Motivation
 1. slicer
 2. standard map
 3. random dynamical system
 Summary

 0000
 0000000
 0000
 0000
 000
 00

Stochastic modeling of diffusion in dynamical systems: three examples

R. Klages

School of Mathematical Sciences, Queen Mary University of London

Climate Fluctuations and Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialogue MPIPKS Dresden, 14th July 2017

Motivation	1. slicer 0000000	2. standard map	3. random dynamical system	Summary 00
Outline				

Motivation:

dynamical systems, diffusion and stochastic modeling

Diffusion in three random walk-like examples:

- non-chaotic 'slicer' map
- Ø dissipative randomly perturbed standard map
- a simple random dynamical system

Onclusion:

pitfalls when relating the above three layers to each other

 Motivation
 1. slicer
 2. standard map
 3. random dynamical system
 Summary

 • 000
 0000000000000
 0000
 0000
 0000

 Microscopic chaos in a glass of water?

water molecules droplet of ink

• dispersion of a droplet of ink by diffusion

- chaotic collisions between billiard balls
- chaotic hypothesis:

microscopic chaos ↓ macroscopic diffusion

Gallavotti, Cohen (1995)

P.Gaspard et al. (1998): experiment on small colloidal particle in water; diffusion due to microscopic chaos based on positive pattern entropy per unit time $h(\epsilon, \tau) \leq h_{KS} = \sum_{\lambda_i > 0} \lambda_i$

The random wind tree model

counterexample:

Ehrenfest, Ehrenfest (1959)

no positive Lyapunov exponent, hence non-chaotic dynamics

Dettmann et al. (1999): generates trajectories and $h(\epsilon, \tau)$ indistinguishable from the colloidal particle dynamics

Microscopic models, diffusion and stochastic modeling

conclusion:

- theory: (chaotic) model \rightarrow diffusion
- experiment: diffusion → (chaotic) model?
- \Rightarrow non-trivial interplay microscopic model \leftrightarrow diffusion

theme of this talk:

add yet a third layer of stochastic modeling

two questions:

- what type of diffusion is generated by a dynamical system?
- 2 can it be reproduced by some stochastic model?

- in the following only diffusion in one dimension
- key quantity: mean square displacement

$$< x^2 >:= \int dx \ x^2
ho(x,t) \sim t^{\gamma}$$

- note: three basic types of diffusion
 - there is not only 'Brownian' (normal) diffusion with $\gamma = 1$ but also anomalous diffusion:
 - 2 subdiffusion with $\gamma < 1$

and

3 superdiffusion with $\gamma > 1$

(plus more exotic types)

Motivation	1. slicer	2. standard map	3. random dynamical system	Summary
0000	• 00 0000	00000000000	0000	00

I. The slicer map

Pictorial construction

a one-dimensional 'random walk-like' but fully deterministic system; diffusion of a density of points from uniform initial density in **space (m) - discrete time (n) diagram**:

'slicers' at points (of Lebesgue measure zero) split the density no stretching, hence zero Lyapunov exponent: **no chaos!**

Stochastic modeling of diffusion in dynamical systems

Motivation 1. slicer 2. standard map 3. random dynamical system Summary ooo ooo ooo ooo ooo

• consider a chain of intervals $\widehat{M} := M \times \mathbb{Z}$, M := [0, 1]with point $\widehat{X} = (x, m)$ in \widehat{M} , where $\widehat{M}_m := M \times \{m\}$ is the *m*-th cell of \widehat{M}

• subdivide each \widehat{M}_m in subintervals, separated by points called slicers: $\{1/2\} \times \{m\}$, $\{\ell_m\} \times \{m\}$, $\{1 - \ell_m\} \times \{m\}$, where $0 < \ell_m < 1/2$ for every $m \in \mathbb{Z}$ with

$$\ell_m(\alpha) = \frac{1}{\left(|m|+2^{1/\alpha}\right)^{\alpha}}, \, \alpha > 0$$

• slicer map: $S: \widehat{M} \to \widehat{M}$, $\widehat{X}_{n+1} = S(\widehat{X}_n)$, $n \in \mathbb{N}$ with $S(x,m) = \begin{cases} (x,m-1) & \text{if } 0 \le x < \ell_m \text{ or } \frac{1}{2} < x \le 1 - \ell_m, \\ (x,m+1) & \text{if } \ell_m \le x \le \frac{1}{2} \text{ or } 1 - \ell_m < x \le 1. \end{cases}$
 Motivation
 1. slicer
 2. standard map
 3. random dynamical system

 0000
 00000000000
 0000

 Main result: diffusive properties

Proposition (Salari et al., 2015)

Given $\alpha \geq 0$ and a uniform initial distribution in \widehat{M}_0 , we have

- $\alpha = 0$: ballistic motion with MSD $\langle \hat{X}_n^2 \rangle \sim n^2$
- 2 $0 < \alpha < 1$: superdiffusion with MSD $\langle \hat{X}_n^2 \rangle \sim n^{2-\alpha}$
- 3 $\alpha = 1$: normal diffusion with linear MSD $\langle \hat{X}_n^2 \rangle \sim n$ non-chaotic normal diffusion with non-Gaussian density

(a) $1 < \alpha < 2$: subdiffusion with MSD $\langle \hat{X}_n^2 \rangle \sim n^{2-\alpha}$ subdiffusion with ballistic peaks

5 $\alpha = 2$: logarithmic subdiffusion with MSD $\langle \hat{X}_n^2 \rangle \sim \log n$ a bit exotic

6 $\alpha > 2$: localisation in the MSD with $\langle \hat{X}_n^2 \rangle \sim \text{const.}$ non-trivial phenomenon Motivation

1. slicer

2. standard map

3. random dynamical system

Summary

Higher order moments

Theorem (Salari et al., 2015)

For $\alpha \in (0, 2]$ the moments $\langle \widehat{X}_n^p \rangle$ with p > 2 even and uniform initial distribution in \widehat{M}_0 have the asymptotic behavior

 $\langle \widehat{X}^{p}_{n}
angle \sim n^{p-lpha}$

while the odd moments (p = 1, 3, ...) vanish.

Matching to stochastic dynamics?

• one-dimensional stochastic Lévy Lorentz gas:

point particle moves ballistically between static point scatterers on a line from which it is transmitted / reflected with probability 1/2

distance r between two scatterers is a random variable iid from the Lévy distribution

$$\lambda(\mathbf{r}) := \beta \mathbf{r}_0^{\beta} \frac{1}{\mathbf{r}^{\beta+1}}, \ \mathbf{r} \in [\mathbf{r}_0, \infty) \ , \ \beta > \mathbf{0}$$

with cutoff ro

 \rightarrow model exhibits only superdiffusion

 \rightarrow all moments scale with the slicer moments for $\alpha \in (0, 1]$ (piecewise linearly depending on parameters)

Matching to stochastic dynamics?

• Lévy walk modeled by CTRW theory:

 \rightarrow moments calculated to $\sim t^{p+1-\beta}$ for $p > \beta$, $1 < \beta < 2$: match to slicer superdiffusion with $\beta = 1 + \alpha$

- \rightarrow but conceptually a totally different process
- correlated Gaussian stochastic processes:

modeled by a generalized Langevin equation with a power law memory kernel

- \rightarrow formal analogy in the subdiffusive regime
- \rightarrow but Gaussian distribution and a conceptual mismatch

Motivation		2. standard map	3. random dynamical system	Summary
0000	000000	•••••	0000	00

II. The dissipative randomly perturbed standard map

 Motivation
 1. slicer
 2. standard map
 3. random dynamical system
 Summary

 0000
 0000000000
 000
 000
 000

The standard map and diffusion

• paradigmatic Hamiltonian dynamical system:

standard map

 $x_{n+1} = x_n + y_n \mod 2\pi$

 $y_{n+1} = y_n + K \sin x_{n+1}$

derived from kicked rot(at)or where $x_n \in \mathbb{R}$ is an angle, $y_n \in \mathbb{R}$ the angular velocity with $n \in \mathbb{N}$ and K > 0 the kick strength

• define diffusion coefficient as

$$D(K) = \lim_{n\to\infty} \frac{1}{n} < (y_n - y_0)^2 >$$

with ensemble average over the initial density $< \ldots >= \int dx \, dy \, \varrho(x, y) \ldots , \, x \in [0, 2\pi) , \, y = y_0 \in [0, 2\pi)$

 Motivation
 1. slicer
 2. standard map
 3. random dynamical system
 Summary

 0000
 0000000000
 0000
 0000
 000
 000

Diffusion in the standard map

analytical (Rechester, White, 1980) and numerical studies of parameter-dependent diffusion $D_{eff}(K)$:

Manos, Robnik, PRE (2014)

- D(K) is highly irregular
- for some *K* there is superdiffusion with mean square displacement $\langle y_n^2 \rangle \sim n^{\gamma}$, $\gamma > 1$ due to accelerator modes

Motivation 1. slicer 2. standard map 3. random dynamical system Summary oc

The dissipative standard map

model damping in the standard map by $x_{n+1} = x_n + y_n \mod 2\pi$ $y_{n+1} = (1 - \nu)y_n + f_0 \sin x_{n+1}$ with $\nu \in [0, 1]$:

Feudel, Grebogi, Hunt, Yorke, PRE (1996) • islands in phase space for $\nu = 0$ (left) become coexisting periodic attractors (right): 150 found for $\nu = 0.02$, $f_0 = 4$ • simple argument yields $|y_n| < y_{max}$: quick trapping

Dissipative dynamics and random perturbations

Question: What happens to dissipative deterministic dynamics $\mathbf{x}_{n+1} = \mathbf{f}(\mathbf{x}_n)$ under random perturbations?

Consider the dissipative standard map with additive noise:

 $x_{n+1} = x_n + y_n + \epsilon_{x,n} \mod 2\pi$ $y_{n+1} = (1-\nu)y_n + f_0 \sin x_{n+1} + \epsilon_{y,n}$

with iid random variables $\epsilon_n = (\epsilon_{x,n}, \epsilon_{y,n})$ drawn from uniform distribution bounded by $||\epsilon_n|| < \xi$ of noise amplitude ξ

perturbed dynamics $\mathbf{F}(\mathbf{x}_i) = \mathbf{f}(\mathbf{x}_i) + \epsilon_i$:

From attractors to hopping on pseudo attractors

Consequences of the random perturbations:

• beyond a noise threshold $\xi \ge \xi_0$ the attracting sets $W^S(\Lambda_i)$ lose their stability due to holes

- the (invariant) attractors become (quasi-invariant) pseudo attractors from which there is noise-induced escape
- the noise induces a hopping process between all coexisting pseudo attractors

Stochastic modeling of diffusion in dynamical systems

Motivation	1. slicer 0000000	2. standard map ○○○○○○●○○○○○	3. random dynamical system	Summary 00
1	1.1.1	and the second		

Intermittency and stickiness

the resulting perturbed dissipative dynamics is intermittent:

 $f_0 = 4 \;,\; \xi = 0.06 \;,\; \nu = 0.002$

• stickiness to pseudo attractors measured by criterion that maximal eigenvalue of the Jacobian matrix along orbit < 1

Motivation 1. slicer 2. standard map 3. random dynamical system Summary occo

Continuous time random walk theory

match simulation results to **CTRW theory** (Montroll, Weiss, Scher, 1973): define stochastic process by master equation with *waiting time distribution* w(t) and *jump distribution* $\lambda(x)$

$$\varrho(\mathbf{x},t) = \int_{-\infty}^{\infty} d\mathbf{x}' \lambda(\mathbf{x}-\mathbf{x}') \int_{0}^{t} dt' \ \mathbf{w}(t-t') \ \varrho(\mathbf{x}',t') + (1 - \int_{0}^{t} dt' \ \mathbf{w}(t')) \delta(\mathbf{x})$$

structure: jump + no jump for points starting at (x, t) = (0, 0)Fourier-Laplace transform yields Montroll-Weiss eqn (1965)

$$\hat{\hat{arrho}}(k,s) = rac{1- ilde{w}(s)}{s}rac{1}{1-\hat{\lambda}(k) ilde{w}(s)}$$

with mean square displacement $\langle x^2 \tilde{(s)} \rangle = -\frac{\partial^2 \hat{\varrho}(k,s)}{\partial k^2}$

according to CTRW theory solving the MW eqn. for

- a power law waiting time distribution $w(t) \sim t^{-(\gamma+1)}$ with jump distribution $\lambda(x) = \delta(|x| - const.)$
- yields a mean square discplacement of < x²(t) >~ t^γ and
- a stretched exponential position pdf, approximately given by $P_n(y) \sim \exp(-cx^{2/(2-\gamma)})$

crucial fit parameter: γ ; check these three predictions in numerical experiments

CTRW theory and mean square displacement

 $< y^2(n) >$ for different noise amplitudes ξ at $\nu = 0.002$:

- transient subdiffusion $\langle y^2(n) \rangle \sim n^{\gamma}$ up to n < 1000
- only small variation of $0.85 < \gamma < 0.95$ for different ξ ; for
- $\xi = 0.06$ we have $\gamma \simeq 0.95$

probability distributions P(t) of escape times *t* from pseudo attractors; dissipation $\nu = 0.002$ with different noise strength ξ :

- transition from power law (stickiness) to exponential
- transition takes longer when $\xi \rightarrow 0$
- the dashed red line represents the CTRW theory prediction of $P(t) \sim t^{-1.95}$ corresponding to $< y^2(n) > \sim n^{0.95}$

CTRW theory and position pdf

$P_n(y)$ for position y at different time steps n:

- $\xi = 0.06 \; , \; \nu = 0.002$ 'Gaussian-like' diffusive spreading up to n < 1000
- localization trivially due to boundedness of pseudo attractors
- \bullet CTRW theory pdf (green lines) for $\gamma = 0.95$ corrects mismatch in tails

Stochastic modeling of diffusion in dynamical systems

Motivation	1. slicer 0000000	2. standard map	 random dynamical system ○○○ 	Summary 00

III. A random dynamical system

to be published

to be published

Motivation 0000	1. slicer 0000000	2. standard map	 random dynamical system ○○○● 	Summary 00
Main re	sults			

to be published

Motivation	1. slicer 0000000	2. standard map	3. random dynamical system	Summary ●0
Summary	V			

• **central theme:** interplay between *dynamical systems*, *diffusion and stochastic modeling*

• main results:

- dynamical systems can feature novel types of (anomalous) diffusion
- naive matching to stochastic models can be misleading and difficult
- **outlook:** perhaps dynamical systems theory can inspire stochastic theory to invent new stochastic processes? *and* take your data *seriously*!!!

 Motivation
 1. slicer
 2. standard map
 3. random dynamical system
 Summary

 0000
 00000000000
 0000
 0000
 0000

Acknowledgement and references

work performed with all authors on the following references:

- slicer: L.Salari, L.Rondoni, C.Giberti, RK, Chaos 25, 073113 (2015)
- standard map: C.S.Rodrigues A.V.Chechkin, A.P.S. de Moura, C.Grebogi, RK, Europhys.Lett. 108, 40002 (2014)
- random dynamical system: Y.Sato, RK, to be published