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Outline

1 Motivation:

dynamical systems, diffusion and stochastic modeling

2 Diffusion in three different dynamical systems:

1 non-chaotic ‘slicer’ map
2 soft periodic Lorentz gas
3 a simple random dynamical system

3 Conclusion:

successes, failures and pitfalls for these three examples

when relating the above three layers to each other
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Dynamical systems, diffusion and stochastic modeling

theme of this talk:

dynamical system

stochastic model

diffusion

?
input

output

generate

two questions:

1 what type of diffusion is generated by a dynamical system?

2 can it be reproduced by some stochastic model?
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Random Dyn. Systems and Anomalous Dynamics

relation to workshop theme:

dynamical system

stochastic model

diffusion

input
output

generate

anomalous diffusion

random
dynamical system

will be illustrated by three examples
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Basic diffusive setup

in the following only diffusion in one dimension

key quantity: mean square displacement

< x2 >:=

∫
dx x2ρ(x , t) ∼ tγ

note: three basic types of diffusion
1 there is not only ‘Brownian’ (normal) diffusion with γ = 1

but also anomalous diffusion:

2 subdiffusion with γ < 1

and

3 superdiffusion with γ > 1

(plus more exotic types)
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I. The slicer map

together with:

L.Salari and L.Rondoni (Torino)

C.Giberti (Reggio E.)
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Motivation: diffusion in polygonal billiards

Zaslavsky et al. (2001), Jepps et al. (2006)

• zero Lyapunov exponent: different points separate linearly but

not exponentially in time, hence non-chaotic dynamics

• mean square displacement from simulations: sub-, super- or

normal diffusion depending on parameters, with partially

conflicting results (Alonso / Jepps / Sanders et al., 2002ff)
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Pictorial construction

a one-dimensional ‘random walk-like’ but fully deterministic

system; diffusion of a density of points from uniform initial

density in space (m) - discrete time (n) diagram:

-3 -2 -1 0 1 2 3

 0

 3

 2

 1

m

n

slicers (blue lines) split the density and move parts around;

no stretching, hence zero Lyapunov exponent: no chaos!
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Formal definition

• consider a chain of intervals M̂ := M × Z, M := [0, 1]

with point X̂ = (x ,m) in M̂, where M̂m := M × {m} is the

m-th cell of M̂

• subdivide each M̂m in subintervals, separated by points called

slicers: {1/2} × {m} , {ℓm} × {m} , {1 − ℓm} × {m}, where

0 < ℓm < 1/2 for every m ∈ Z with

power law ℓm(α) =
1

(|m|+21/α)
α , α > 0

• slicer map: S : M̂ → M̂ , X̂n+1 = S(X̂n) , n ∈ N with

S(x ,m) =

{
(x ,m − 1) if 0 ≤ x < ℓm or 1

2 < x ≤ 1 − ℓm,

(x ,m + 1) if ℓm ≤ x ≤ 1
2 or 1 − ℓm < x ≤ 1.

⇒ interval exchange transformation lifted onto the real line
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Main result: diffusive properties

Proposition: Salari et al., 2015

Given α ≥ 0 and a uniform initial distribution in M̂0, we have

1 α = 0: ballistic motion with MSD 〈X̂ 2
n 〉 ∼ n2

2 0 < α < 1: superdiffusion with MSD 〈X̂ 2
n 〉 ∼ n2−α

3 α = 1: normal diffusion with linear MSD 〈X̂ 2
n 〉 ∼ n

non-chaotic normal diffusion with non-Gaussian density

4 1 < α < 2: subdiffusion with MSD 〈X̂ 2
n 〉 ∼ n2−α

subdiffusion with ballistic peaks

5 α = 2: logarithmic subdiffusion with MSD 〈X̂ 2
n 〉 ∼ log n

a bit exotic

6 α > 2: localisation in the MSD with 〈X̂ 2
n 〉 ∼ const .

non-trivial phenomenon

nb: higher order moments 〈X̂ p
n 〉 can also be calculated
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Matching to stochastic dynamics?

curiously, the slicer moments bear formal similarity with

different stochastic models:

one-dimensional stochastic Lévy Lorentz gas:

matching of all moments in the superdiffusive regime by a

non-trivial scaling

Lévy walk modeled by CTRW theory:

matching of all moments in the superdiffusive regime by a

different simple scaling

correlated Gaussian stochastic process:

same MSD in the subdiffusive regime

⇒ slicer might help to explain a controversy about different

stochastic models for diffusion in polygonal billiards
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II. The soft Lorentz gas

together with:

S.S.G.Gallegos (London)

J.Solanpäa, M.Sarvilahti and E.Räsänen (Tampere)
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Review: The periodic Lorentz gas

w

Lorentz (1905)

point particle of unit mass with unit

velocity scatters elastically with

hard disks of unit radius on a

triangular lattice

only nontrivial control parameter:

gap size w , cf. density of scatterers

paradigmatic example of a chaotic

Hamiltonian particle billiard:

∃ positive Ljapunov exponent;

∃ diffusion in certain range of w

Bunimovich, Sinai (1980)

Question: How does the diffusion coefficient D(w) look like?
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Diffusion coefficient for the periodic Lorentz gas

diffusion coefficient D(w) = limt→∞ < (r(t)− r(0))2 > /(4t)

computer simulation results:

0

0.1

0.2

0 0.1 0.2 0.3

D
(w

)

w

w

• dots: random walk approx. by Machta, Zwanzig (1983)
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Diffusion coefficient for the periodic Lorentz gas

diffusion coefficient D(w) = limt→∞ < (x(t)− x(0))2 > /(4t)

computer simulation results:

0
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0.2

0 0.1 0.2 0.3

D
(w

)

w

w

residua for large w :

0.24 0.26 0.28 0.3
w

-0.0004

0

0.0004

0.0008

re
si

du
a(

w
)

• dots (left): random walk approx. by Machta, Zwanzig (1983)

• ∃ irregularities on fine scales; RK, Dellago (2000)

Question: What happens to D(w) if one softens the scatterers?
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Our model

We choose overlapping Fermi potentials

V (r) =
1

1 + exp
(
|r|−ro

σ

)

with softness parameter σ and total energy E = 1/2

A

w

0

1/2

1

V

w

diffusion coefficient D(w) computed with software package

bill2d by Solanpää et al. (2016)
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Results: Diffusion coefficient D(w)

0.1 0.2 0.3 0.4 0.5

w (a.u.)

0.00

0.06

0.12

0.18

0.24

0.30

D
(a

.u
.)

3(c)

Simulation

DB

DB,num

3(d)

3(a) 3(b)

D(w) is a highly irregular function of the control parameter

the coarse form matches to a Boltzmann approximation

DB(w) = ℓ2
c/(4τc) (orange analytical, red numerical)

there are parameter regions exhibiting superdiffusion
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Explanations: diffusion and periodic orbits
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extrema in D(w) related to islands of periodicity in mixed

phase space (Geisel et al., 1987ff; Zaslavsky, 2002)

two types: ballistic orbits lead to superdiffusion, localised

orbits decrease normal diffusion

mathematical conjecture that islands are dense in

parameters under smoothening (Turaev, Rom-Kedar, 1998)
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Periodic orbits in parameter space

0.0 0.1 0.2 0.3 0.4 0.5 0.6
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blue: localised; red ballistic periodic orbits

there is a very regular structure of periodic orbits

underlying the highly irregular D(W )

no fit with simple functional forms

open question to build a theory for these tongues
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III. A random dynamical system

together with:

Y.Sato (Hokkaido)
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Constructing a random dynamical system

three time series for position xt of a particle at discrete time t :

x

t

x

t t

t
x t

tx      = D(x  )t+1 tx      = L(x  )t+1

t

p1-p

tx      = R(x  )t+1

t

LD

R

• upper left: deterministic

dynamical system D yielding

normal diffusion

• upper right: deterministic

dynamical system L where all

particles localize in space.

• bottom: random dynamical

system R that mixes these two

types of dynamics at time t with

probability p; the result is

intermittent motion
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Our model

equation of motion

xt+1 = Ma(xt) with discrete time

t ∈ N0 , a > 0 and

one-dimensional piecewise

linear map

Ma(x) =

{
ax , 0 ≤ x < 1

2

ax + 1 − a , 1
2 ≤ x < 1

lift Ma(x + 1) = Ma(x) + 1;

Lyapunov exponent λ(a) = ln a

RK, J.R.Dorfman, 1995

a

x

y=M  (x)a

0 1 2 3

1

2

3

0 1 2 3456 n

random map R = Ma(x): at any t choose a iid with probability

p ∈ [0, 1] from a = 1/2 and with 1 − p from a = 4

Stochastic modeling of diffusion in dynamical systems Rainer Klages 22



Motivation 1. slicer 2. soft Lorentz gas 3. random dynamical system Summary

Diffusion in a simple random dynamical system
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t0
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〈x
t2 〉
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• left: 〈x2
t 〉 for p = 0.6, . . . , 0.7 (top to bottom); subdiffusion with

zero Lyapunov exponent at pc = 2/3

• right: 〈x2
t 〉 at pc with same random sequence for each particle

(colors), cp. to different random sequence (black); MSD is a

random variable breaking self-averaging and ergodicity
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Ageing and weak ergodicity breaking
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• left: 〈x2
t 〉 at pc by starting the computations after different

ageing times ta = 0, 102, 103, 104 (top to bottom) displays

ageing, cp. to CTRW theory (Barkai, 2003; bold lines)

• right: corresponding waiting time distribution η(t) (for particles

leaving a unit cell at ta), again matching to CTRW theory

• both results imply weak ergodicity breaking (Bouchaud, 1992)
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Connection with dynamical systems theory

mixing ‘expanding’/chaotic with contracting/non-chaotic

dynamics randomly in time generates intermittent motion

the underlying microscopic mechanism is called on-off

intermittency (Pikovsky (1984), Fujisaka et al. (1985));

transition called blowout bifurcation (Ott et al. (1994))
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Summary

central theme: interplay between dynamical systems,

diffusion and stochastic modeling

main results:
1 (random) dynamical systems can feature novel types of

(anomalous) diffusion
2 naive matching to stochastic models can be misleading and

difficult

outlook: perhaps dynamical systems theory can inspire

stochastic theory to invent new stochastic processes?
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