	

- zero Lyapunov exponent: different points separate linearly but not exponentially in time, hence non-chaotic dynamics
- instead, edges of scatterers slice a beam: non-trivial diffusion in these channels generated by this mechanism
- slicing is captured by interval exchange transformations

Hannay, McCraw (1990)

Motivation	Model	Results	Summary
	●○	0000	oo
The slicer map: b	pasic idea		

a 1-dim **spatially dependent** interval exchange transformation; diffusion of a density of points from uniform initial density in **space-time diagram**:

again zero Lyaponuv exponent: slicer points of Lebesgue measure zero split the density; no stretching

Motivation	Model	Results	Summary
oo	⊙●	0000	
Definition of the s	licer model		

• consider a chain of intervals $\widehat{M} := M \times \mathbb{Z}$, M := [0, 1] with point $\widehat{X} = (x, m)$ in \widehat{M} , where $\widehat{M}_m := M \times \{m\}$ is the *m*-th cell of \widehat{M}

• subdivide each \widehat{M}_m in subintervals, separated by points called slicers: $\{1/2\} \times \{m\}$, $\{\ell_m\} \times \{m\}$, $\{1 - \ell_m\} \times \{m\}$, where $0 < \ell_m < 1/2$ for every $m \in \mathbb{Z}$ with

$$\ell_m(\alpha) = \frac{1}{\left(|m|+2^{1/\alpha}\right)^{\alpha}}, \ \alpha > 0$$

• slicer map: $S : \widehat{M} \to \widehat{M}$, $\widehat{X}_{n+1} = S(\widehat{X}_n)$, $n \in \mathbb{N}$ with $S(x,m) = \begin{cases} (x,m-1) & \text{if } 0 \le x < \ell_m \text{ or } \frac{1}{2} < x \le 1 - \ell_m, \\ (x,m+1) & \text{if } \ell_m \le x \le \frac{1}{2} \text{ or } 1 - \ell_m < x \le 1. \end{cases}$

Motivation	Model	Results	Summary
		0000	
Main regult	Diffusion in the	e slicer man	
mann i court.			

Proposition (Salari et al., 2015)

Given $\alpha \geq 0$ and a uniform initial distribution in \widehat{M}_0 , we have

- $\alpha = 0$: ballistic motion with MSD $\langle \hat{X}_n^2 \rangle \sim n^2$
- 2 $0 < \alpha < 1$: superdiffusion with MSD $\langle \hat{X}_n^2 \rangle \sim n^{2-\alpha}$
- 3 $\alpha = 1$: normal diffusion with linear MSD $\langle \hat{X}_n^2 \rangle \sim n$ non-chaotic normal diffusion with non-Gaussian density
- 3 $1 < \alpha < 2$: subdiffusion with MSD $\langle \hat{X}_n^2 \rangle \sim n^{2-\alpha}$ subdiffusion with ballistic peaks
- **(5)** $\alpha = 2$: logarithmic subdiffusion with MSD $\langle \hat{X}_n^2 \rangle \sim \log n$
- **(a)** $\alpha > 2$: localisation in the MSD with $\langle \hat{X}_n^2 \rangle \sim \text{const.}$ non-trivial phenomenon

00	00	0000	00
The higher	order momente	in the slicer	

Theorem (Salari et al., 2015)

For $\alpha \in (0, 2]$ the moments $\langle \widehat{X}_n^p \rangle$ with p > 2 even and uniform initial distribution in \widehat{M}_0 have the asymptotic behavior

 $\langle \widehat{X}_n^{p} \rangle \sim n^{p-lpha}$

while the odd moments (p = 1, 3, ...) vanish.

We have $\langle \hat{X}_n^p \rangle \sim n^{p-1/3}$ with superdiffusion $\langle \hat{X}_n^2 \rangle \sim n^{5/3}$; plot of probability to find a particle in the *m*-th cell:

blue line: simulations; red circles: asymptotics

$$ho_n^{\alpha}(m) = \left\{ \begin{array}{ll} \displaystyle rac{C_{lpha}}{(m+2^{1/lpha})^{lpha+1}} \ , & m < n \ 0 \ , & m > n \end{array}
ight.$$

with normalisation C_{α} ; note peak in the traveling area

Motivation	Model	Results	Summary
		0000	
Matching to sto	ochastic dyn	amics?	

curiously, the slicer moments bear formal similarity with **different stochastic models**:

- one-dimensional stochastic Lévy Lorentz gas: matching of all moments in the superdiffusive regime by a non-trivial scaling
- Lévy walk modeled by CTRW theory: matching of all moments in the superdiffusive regime by a *different* simple scaling
- correlated Gaussian stochastic process: same MSD in the subdiffusive regime

Motivation	Model	Results	Summary
	oo	0000	●○
Summarv			

central theme:

diffusion generated by non-chaotic dynamics

• main result:

slicer model generates 6 different types of diffusion covering the whole spectrum of **anomalous diffusion**

• slicer might help to explain a controversy about different stochastic models for diffusion in polygonal billiards

Motivation	Model	Results	Summary
	oo	oooo	oo
References			

- slicer:
- L.Salari, L.Rondoni, C.Giberti, RK, Chaos 25, 073113 (2015)
- review about polygonal billiards: Section 17.4 in R.Klages, *Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics* (World Scientific, 2007)

