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Outline

1 Motivation:

dynamical systems, diffusion and stochastic modeling

2 Diffusion in three random walk-like examples:

1 non-chaotic ‘slicer’ map
2 dissipative randomly perturbed standard map
3 a simple random dynamical system

3 Conclusion:

pitfalls when relating the above three layers to each other
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Microscopic chaos in a glass of water?

water molecules
droplet of ink

• dispersion of a droplet of ink

by diffusion

• chaotic collisions between

billiard balls

• chaotic hypothesis:

microscopic chaos

⇓
macroscopic diffusion

Gallavotti, Cohen (1995)

P.Gaspard et al. (1998): experiment on small colloidal particle

in water; diffusion due to microscopic chaos based on positive

pattern entropy per unit time h(ǫ, τ) ≤ hKS =
∑

λi>0 λi
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The random wind tree model

counterexample:

Ehrenfest, Ehrenfest (1959)

no positive Lyapunov exponent, hence non-chaotic dynamics

Dettmann et al. (1999): generates trajectories and h(ǫ, τ)
indistinguishable from the colloidal particle dynamics
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Microscopic models, diffusion and stochastic modeling

conclusion:

theory: (chaotic) model → diffusion

experiment: diffusion → (chaotic) model?

⇒ non-trivial interplay microscopic model ↔ diffusion

theme of this talk:

add yet a third layer of stochastic modeling

dynamical system

stochastic model

diffusion

?
input

output

generate

two questions:

1 what type of diffusion is generated by a dynamical system?
2 can it be reproduced by some stochastic model?
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Basic diffusive setup

in the following only diffusion in one dimension

key quantity: mean square displacement

< x2 >:=

∫
dx x2ρ(x , t) ∼ tγ

note: three basic types of diffusion
1 there is not only ‘Brownian’ (normal) diffusion with γ = 1

but also anomalous diffusion:

2 subdiffusion with γ < 1

and

3 superdiffusion with γ > 1

(plus more exotic types)
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I. The slicer map
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Pictorial construction

a one-dimensional ‘random walk-like’ but fully deterministic

system; diffusion of a density of points from uniform initial

density in space (m) - discrete time (n) diagram:

-3 -2 -1 0 1 2 3

 0

 3

 2

 1

m

n

‘slicers’ at points (of Lebesgue measure zero) split the density

no stretching, hence zero Lyapunov exponent: no chaos!
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Formal definition

• consider a chain of intervals M̂ := M × Z, M := [0, 1]

with point X̂ = (x ,m) in M̂, where M̂m := M × {m} is the

m-th cell of M̂

• subdivide each M̂m in subintervals, separated by points called

slicers: {1/2} × {m} , {ℓm} × {m} , {1 − ℓm} × {m}, where

0 < ℓm < 1/2 for every m ∈ Z with

ℓm(α) =
1

(|m|+21/α)
α , α > 0

• slicer map: S : M̂ → M̂ , X̂n+1 = S(X̂n) , n ∈ N with

S(x ,m) =

{
(x ,m − 1) if 0 ≤ x < ℓm or 1

2 < x ≤ 1 − ℓm,

(x ,m + 1) if ℓm ≤ x ≤ 1
2 or 1 − ℓm < x ≤ 1.
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Main result: diffusive properties

Proposition (Salari et al., 2015)

Given α ≥ 0 and a uniform initial distribution in M̂0, we have

1 α = 0: ballistic motion with MSD 〈X̂ 2
n 〉 ∼ n2

2 0 < α < 1: superdiffusion with MSD 〈X̂ 2
n 〉 ∼ n2−α

3 α = 1: normal diffusion with linear MSD 〈X̂ 2
n 〉 ∼ n

non-chaotic normal diffusion with non-Gaussian density

4 1 < α < 2: subdiffusion with MSD 〈X̂ 2
n 〉 ∼ n2−α

subdiffusion with ballistic peaks

5 α = 2: logarithmic subdiffusion with MSD 〈X̂ 2
n 〉 ∼ log n

a bit exotic

6 α > 2: localisation in the MSD with 〈X̂ 2
n 〉 ∼ const .

non-trivial phenomenon
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Higher order moments

Theorem (Salari et al., 2015)

For α ∈ (0, 2] the moments 〈X̂ p
n 〉 with p > 2 even and uniform

initial distribution in M̂0 have the asymptotic behavior

〈X̂ p
n 〉 ∼ np−α

while the odd moments (p = 1, 3, ...) vanish.
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Matching to stochastic dynamics?

• one-dimensional stochastic Lévy Lorentz gas:

point particle moves ballistically between static point scatterers

on a line from which it is transmitted / reflected with probability

1/2

distance r between two scatterers is a random variable iid from

the Lévy distribution

λ(r) := βr
β
0

1

rβ+1
, r ∈ [r0,∞) , β > 0

with cutoff r0

→ model exhibits only superdiffusion

→ all moments scale with the slicer moments for α ∈ (0, 1]
(piecewise linearly depending on parameters)
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Matching to stochastic dynamics?

• Lévy walk modeled by CTRW theory:

→ moments calculated to ∼ tp+1−β for p > β , 1 < β < 2:

match to slicer superdiffusion with β = 1 + α

→ but conceptually a totally different process

• correlated Gaussian stochastic processes:

modeled by a generalized Langevin equation with a power law

memory kernel

→ formal analogy in the subdiffusive regime

→ but Gaussian distribution and a conceptual mismatch
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II. The dissipative

randomly perturbed standard map
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The standard map and diffusion

• paradigmatic Hamiltonian dynamical system:

standard map
xn+1 = xn + yn mod 2π

yn+1 = yn + K sin xn+1

derived from kicked rot(at)or where xn ∈ R is an angle, yn ∈ R

the angular velocity with n ∈ N and K > 0 the kick strength

• define diffusion coefficient as

D(K ) = lim
n→∞

1

n
< (yn − y0)

2 >

with ensemble average over the initial density

< . . . >=
∫

dx dy ̺(x , y) . . . , x ∈ [0, 2π) , y = y0 ∈ [0, 2π)
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Diffusion in the standard map

analytical (Rechester, White, 1980) and numerical studies of

parameter-dependent diffusion Deff (K ):
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Manos, Robnik, PRE (2014)

• D(K ) is highly irregular

• for some K there is superdiffusion with mean square

displacement < y2
n >∼ nγ , γ > 1 due to accelerator modes
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The dissipative standard map

model damping in the standard map by

xn+1 = xn + yn mod 2π

yn+1 = (1 − ν)yn + f0 sin xn+1

with ν ∈ [0, 1]:

Feudel, Grebogi, Hunt, Yorke, PRE (1996)
• islands in phase space for ν = 0 (left) become coexisting

periodic attractors (right): 150 found for ν = 0.02 , f0 = 4

• simple argument yields |yn| < ymax : quick trapping
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Dissipative dynamics and random perturbations

Question: What happens to dissipative deterministic dynamics

xn+1 = f(xn) under random perturbations?

Consider the dissipative standard map with additive noise:

xn+1 = xn + yn + ǫx ,n mod 2π

yn+1 = (1 − ν)yn + f0 sin xn+1 + ǫy ,n

with iid random variables ǫn = (ǫx ,n, ǫy ,n) drawn from uniform

distribution bounded by ||ǫn|| < ξ of noise amplitude ξ

perturbed dynamics F(xj) = f(xj) + ǫj :
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From attractors to hopping on pseudo attractors

Consequences of the random perturbations:

• beyond a noise threshold ξ ≥ ξ0 the attracting sets W S(Λi)
lose their stability due to holes

• the (invariant) attractors become (quasi-invariant) pseudo

attractors from which there is noise-induced escape

• the noise induces a hopping process between all coexisting

pseudo attractors
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Intermittency and stickiness

the resulting perturbed dissipative dynamics is intermittent:

f0 = 4 , ξ = 0.06 , ν = 0.002

• stickiness to pseudo attractors measured by criterion that

maximal eigenvalue of the Jacobian matrix along orbit < 1
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Continuous time random walk theory

match simulation results to CTRW theory (Montroll, Weiss,

Scher, 1973): define stochastic process by master equation

with waiting time distribution w(t) and jump distribution λ(x)

̺(x , t) =

∫ ∞

−∞
dx ′λ(x − x ′)

∫ t

0

dt ′ w(t − t ′) ̺(x ′, t ′)+

+(1 −
∫ t

0
dt ′w(t ′))δ(x)

structure: jump + no jump for points starting at (x , t) = (0, 0)
F̂ourier-L̃aplace transform yields Montroll-Weiss eqn (1965)

ˆ̺̃(k , s) =
1 − w̃(s)

s

1

1 − λ̂(k)w̃(s)

with mean square displacement ˜〈
x2(s)

〉
= −

∂2 ˆ̺̃(k , s)

∂k2

∣∣∣∣∣
k=0
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Predictions of CTRW theory

according to CTRW theory solving the MW eqn. for

1 a power law waiting time distribution w(t) ∼ t−(γ+1)

with jump distribution λ(x) = δ(|x | − const .)

2 yields a mean square discplacement of < x2(t) >∼ tγ

and

3 a stretched exponential position pdf, approximately given

by Pn(y) ∼ exp
(
−cx2/(2−γ)

)

crucial fit parameter: γ; check these three predictions in

numerical experiments
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CTRW theory and mean square displacement

< y2(n) > for different noise amplitudes ξ at ν = 0.002:

10 100 1000 10000
n
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100

1000
〈y

2 (n
)〉

ξ = 0.02
ξ = 0.04
ξ = 0.06
ξ = 0.08
ξ = 0.1
ξ = 0.2
γ = 0.85
γ = 0.95

• transient subdiffusion < y2(n) >∼ nγ up to n < 1000

• only small variation of 0.85 < γ < 0.95 for different ξ; for

ξ = 0.06 we have γ ≃ 0.95
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CTRW theory and escape time distribution

probability distributions P(t) of escape times t from pseudo

attractors; dissipation ν = 0.002 with different noise strength ξ:

10
2

10
3

t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P(
t)

ξ = 0.04
ξ = 0.06
ξ = 0.08
ξ = 0.10
β = 1.95

500 1000 1500 2000 2500
t

10
-5

10
-4

10
-3

10
-2

10
-1

P(
t)

• transition from power law (stickiness) to exponential

• transition takes longer when ξ → 0

• the dashed red line represents the CTRW theory prediction of

P(t) ∼ t−1.95 corresponding to < y2(n) >∼ n0.95
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CTRW theory and position pdf

Pn(y) for position y at different time steps n:
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ξ = 0.06 , ν = 0.002

• ‘Gaussian-like’ diffusive spreading up to n < 1000

• localization trivially due to boundedness of pseudo attractors

• CTRW theory pdf (green lines) for γ = 0.95 corrects

mismatch in tails
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III. A random dynamical system
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Constructing a random dynamical system

to be published
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Diffusion in a simple random dynamical system

to be published
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Main results

to be published
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Summary

central theme: interplay between dynamical systems,

diffusion and stochastic modeling

main results:
1 dynamical systems can feature novel types of (anomalous)

diffusion
2 naive matching to stochastic models can be misleading and

difficult

outlook: perhaps dynamical systems theory can inspire

stochastic theory to invent new stochastic processes? and

take your data seriously!!!
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