Research background	Cell migration	Bumblebee foraging	Outlook

Statistical Analysis and Mathematical Modeling of Dynamics in Biological Systems

Rainer Klages

Queen Mary University of London, School of Mathematical Sciences

SBCS-SMS Stats-Bio Symposium 17 December 2012

Research background ●○	Cell migration	Bumblebee foraging	Outlook o
My scientific background			

applied mathematics / theoretical physics:

Research background ○●	Cell migration	Bumblebee foraging	Outlook o		
Research interests					

Goal:

understand dynamics of complex systems in 'nonequilibrium' (i.e., when driven by external forces or gradients); applications to nano-systems and **biology**

in this talk two biological examples:

cell migration

bumblebee foraging

Research background	Cell migration ●000	Bumblebee foraging	Outlook o
Project 1: Cell	migration		

put a single biological cell onto a substrate – the cell crawls:

movie: crawling canine kindney cell

Question: Can we **mathematically characterize** cell migration? (e.g., for distinguishing between healthy and deficient cells)

From experiment to data analysis

picture of 30 cell paths, shifted to the origin:

- statistically analyze these paths for quantifying cell migration
- construct an integrative mathematical model
- compare theoretical predictions with experimental data

Research background	Cell migration ○○○●	Bumblebee foraging	Outlook o	

Cell migration project

main result: cells perform highly correlated dynamics

publication:

P.Dieterich, R.K., R.Preuss, A.Schwab, Anomalous dynamics of cell migration, PNAS **105**, 459-463 (2008)

- very cross-disciplinary team
- very well-cited article
- project partially funded by EPSRC grant

 Research background
 Cell migration
 Bumblebee foraging
 Outlook

 oo
 oooo
 oo
 oo

Project 2: Bumblebee foraging

joint project together with Tom Ings and Lars Chittka (SBCS): artificial flowers in a box ...

... partially equipped with artificial spiders

record flights of single bees

Question: any change of the bee flights under predation thread?

Research background	Cell migration	Bumblebee foraging ○●	Outlook o	
Statistical analysis and mathematical modeling				

• statistical data analysis - main result:

no change in velocity *distributions* but in velocity *correlations* under predation thread

reproduced by a simple mathematical model

• publication:

F.Lenz, T.Ings, A.V.Chechkin, L.Chittka, R.K., Spatio-temporal dynamics of bumblebees foraging under predation risk, Phys. Rev. Lett. **108**, 098103 (2012)

editor's choice and highlighted by the American Phys. Soc.

 funded by the Bridging the Gaps initiative and a PhD studentship from QMUL

Research background	Cell migration	Bumblebee foraging	Outlook •
Outlook			

If you have a 'spaghetti soup' representing a biological process and need some statistical analysis with mathematical modeling: Let me know...

www.maths.qmul.ac.uk/~klages;r.klages@qmul.ac.uk