From normal to anomalous deterministic diffusion Part 1: Normal deterministic diffusion

Rainer Klages

Queen Mary University of London, School of Mathematical Sciences

Sperlonga, 20-24 September 2010

Outline ●○○

Chaotic map

Deterministic diffusion

Setting the scene

approach should be particularly useful for small nonlinear systems

three parts:

- Normal deterministic diffusion: some basics of dynamical systems theory for maps and escape rate theory of deterministic diffusion
- From normal to anomalous deterministic diffusion: normal diffusion in particle billiards and anomalous diffusion in intermittent maps
- Anomalous (deterministic) diffusion: generalized diffusion and Langevin equations, fluctuation relations and biological cell migration

End

Chaotic maps

Deterministic diffusion

The drunken sailor at a lamppost

position 5 10 15 20 time steps

random walk in one dimension (K. Pearson, 1905): • steps of length *s* with probability $p(\pm s) = 1/2$ to the left/right

• single steps *uncorrelated*: Markov process (coin tossing)

define diffusion coefficient as

$$D:=\lim_{n\to\infty}\frac{1}{2n}<(x_n-x_0)^2>$$

with discrete time step $n \in \mathbb{N}$ and average over the initial density $< \ldots > := \int dx \ \varrho(x) \ldots$ of positions $x = x_0, x \in \mathbb{R}$

• for sailor: $D = s^2/2$

Chaotic maps

Deterministic diffusion

Bernoulli shift and dynamical instability

idea: study diffusion on the basis of deterministic chaos

Bernoulli shift $M(x) = 2x \mod 1$ with $x_{n+1} = M(x_n)$:

apply small perturbation $\Delta x_0 := \tilde{x}_0 - x_0 \ll 1$ and iterate:

$$\Delta x_n = 2\Delta x_{n-1} = 2^n \Delta x_0 = e^{n\ln 2} \Delta x_0$$

 \Rightarrow exponential dynamical instability with Ljapunov exponent $\lambda := \ln 2 > 0$: Ljapunov chaos

Deterministic diffusion

End

Ljapunov exponent

local definition for one-dimensional maps via time average:

$$\lambda(\boldsymbol{x}) := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln |M'(\boldsymbol{x}_i)| , \ \boldsymbol{x} = \boldsymbol{x}_0$$

if map is ergodic: time average = ensemble average,

 $\lambda = \langle \ln | M'(x) | \rangle$ Birkhoff's theorem

with average over an invariant probability density $\varrho(x)$ that is related to the map's SRB measure via $\mu(x) = \int_0^x dy \varrho(y)$ Bernoulli shift is *expanding*: $\forall x | M'(x) | > 1$, hence 'hyperbolic' normalizable pdf exists, here simply $\varrho(x) = 1 \Rightarrow \lambda = \ln 2$

Chaotic maps

Deterministic diffusion

Kolmogorov-Sinai entropy

- define a partition { W_iⁿ} of the phase space and refine it by iterating the critical point n times backwards
- let µ(w) be the SRB measure of a partition element w ∈ {W_iⁿ}

• define $H_n := -\sum_{w \in \{W_i^n\}} \mu(w) \ln \mu(w)$,

where *n* denotes the level of refinement

• the limit $h_{ks} := \lim_{n \to \infty} \frac{1}{n} H_n$ defines the Kolmogorov-Sinai (metric) entropy (if the partition is generating)

for Bernoulli shift with uniform measure refinement yields $H_n = n \ln 2$, hence $h_{ks} = \ln 2 > 0$: measure-theoretic chaos

note: for Bernoulli shift $\lambda = \ln 2$ and $h_{ks} = \ln 2$

Theorem

Pesin theorem

For closed C² Anosov systems the KS-entropy is equal to the sum of positive Lyapunov exponents. Pesin (1976), Ledrappier, Young (1984)

believed to hold for a wider class of systems

for one-dimensional hyperbolic maps:

 $h_{ks} = \lambda$

Chaotic maps

Deterministic diffusion

End o

Escape from a fractal repeller

piecewise linear map, slope a = 3, with escape:

 take a uniform ensemble of N₀ points; calculate the number N_n of points that survive after n iterations: N_n = (2/3)N_{n-1} = N₀e^{-nln(3/2)} =: N₀e^{-γn}

 for hyperbolic maps N_n decreases exponentially with escape rate γ; repeller forms a fractal Cantor set

Chaotic maps

Deterministic diffusion

End

Escape rate formula

note: for open systems λ , h_{ks} must be computed with respect to the invariant measure on the fractal repeller \mathcal{R}

for our example:

 $\lambda(\mathcal{R}) = \ln 3$, $h_{ks}(\mathcal{R}) = \ln 2$ (as before), $\gamma = \ln(3/2)$

$$\Rightarrow \gamma = \lambda(\mathcal{R}) - h_{ks}(\mathcal{R})$$

no coincidence: this is the escape rate formula of Kantz, Grassberger (1985)

• proven for Anosov diffeomorphisms with 'holes' by Chernov, Markarian (1997)

 \bullet \exists position dependence of escape rates, cf. Bunimovich, Yurchenko (2008) and ff

A simple deterministic diffusive map

Chaotic maps

continue the previous map on the unit interval by a *lift of degree* one, $M_a(x + 1) = M_a(x) + 1$, where *a* denotes the slope: Grossmann/Geisel/Kapral et al. (1982)

three questions:

• Does this map exhibit diffusion?

Deterministic diffusion

- If so, can one calculate the diffusion coefficient?
- And if so, is there any relation between this coefficient and dynamical systems quantities?

Outline

End

solve the ordinary one-dimensional diffusion equation

$$\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2}$$

with n = n(x, t) distribution function at point x and time t; D defines the diffusion coefficient

solution for absorbing boundaries, n(0, t) = n(L, t) = 0:

$$n(x,t) = \sum_{m=1}^{\infty} \exp\left(-\left(\frac{\pi m}{L}\right)^2 Dt\right) a_m \sin(\frac{\pi m}{L}x)$$

with a_m determined by the initial density n(x, 0)

Q: do we get the same for our deterministic chaotic model?

Escape rate formalism, Step 2: FP equation

solve the Frobenius-Perron (Liouville) equation

$$\varrho_{n+1}(\mathbf{y}) = \int d\mathbf{x} \ \varrho_n(\mathbf{x}) \ \delta(\mathbf{y} - M_a(\mathbf{x}))$$

for the probability density $\rho_n(x)$ of $M_a(x)$

• basic idea: construct FP-operator as transition matrix T(a) applied to column vector $\underline{\varrho}_n$ of the probability density $\underline{\varrho}_n(x)$:

$$\underline{\varrho}_{n+1} = \frac{1}{a} T(a) \underline{\varrho}_n$$

Outline	Chaotic maps	Deterministic diffusion	
000	000000	000000	0

example: construction of *T* for a = 4

• solve the FP-equation: let $T(4) |\phi_m(x)\rangle = \chi_m(4) |\phi_m(x)\rangle$ be

the eigenvalue problem of T(4) with eigenvalues $\chi_m(4)$ and eigenvectors $|\phi_m(\mathbf{x}) >$

 $|\rho_{n+1}(x)\rangle = \underline{\varrho}_{n+1}$ by spectral decomposition:

$$\begin{aligned} |\rho_{n+1}(x) > &= \frac{1}{4} \sum_{m=1}^{L} \chi_m(4) |\phi_m(x)| > < \phi_m(x) |\rho_n(x) > \\ &= \sum_{m=1}^{L} \exp\left(-n \ln \frac{4}{\chi_m(4)}\right) |\phi_m(x)| > < \phi_m(x) |\rho_0(x) > \end{aligned}$$

for initial probability density vector $|\rho_0(x)>$

• solve the eigenvalue problem for absorbing boundaries, $\rho_n(0) = \rho_n(L)$: analytical solution only available in special cases, as for a = 4

Deterministic diffusion

Escape rate formalism, Step 3: match the solutions

match the largest eigenmodes in the limit of chain length $L \rightarrow \infty$ and time $n \rightarrow \infty$

- diffusion equation: $n(x, t) \simeq \exp\left(-\left(\frac{\pi}{L}\right)^2 Dt\right) A \sin\left(\frac{\pi}{L}x\right)$
- **FP-equation:** $\rho_{n+1}(x) \simeq \exp(-\gamma(4)n)\tilde{A}\sin\left(\frac{\pi}{L+1}k\right)$ $k = 1, \dots, L$, $k-1 < x \le k$,

where $\gamma(4) = \ln \frac{4}{\chi_{max}(4)}$ is the escape rate with $\chi_{max}(4) = 2 + 2\cos \frac{\pi}{L+1}$ as the largest eigenvalue of T(4)

• match:

$$D(4) = \left(rac{L}{\pi}
ight)^2 \gamma(4)
ightarrow rac{1}{4} \quad (L
ightarrow \infty)$$

exact method to calculate D(4); value is identical to random walk solution

Chaotic maps

Deterministic diffusion

Escape rate formula for diffusion

establish relation between diffusion coefficient and dynamical systems quantities: it was

$$D = \lim_{L \to \infty} \left(\frac{L}{\pi}\right)^2 \gamma$$

with

$$\gamma = \ln |M'(\mathbf{x})| - \ln \chi_{max}$$

cp. with escape rate formula derived previously:

$$\gamma = \lambda(\mathcal{R}_L) - h_{\mathsf{KS}}(\mathcal{R}_L)$$

general result:

$$D = \lim_{L o \infty} \left(rac{L}{\pi}
ight)^2 [\lambda(\mathcal{R}_L) - h_{KS}(\mathcal{R}_L)]$$

escape rate formula for diffusion Gaspard, Nicolis, Dorfman (1990ff)

Parameter-dependent deterministic diffusion

result for the parameter dependent diffusion coefficient D(a):

D(a) exists and is a fractal function of a control parameter

compare diffusion of drunken sailor with chaotic model: **fine structure beyond simple random walk solution** R.K., Dorfman (1995)

From normal to anomalous diffusion 1

Deterministic diffusion

Physical explanation of the fractal structure

blowup of the initial region of D(a):

а

local extrema are generated by specific sequences of correlated microscopic scattering processes Reference

R.Klages, **From Deterministic Chaos to Anomalous Diffusion** book chapter in: **Reviews of Nonlinear Dynamics and Complexity**, Vol. 3 H.G.Schuster (Ed.), Wiley-VCH, Weinheim, 2010

based on 6-hour first-year PhD course lecture notes available on http://www.maths.qmul.ac.uk/~klages