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Outline

yesterday:

2 From normal to anomalous deterministic diffusion:
normal diffusion in particle billiards and anomalous
diffusion in intermittent maps

note: work by T.Akimoto

today:

3 Anomalous diffusion:
generalized diffusion and Langevin equations, biological
cell migration and fluctuation relations
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Reminder: Intermittent map and CTRW theory

-1 0 1 2
x

-2

-1

0

1

2

3M

x
0

subdiffusion coefficient calculated
from CTRW theory

key: solve Montroll-Weiss equation
in Fourier-Laplace space,

ˆ̺̃(k , s) =
1 − w̃(s)

s
1

1 − λ̂(k)w̃(s)
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Time-fractional equation for subdiffusion

For the lifted PM map M(x) = x + axz mod 1, the MW equation
in long-time and large-space asymptotic form reads

sγ ˆ̺̃− sγ−1 = − pℓ2aγ

2Γ(1 − γ)γγ
k2 ˆ̺̃ , γ := 1/(z − 1)

LHS is the Laplace transform of the Caputo fractional derivative

∂γ̺

∂tγ
:=

{

∂̺
∂t γ = 1

1
Γ(1−γ)

∫ t
0 dt

′

(t − t
′

)−γ ∂̺

∂t ′
0 < γ < 1

transforming the Montroll-Weiss eq. back to real space yields
the time-fractional (sub)diffusion equation

∂γ̺(x , t)
∂tγ

= K
Γ(1 + α)

2
∂2̺(x , t)

∂x2
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Interlude: What is a fractional derivative?

letter from Leibniz to L’Hôpital (1695): d1/2

dx1/2 =?

one way to proceed: we know that for integer m, n
dm

dxm xn =
n!

(n − m)!
xn−m =

Γ(n + 1)

Γ(n − m + 1)
xn−m;

assume that this also holds for m = 1/2 , n = 1

⇒ d1/2

dx1/2
x =

2√
π

x1/2

fractional derivatives are defined via power law memory
kernels, which yield power laws in Fourier (Laplace) space:

dγ

dxγ
F (x) ↔ (ik)γ F̃ (k)

∃ well-developed mathematical theory of fractional calculus ;
see Sokolov, Klafter, Blumen, Phys. Today 2002 for a short intro
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Deterministic vs. stochastic density

initial value problem for fractional diffusion equation can be
solved exactly; compare with simulation results for P = ̺n(x):
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Gaussian and non-Gaussian envelopes (blue) reflect
intermittency
fine structure due to density on the unit interval
r = ̺n(x) (n ≫ 1) (see inset)
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Escape rate theory for anomalous diffusion?

recall the escape rate theory of Lecture 1 expressing the
(normal) diffusion coefficient in terms of chaos quantities:

D = lim
L→∞

(

L
π

)2

[λ(RL) − hKS(RL)]

Q: Can this also be worked out for the subdiffusive PM map?

1 solve the previous fractional subdiffusion equation for
absorbing boundaries: can be done

2 solve the Frobenius-Perron equation of the subdiffusive
PM map: ?? (∃ methods by Tasaki, Gaspard (2004))

3 even if step 2 possible and modes can be matched: ∃ an
anomalous escape rate formula ???

two big open questions...
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Motivation: biological cell migration

Brownian motion

3 colloidal particles of radius
0.53µm; positions every 30
seconds, joined by straight
lines (Perrin, 1913)

single biological cell crawling on
a substrate (Dieterich, R.K. et
al., PNAS, 2008)

Brownian motion?
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Our cell types and how they migrate

MDCK-F (Madin-Darby
canine kidney) cells

two types: wildtype (NHE+)
and NHE-deficient (NHE−)

movie: NHE+: t=210min, dt=3min

note:
the microscopic origin of cell migration is a highly complex
process involving a huge number of proteins and signaling
mechanisms in the cytoskeleton, which is a complicated
biopolymer gel – we do not consider this here!
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Measuring cell migration
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Theoretical modeling: the Langevin equation

Newton’s law for a particle of mass m and
velocity v immersed in a fluid

mv̇ = Fd (t) + F r (t)
with total force of surrounding particles
decomposed into viscous damping F d(t)
and random kicks F r (t)

suppose F d (t)/m = −κv and F r (t)/m =
√

ζ ξ(t) as Gaussian
white noise of strength

√
ζ:

v̇ + κv =
√

ζ ξ(t) Langevin equation (1908)

‘Newton’s law of stochastic physics’: apply to cell migration?

note: Brownian particles passively driven, whereas cells move
actively by themselves!
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Solving Langevin dynamics

calculate two important quantities (in one dimension):

1. the diffusion coefficient D := lim
t→∞

msd(t)
2t

with msd(t) :=< [x(t) − x(0)]2 >; for Langevin eq. one obtains
msd(t) = 2v2

th

(

t − κ−1(1 − exp (−κt))
)

/κ with v2
th = kT/m

note that msd(t) ∼ t2 (t → 0) and msd(t) ∼ t (t → ∞) ⇒ ∃D

2. the probability distribution function P(x , v , t):
• Langevin dynamics obeys (for κ ≫ 1) the diffusion equation

∂P
∂t

= D
∂2P
∂x2

solution for initial condition P(x , 0) = δ(x) yields position
distribution P(x , t) = exp(− x2

4Dt )/
√

4πDt
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Fokker-Planck equations

• for velocity distribution P(v , t) of Langevin dynamics one can
derive the Fokker-Planck equation

∂P
∂t

= κ

[

∂

∂v
v + v2

th
∂2

∂v2

]

P

stationary solution is P(v) = exp(− v2

2v2
th
)/
√

2πvth

• Fokker-Planck equation for position and velocity distribution
P(x , v , t) of Langevin dynamics is the Klein-Kramers equation

∂P
∂t

= − ∂

∂x
[vP] + κ

[

∂

∂v
v + v2

th
∂2

∂v2

]

P

the above two eqns. can be derived from it as special cases
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Experimental results I: mean square displacement

• msd(t) :=< [x(t) − x(0)]2 >∼ tβ with β → 2 (t → 0) and
β → 1 (t → ∞) for Brownian motion; β(t) = d ln msd(t)/d ln t

• solid lines: (Bayes) fits from our model
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Experimental results II: position distribution function

• P(x , t) → Gaussian
(t → ∞) and kurtosis

κ(t) := <x4(t)>
<x2(t)>2 → 3 (t → ∞)

for Brownian motion (green
lines, in 1d)

• other solid lines: fits from
our model; parameter values
as before
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⇒ crossover from peaked to broad non-Gaussian distributions
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The generalized model

• Fractional Klein-Kramers equation (Barkai, Silbey, 2000):

∂P
∂t

= − ∂

∂x
[vP] +

∂1−α

∂t1−α
κ

[

∂

∂v
v + v2

th
∂2

∂v2

]

P

with probability distribution P = P(x , v , t), damping term κ,
thermal velocity v2

th = kT/m and Riemann-Liouville fractional
derivative of order 1 − α
for α = 1 Langevin’s theory of Brownian motion recovered

• analytical solutions for msd(t) and P(x , t) can be obtained
in terms of special functions (Barkai, Silbey, 2000; Schneider,
Wyss, 1989)

• 4 fit parameters vth, α, κ (plus another one for short-time
dynamics)
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Possible physical interpretation

• physical meaning of the fractional derivative?

fractional Klein-Kramers equation can approximately be related
to generalized Langevin equation of the type

v̇ +
∫ t

0 dt ′ κ(t − t ′)v(t ′) =
√

ζ ξ(t)

e.g., Mori, Kubo, 1965/66

with time-dependent friction coefficient κ(t) ∼ t−α

cell anomalies might originate from soft glassy behavior of the
cytoskeleton gel, where power law exponents are conjectured
to be universal (Fabry et al., 2003; Kroy et al., 2008)
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Possible biological interpretation

• biological meaning of anomalous cell migration?

experimental data and theoretical modeling suggest slower
diffusion for small times while long-time motion is faster

compare with intermittent optimal search strategies of foraging
animals (Bénichou et al., 2006)

note: ∃ current controversy about Lévy hypothesis for optimal
foraging of organisms (albatross, fruitflies, bumblebees,...)
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Fluctuation relations

system evolving from an initial state into a nonequilibrium state;
measure pdf ρ(Wt) of entropy production Wt during time t :

ln
ρ(Wt)

ρ(−Wt)
= Wt transient fluctuation relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

1 generalizes the Second Law to small noneq. systems
2 yields nonlinear response relations
3 connection with fluctuation dissipation relations (FDR)

example: check the above TFR for Langevin dynamics with
constant field F ; Wt = Fx(t), ρ(Wt) ∼ ρ(x , t) is Gaussian

TFR holds if < Wt >=< σ2
Wt

> /2 (FDR1)

for Gaussian stochastic process: FDR2 ⇒ FDR1 ⇒ TFR
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An anomalous fluctuation relation

check TFR for the overdamped generalized Langevin equation
ẋ = F + ξ(t)

with < ξ(t)ξ(t ′) >∼ |t − t ′|−β , 0 < β < 1: no FDT2
ρ(Wt) is Gaussian with < Wt >∼ t , < σ2

Wt
>∼ t2−β : no FDT1

and superdiffusion

ln
ρ(Wt)

ρ(−Wt)
= Cβtβ−1Wt

(0 < β < 1)

anomalous TFR

Chechkin, R.K. (2009)

experiments on slime mold:

Hayashi, Takagi (2007)
note: we see this aTFR in experiments on cell migration

Dieterich, Chechkin, Schwab, R.K., tbp
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Summary

ergodic
hypothesis

Gibbs
ensembles

dynamical systems

statistical mechanics

thermodynamics

equilibrium nonequilibrium
steady states

microscopic chaos

complexity

nonequilibrium conditions

thermodynamic
properties

microscopic

macroscopic

general theory of nonequilibrium statistical physics
starting from weak microscopic chaos?

infinite measures

deterministic transport

weakstrong

fractal SRB measures

normal anomalous

nonequilibrium
non-steady states
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