A simple non-chaotic map generating subdiffusive, diffusive and superdiffusive dynamics

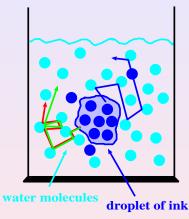
L. Salari¹ L. Rondoni^{1,2} C. Giberti³ R. Klages⁴

¹Dipartimento di Scienze Matematiche, Politecnico di Torino ²GraphenePoliTO Lab, Politecnico di Torino and INFN Sezione di Torino ³Dipt. di Scienze e Metodi dell Ingegneria, Universita di Modena e Reggio E. ⁴Queen Mary University of London, School of Mathematical Sciences

> Open Statistical Physics Conference 29th March 2017

- Motivation: chaos, diffusion and polygonal billiards
- Model: mimick diffusion in polygonal billiards by a simple non-chaotic map
- Results: non-trivial diffusive properties matching to different known stochastic processes

Microscopic chaos in a glass of water?



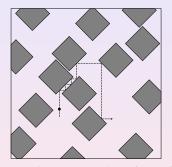
- dispersion of a droplet of ink by diffusion
- chaotic collisions between billiard balls
- chaotic hypothesis:

Gallavotti, Cohen (1995)

P.Gaspard et al. (1998): experiment on small colloidal particle in water; diffusion due to microscopic chaos based on positive pattern entropy per unit time $h(\epsilon, \tau) \leq h_{KS} = \sum_{\lambda_i > 0} \lambda_i$

The random wind tree model

counterexample:



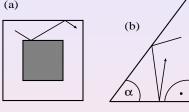
Ehrenfest, Ehrenfest (1959)

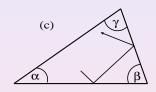
no positive Lyapunov exponent, hence non-chaotic dynamics

Dettmann et al. (1999): generates trajectories and $h(\epsilon, \tau)$ indistinguishable from the colloidal particle dynamics

Polygonal billiards

examples:





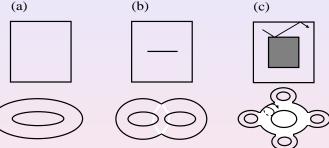
Artuso et al. (1997,2000); Casati et al. (1999)

rational billiards: all angles are rational multiples of π irrational billiards: otherwise

non-trivial ergodic properties: rational billiards are not ergodic; phase space splits into invariant manifolds wrt initial angle of trajectory (e.g., Gutkin, 1996)

Pseudointegrability

joining all identical edges yields compact invariant surfaces:

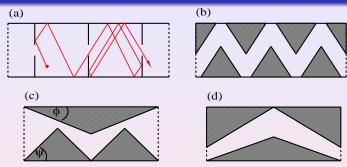


genus g = 1: billiard is *integrable*

g > 1: pseudointegrable (Richens, Berry, 1981); \exists isolated saddles resembling hyperbolic fixed points imposing a 'chaotic character' onto the flow

asymptotic growth of displacement of two trajectories $\Delta(t) \sim t$

Diffusion in polygonal billiard channels

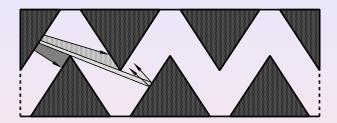


Zwanzig (1983), Zaslavsky et al. (2001), Li et al. (2002)

- mean square displacement < $x^2>:=\int dx \; x^2 \rho(x,t) \sim t^{\gamma}$
- from simulations: sub- (γ < 1), super- (γ > 1) or normal (γ = 1) diffusion depending on parameters with partially conflicting results

Alonso et al. (2002), Jepps et al. (2006), Sanders et al. (2006)

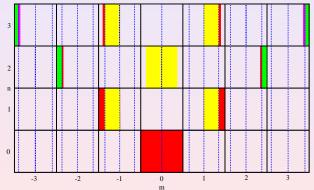
Non-chaotic dynamics in polygonal billiards



- zero Lyapunov exponent: different points separate linearly but not exponentially in time, hence non-chaotic dynamics
- instead, edges of scatterers slice a beam: non-trivial diffusion in these channels generated by this mechanism
- slicing is captured by interval exchange transformations
 Hannay, McCraw (1990)

The slicer map: basic idea

a 1-dim **spatially dependent** interval exchange transformation; diffusion of a density of points from uniform initial density in **space-time diagram**:



again zero Lyapunov exponent: slicer points of Lebesgue measure zero split the density; no stretching

Definition of the slicer model

- consider a chain of intervals $\widehat{M} := M \times \mathbb{Z}, M := [0,1]$ with point $\hat{X} = (x, m)$ in \hat{M} , where $\hat{M}_m := M \times \{m\}$ is the m-th cell of \widehat{M}
- subdivide each M_m in subintervals, separated by points called **slicers**: $\{1/2\} \times \{m\}$, $\{\ell_m\} \times \{m\}$, $\{1 - \ell_m\} \times \{m\}$, where $0 < \ell_m < 1/2$ for every $m \in \mathbb{Z}$ with

$$\ell_m(\alpha) = \frac{1}{\left(|m|+2^{1/\alpha}\right)^{\alpha}}, \ \alpha > 0$$

• slicer map: $S: \widehat{M} \to \widehat{M}$, $\widehat{X}_{n+1} = S(\widehat{X}_n)$, $n \in \mathbb{N}$ with

$$S(x,m) = \begin{cases} (x, m-1) & \text{if } 0 \le x < \ell_m \text{ or } \frac{1}{2} < x \le 1 - \ell_m, \\ (x, m+1) & \text{if } \ell_m \le x \le \frac{1}{2} \text{ or } 1 - \ell_m < x \le 1. \end{cases}$$

Main result: Diffusion in the slicer map

Proposition (Salari et al., 2015)

Given $\alpha \geq 0$ and a uniform initial distribution in \widehat{M}_0 , we have

- $\alpha = 0$: ballistic motion with MSD $\langle \widehat{X}_n^2 \rangle \sim n^2$
- 2 $0 < \alpha < 1$: superdiffusion with MSD $\langle \hat{X}_n^2 \rangle \sim n^{2-\alpha}$
- **3** $\alpha = 1$: normal diffusion with linear MSD $\langle \widehat{X}_n^2 \rangle \sim n$ non-chaotic normal diffusion with non-Gaussian density
- 1 < α < 2: subdiffusion with MSD $\langle \widehat{X}_n^2 \rangle \sim n^{2-\alpha}$ subdiffusion with ballistic peaks
- **3** $\alpha = 2$: logarithmic subdiffusion with MSD $\langle \widehat{X}_n^2 \rangle \sim \log n$
- **1** $\alpha > 2$: localisation in the MSD with $\langle \widehat{X}_n^2 \rangle \sim \text{const.}$ non-trivial phenomenon

Results

The higher order moments in the slicer

Theorem (Salari et al., 2015)

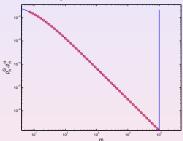
For $\alpha \in (0,2]$ the moments $\langle \widehat{X}_n^p \rangle$ with p>2 even and uniform initial distribution in \widehat{M}_0 have the asymptotic behavior

$$\langle \widehat{X}_n^p \rangle \sim n^{p-\alpha}$$

while the odd moments (p = 1, 3, ...) vanish.

Example: $\alpha = 1/3$

We have $\langle \widehat{X}_n^p \rangle \sim n^{p-1/3}$ with superdiffusion $\langle \widehat{X}_n^2 \rangle \sim n^{5/3}$; plot of probability to find a particle in the m-th cell:



blue line: simulations; red circles: asymptotics

$$\rho_n^{\alpha}(m) = \begin{cases} \frac{C_{\alpha}}{(m+2^{1/\alpha})^{\alpha+1}}, & m < n \\ 0, & m > n \end{cases}$$

with normalisation C_{α} ; note peak in the traveling area

Matching to stochastic dynamics?

• one-dimensional stochastic Lévy Lorentz gas:

point particle moves ballistically between static point scatterers on a line from which it is transmitted / reflected with probability 1/2

Model

distance *r* between two scatterers is a random variable iid from the Lévy distribution

$$\lambda(r) \equiv \beta r_0^{\beta} \frac{1}{r^{\beta+1}} , r \in [r_0, +\infty) , \beta > 0$$

with cutoff ro

Outline

- → model exhibits only superdiffusion
- \rightarrow all moments scale with the slicer moments for $\alpha \in (0, 1]$ (piecewise linearly depending on parameters)

Matching to stochastic dynamics?

- Lévy walk modeled by CTRW theory:
- \rightarrow moments calculated to $\sim t^{p+1-\beta}$ for $p > \beta$, $1 < \beta < 2$: match to slicer superdiffusion with $\beta = 1 + \alpha$
- → but conceptually a totally different process
- correlated Gaussian stochastic processes:

modeled by a generalized Langevin equation with a power law memory kernel

- → formal analogy in the *subdiffusive* regime
- → but Gaussian distribution and a conceptual mismatch

Summary

Outline

- central theme: diffusion generated by non-chaotic dynamics
- main result: slicer model generates 6 different types of diffusion covering the whole spectrum of anomalous diffusion
- slicer might help to explain a controversy about different stochastic models for diffusion in polygonal billiards

References

- slicer:
- L.Salari, L.Rondoni, C.Giberti, RK, Chaos 25, 073113 (2015)
- review about polygonal billiards: Section 17.4 in R.Klages, *Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics* (World Scientific, 2007)

