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Abstract

An (n × n)/k semi-Latin square is an n × n square array in which nk distinct symbols
(representing treatments) are placed in such a way that there are exactly k symbols in
each cell (row-column intersection) and each symbol occurs once in each row and once in
each column. Semi-Latin squares form a class of row-column designs generalising Latin
squares, and have applications in areas including the design of agricultural experiments,
consumer testing, and via their duals, human-machine interaction. In the present pa-
per, new theoretical and computational methods are developed to determine optimal or
efficient (n × n)/k semi-Latin squares for values of n and k for which such semi-Latin
squares were previously unknown. The concept of subsquares of uniform semi-Latin
squares is studied, new applications of the DESIGN package for GAP are developed, and
exact algebraic computational techniques for comparing efficiency measures of binary
equireplicate block designs are described. Applications include the complete enumera-
tion of the (4×4)/k semi-Latin squares for k = 2, . . . , 10, and the determination of those
that are A-, D- and E-optimal, the construction of efficient (6× 6)/k semi-Latin squares
for k = 4, 5, 6, and counterexamples to a long-standing conjecture of R.A. Bailey and to
a similar conjecture of D. Bedford and R.M. Whitaker.

Keywords: Semi-Latin square, Design optimality, Mutually orthogonal Latin squares,
Block design, Block design efficiency measures, Construction and enumeration of
combinatorial designs, DESIGN package for GAP, Algebraic computation

1. Introduction

An (n×n)/k semi-Latin square is an n×n square array in which nk distinct symbols
(representing treatments) are placed in such a way that there are exactly k symbols in
each cell (row-column intersection) and each symbol occurs once in each row and once in
each column. The order of symbols within a cell is immaterial, and to avoid trivialities,
we assume throughout that n > 1 and k > 0. Since no symbol can occur more than once
within a cell, it is convenient to consider the contents of a cell to be a k-element subset
of the set of symbols, and we call such a subset a block of a semi-Latin square.

We consider two (n×n)/k semi-Latin squares to be isomorphic if one can be obtained
from the other by applying one or more of: a row permutation, a column permutation,
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transposing, and renaming symbols. The underlying block design ∆(S) of a semi-Latin
square S is obtained by ignoring the row and column structure of S, so ∆(S) is a block
design whose treatments are the symbols of S and whose blocks are the blocks of S
(including any repeats). The dual S∗ of an (n × n)/k semi-Latin square S is the block
design whose n2 treatments are the ordered pairs (i, j), with i, j ∈ {1, . . . , n}, and whose
nk blocks correspond to the symbols of S, with the block corresponding to a symbol α
consisting precisely of the ordered pairs (i, j) such that α is in the (i, j)-cell of S (see
Bailey (2011)). Note that, up to the naming of its symbols, a semi-Latin square S can
be recovered from its dual S∗.

For example, here is a (3× 3)/2 semi-Latin square with symbol-set {1, . . . , 6}:

1 4 2 5 3 6
3 5 1 6 2 4
2 6 3 4 1 5

, (1)

and the blocks of its dual are:

{(1,1),(2,2),(3,3)}, {(1,2),(2,3),(3,1)}, {(1,3),(2,1),(3,2)},
{(1,1),(2,3),(3,2)}, {(1,2),(2,1),(3,3)}, {(1,3),(2,2),(3,1)}.

Note that an (n×n)/1 semi-Latin square is the same thing as a Latin square of order n.
Semi-Latin squares have applications in the design of comparative experiments, in-

cluding the design of agricultural experiments, consumer testing, and via their duals,
human-machine interaction (see Preece and Freeman (1983); Bailey (1988, 1992, 2011);
Edmondson (1998), and their references). Thus, it is important to know statistically
optimal, or at least efficient, (n × n)/k semi-Latin squares for given values of n and k.
Following the analysis by Bailey (1992), an (n × n)/k semi-Latin square is optimal (in
the class of (n× n)/k semi-Latin squares) with respect to a given optimality criterion if
and only if its underlying block design is optimal with respect to that criterion in the
class of underlying block designs of (n× n)/k semi-Latin squares. In addition, as shown
by Bailey (2011), the dual of an (n × n)/k semi-Latin square S is optimal (in the class
of duals of (n× n)/k semi-Latin squares) if and only if S is optimal, for a wide range of
statistical optimality criteria, including A, D and E.

A binary equireplicate design with parameters (v, b, r, k), or simply a (v, b, r, k)-design,
is a block design having v > 1 treatments and b blocks, such that each block is a
set consisting of k > 0 distinct treatments, and each treatment is in exactly r > 0
blocks. Note that the underlying block design of an (n × n)/k semi-Latin square is an
(nk, n2, n, k)-design.

The concurrence matrix Λ of a (v, b, r, k)-design ∆ is the v × v matrix whose rows
and columns are indexed by the treatments of ∆, and whose (α, β)-entry is the number
of blocks containing both α and β. The scaled information matrix of ∆ is

F (∆) := Iv − (rk)−1Λ,

where Iv is the v×v identity matrix (see Bailey and Cameron (2009)). The eigenvalues of
F (∆) are all real and lie in the interval [0, 1]. At least one eigenvalue is zero: an associated
eigenvector is the all-1 vector. The remaining eigenvalues δ1 ≤ δ2 ≤ · · · ≤ δv−1 of F (∆)
are called the canonical efficiency factors of ∆ (see John and Williams (1982); Bailey

2



and Cameron (2009)). These are all non-zero if and only if ∆ is connected (that is, the
treatment-block incidence graph of ∆ is a connected graph). If ∆ is not connected, then
we define A∆ = D∆ = E∆ := 0. Otherwise, these efficiency measures are defined by

A∆ := (v − 1)/
∑v−1
i=1 1/δi, D∆ :=

(∏v−1
i=1 δi

)1/(v−1)

, and E∆ := δ1 = min{δ1, . . . , δv−1}.
We say that ∆ is A-optimal in a class C of (v, b, r, k)-designs containing ∆ if A∆ ≥ AΓ for
each Γ ∈ C. D-optimal and E-optimal are defined similarly. We refer the reader to Bailey
and Cameron (2009) and Shah and Sinha (1989) for more background on block design
optimality, and for the respective definitions of Schur-optimality and MV-optimality.

When we apply the terms canonical efficiency factors, connected, and efficiency mea-
sure to a semi-Latin square S, we shall always mean the same as when those terms are
applied to the underlying block design of S.

In this paper, new theoretical and computational methods are developed and applied
to determine optimal, or at least efficient, (n × n)/k semi-Latin squares for values of n
and k for which such semi-Latin squares were previously unknown.

We start by providing background results, including a discussion of the “pseudo-
Trojan” semi-Latin squares constructed and analysed by Bailey (1992), and which were
conjectured to be optimal.

We then describe the enumeration of the (4×4)/k semi-Latin squares for k = 2, . . . , 10,
including determining those that are A-, D- and E-optimal. The results for k = 5, . . . , 10
are completely new.

A semi-Latin square U is uniform if any two blocks of U not in the same row or
column meet in a constant number µ = µ(U) of symbols, and we say that an n × n
semi-Latin square S is a subsquare of an n × n semi-Latin square T if S = T or T is
obtained by superimposing S and another n×n semi-Latin square (with a disjoint symbol-
set). Pseudo-Trojan semi-Latin squares, as well as the semi-Latin squares constructed by
Bedford and Whitaker (2001), can be viewed as certain (n×n)/k subsquares of (n×n)/u
uniform semi-Latin squares, with u − k < n − 1, and we study the canonical efficiency
factors of such subsquares. One outcome of this study is to explain certain numerical
observations of Bedford and Whitaker (2001). We then enumerate the uniform (5× 5)/8
semi-Latin squares, and examine their subsquares, obtaining (5× 5)/6 counterexamples
to both Bailey’s conjecture and one of Bedford and Whitaker.

Pseudo-Trojan semi-Latin squares provide efficient (although we now know, not nec-
essarily optimal) (n×n)/k semi-Latin squares when n is a prime power. We then discuss
the situation for 6 × 6 semi-Latin squares, with our particular contribution being effi-
cient (6× 6)/k semi-Latin squares for k = 4, 5, 6, the (6× 6)/6 example being especially
noteworthy.

Throughout, we make extensive use of the author’s DESIGN package (Soicher, 2011)
for GAP (The GAP Group, 2012), and in Appendix A we present the group-theoretical
framework to use this package in the enumeration of semi-Latin squares with given prop-
erties. Readers unfamiliar with permutation groups and group actions should consult
Cameron (1999), or may want to skim over much of Appendix A.

One especially novel aspect of this paper is that exact algebraic computation is used
for the comparison of efficiency measures, and these techniques are discussed in Appendix
B. Thus, when determining the optimal designs amongst those enumerated, or deter-
mining a counterexample to a conjecture on optimality, there is no danger of numerical
error producing an erroneous result.
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2. Background

Let s be a positive integer. An s-fold inflation of an (n × n)/k semi-Latin square is
obtained by replacing each symbol α in the semi-Latin square by s symbols σα,1, . . . , σα,s,
such that σα,i = σβ,j if and only if α = β and i = j. The result is an (n× n)/(ks) semi-
Latin square. For example, here is a 2-fold inflation of a Latin square of order 3:

1 4 2 5 3 6
3 6 1 4 2 5
2 5 3 6 1 4

.

The superposition of an (n×n)/k semi-Latin square with an (n×n)/` semi-Latin square
(with disjoint symbol sets) is performed by superimposing the first square upon the
second, resulting in an (n×n)/(k+`) semi-Latin square. An (n×n)/k semi-Latin square
is Trojan if it is the superposition of k mutually orthogonal Latin squares (MOLS) of
order n with pairwise disjoint symbol sets. For example, the semi-Latin square (1) is
Trojan. The canonical efficiency factors of (the underlying block design of) an (n×n)/k
Trojan semi-Latin square are 1−1/k (k(n−1) times), and 1 (k−1 times); see Bailey (1992,
Corollary 5.2). Cheng and Bailey (1991) proved that each (n× n)/k Trojan semi-Latin
square is A-, D- and E-optimal. Indeed, they proved that the underlying block design of
an (n×n)/k Trojan semi-Latin square is optimal in the class of all (nk, n2, n, k)-designs,
with respect to a wide range of optimality criteria, including the A-, D- and E-efficiency
measures. Of course, there may not exist k MOLS of order n, as when k ≥ n or when
n = 6 and k > 1.

An (n× n)/k pseudo-Trojan semi-Latin square P (n, k) is either Trojan or k ≥ n and
there must exist n− 1 MOLS L1, . . . , Ln−1 of order n from which P (n, k) is constructed
as follows. (The only n currently known with the property that there exist n− 1 MOLS
of order n are the prime powers.) Let k = a(n− 1) + b, with a and b integers with a > 0
and 0 ≤ b < n − 1. Then P (n, k) is formed by superimposing (a + 1)-fold inflations
of L1, . . . , Lb and a-fold inflations of Lb+1, . . . , Ln−1. The canonical efficiency factors of
such a P (n, k) are 1 − (a + 1)/k (b(n − 1) times), 1 − a/k ((n − 1 − b)(n − 1) times),
and 1 (nk− (n− 1)2 − 1 times); see Bailey (1992, Corollary 5.3). Thus every (Trojan or
not) (n×n)/k pseudo-Trojan semi-Latin square has the same canonical efficiency factors,
and from these we can compute its A-, D- and E-efficiency measures. For example, a
pseudo-Trojan (5× 5)/6 semi-Latin square P (5, 6) has

AP (5,6) = 145/173 ≈ .838150, DP (5,6) = (390625/43046721)1/29 ≈ .850315, (2)

and EP (5,6) = 2/3.
Bailey (1992) introduced and analysed pseudo-Trojan squares (but did not name

them), and conjectured that each (n×n)/k pseudo-Trojan semi-Latin square is “optimal”.
In the context of Bailey (1992), we take this to mean:

Conjecture 1 (Bailey). Each (n × n)/k pseudo-Trojan semi-Latin square is A-, D-
and E-optimal.

In the same paper, Bailey showed that this conjecture is true when n− 1 divides k, and
also when n < 4. Chigbu (1996) established the conjecture in the case n = k = 4.

4



An (n × n)/k semi-Latin square in which any two distinct symbols occur together
in at most one block is called a SOMA(k, n). It is believed that a SOMA(k, n) that is
optimal in the class of all SOMA(k, n)s is in fact optimal in the class of all (n × n)/k
semi-Latin squares (see Bailey and Royle (1997); John and Williams (1982)). Note that
each (n× n)/k Trojan semi-Latin square is a SOMA(k, n), but a SOMA(k, n) may exist
when there do not exist k MOLS of order n. However, a SOMA(k, n) always has k < n.

Bailey and Royle (1997) enumerated the underlying block designs of the SOMA(2, 6)s,
and determined optimal SOMA(2, 6)s for each of the efficiency measures A, D, E and MV
(although MV is called by the less common name E′). All SOMA(k, n)s with n ≤ 6 were
enumerated by the author and are available from his “SOMA Update” webpage (Soicher,
2012). Up to (semi-Latin square) isomorphism there are just 2799 SOMA(2, 6)s and
four SOMA(3, 6)s. (See also Phillips and Wallis (1996) and Preece and Phillips (2002)
regarding the enumeration of SOMA(3, 6)s.) We find that the two SOMA(3, 6)s which
are superpositions of a Latin square of order 6 and a SOMA(2, 6) have the same canonical
efficiency factors and are A-, D-, E- and MV-optimal amongst the SOMA(3, 6)s; see also
(Bailey, 2011). There is no SOMA(k, 6) with k > 3, so we shall focus in this paper on
efficient (6× 6)/k semi-Latin squares with k > 3.

Recall that a semi-Latin square U is uniform if any two blocks of U not in the
same row or column meet in a constant number µ = µ(U) of symbols. Soicher (2012)
introduced and studied uniform semi-Latin squares. An (n × n)/k uniform semi-Latin
square U has k = µ(U)(n− 1), with µ(U) = 1 if and only if U is a superposition of n− 1
MOLS of order n. Soicher (2012) also proved that each (n × n)/k uniform semi-Latin
square is Schur-optimal. In particular, each uniform semi-Latin square is A-, D- and
E-optimal (see Giovagnoli and Wynn (1981)). In addition, Soicher gave a construction
to make an (n×n)/k semi-Latin square SLS(G) from a transitive permutation group G of
degree n and order nk, and proved that SLS(G) is uniform if and only if G is 2-transitive.
He also constructed uniform (6× 6)/(5µ) semi-Latin squares for all integers µ > 1.

3. Enumeration of (4 × 4)/k semi-Latin squares

Each 2 × 2 semi-Latin square is simply an inflation of a Latin square of order 2,
and is not connected. Bailey (1992) enumerated the 3 × 3 semi-Latin squares. Ap-
plying the methods discussed in Appendix A, we used the DESIGN package function
SemiLatinSquareDuals to enumerate the (4 × 4)/k semi-Latin squares up to isomor-
phism (via their duals), for k = 2, . . . , 10. This required under an hour of CPU-time on a
3.1 GHz PC running Linux. Analysing these squares (using exact algebraic computation
as described in Appendix B), we found that each A-optimal square is in fact A-, D-
and E-optimal, and has the same canonical efficiency factors as a pseudo-Trojan square
of the same size. This verifies that Bailey’s conjecture holds in the case of (4 × 4)/k
semi-Latin squares with k ≤ 10, and so for these sizes, a pseudo-Trojan square is A-, D-
and E-optimal.

A summary of the results is given in Table 1. We record k, the number of (4× 4)/k
semi-Latin squares (up to isomorphism), and the number of (pairwise nonisomorphic)
optimal (4× 4)/k semi-Latin squares. By optimal we mean here A-, D- and E-optimal,
and remark that for 2 ≤ k ≤ 10, an A-, D- and E-optimal (4× 4)/k semi-Latin square is
MV-optimal if and only if k 6∈ {4, 7, 10}.
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k no. squares no. optimal
2 10 1
3 40 1
4 164 3
5 621 3
6 2298 2
7 7905 5
8 25657 4
9 77744 2

10 221201 6

Table 1: (4× 4)/k semi-Latin squares.

Preece and Freeman (1983) enumerated by hand the (4 × 4)/2 semi-Latin squares,
up to both isomorphism and “strong isomorphism” (strong isomorphism is defined in
Appendix A), and our results agree with theirs. Using a mixture of hand and machine
computation, Chigbu (1996) (see also Bailey and Chigbu (1997)) enumerated the (4×4)/3
and (4 × 4)/4 semi-Latin squares, up to both isomorphism and strong isomorphism.
Our results disagree with his, and our consistency checks indicate that he missed some
isomorphism classes. For the record, we calculate that, up to strong isomorphism, there
are exactly 46 (4× 4)/3 and 201 (4× 4)/4 semi-Latin squares.

We remark that complete enumerations of the kind described here are useful for other
statistical purposes than determining optimal designs with respect to a given optimality
criteria. For example, we may wish to evaluate designs with respect to other properties,
such as robustness. In Section 5, we enumerate all uniform (and hence known to be A-,
D- and E-optimal) (5× 5)/8 semi-Latin squares in order to determine the most efficient
subsquares of these.

4. On subsquares of uniform semi-Latin squares

Let S and U be n×n semi-Latin squares. Recall that S is a subsquare of U if S = U
or U is a superposition of S and another n × n semi-Latin square. A subsquare S of U
is proper if S 6= U .

In this section, we prove a theorem about the canonical efficiency factors of the
(n× n)/k subsquares of uniform (n× n)/u semi-Latin squares, such that u− k < n− 1.
Such subsquares include pseudo-Trojan squares and the semi-Latin squares constructed
by Bedford and Whitaker (2001). Our theorem explains certain numerical observations
by Bedford and Whitaker (2001), and leads us, in the next section, to finding counterex-
amples to Bailey’s conjecture and a similar conjecture of Bedford and Whitaker.

It is convenient to study subsquares via their duals, and the reader should keep in
mind that the canonical efficiency factors not equal to 1 of a semi-Latin square S, and
their multiplicities, are the same as those of the dual S∗ of S (see Bailey and Cameron
(2009, Section 3.1.1)).
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Lemma 1. Let S and T be n × n semi-Latin squares with disjoint symbol sets, and let
U be the superposition of S and T . Then the concurrence matrix of U∗ is the sum of the
concurrence matrices of S∗ and T ∗.

Proof. Straightforward.

Theorem 2. Let n > 2 and let S be an (n × n)/k subsquare of a uniform (n × n)/u
semi-Latin square U , such that u− k < n− 1. Then:

1. ES = 1− u/(k(n− 1)) = 1− µ(U)/k;
2. if P is a pseudo-Trojan (n× n)/k semi-Latin square, then ES = EP ;
3. if P is a pseudo-Trojan (n × n)/k semi-Latin square and U is the superposition

of S and an n × n Trojan square (in particular, if u − k = 1), then the canonical
efficiency factors of S and their multiplicities are the same as those of P .

Proof. First suppose that S is a proper subsquare of U , so that U is the superposition
of S and some (n × n)/(u − k) semi-Latin square T . Let L be the concurrence matrix
of T ∗ and let M be the concurrence matrix of U∗. Then L and M are real, symmetric,
positive semi-definite matrices whose rows and columns are indexed by {1, . . . , n}2, as
are the co-ordinates of the (column) vectors in what follows.

Since U is a uniform semi-Latin square, U∗ is a partially balanced incomplete-block
design with respect to the L2-type association scheme, and the eigenvalues of M are
nu with multiplicity 1, 0 with multiplicity 2n − 2, and nu/(n − 1) with multiplicity
(n−1)2 (see, for example, Vartak (1959)). Denote the eigenspaces corresponding to these
(distinct) eigenvalues by V0, V1, and V2, respectively. From the proof of Theorem 3.4
of Soicher (2012), we observe that Lv = n(u − k)v if v ∈ V0, and Lv = 0 if v ∈ V1.
Thus, there is a basis v1, . . . ,v(n−1)2 of V2 = (V0 +V1)⊥ consisting of pairwise orthogonal
eigenvectors of L. Let τi be the eigenvalue of L corresponding to vi (i = 1, . . . , (n− 1)2).

By Lemma 1, the concurrence matrix of S∗ is M − L. From the discussion above,
the eigenvalues of M − L are nk (once), 0 (2n − 2 times), and nu/(n − 1) − τi, for
i = 1, . . . , (n− 1)2. Now S∗ has scaled information matrix

In2 − (nk)−1(M − L),

and so the canonical efficiency factors of S∗ are 1 (2n− 2 times), and 1− u/(k(n− 1)) +
τi/(nk), for i = 1, . . . , (n − 1)2. In particular, the least canonical efficiency factor of S∗

(and so of S) is 1− u/(k(n− 1)) + τ/(nk), where τ := min{τ1, . . . , τ(n−1)2}.
Now T is an (n × n)/(u − k) semi-Latin square, and by assumption, u − k < n − 1.

Thus (n− 1)2 > (u− k)n− 1, so T has fewer than (n− 1)2 canonical efficiency factors,
so T ∗ has more than 2n− 2 canonical efficiency factors equal to 1, so τ = 0, and we have

ES = ES∗ = 1− u/(k(n− 1)).

We complete the proof of part 1 by noting that if S = U then ES = EU = 1− 1/(n− 1),
as required.

Suppose now that P is a pseudo-Trojan (n × n)/k semi-Latin square, and let µ :=
µ(U) = u/(n − 1). Then P is an (n × n)/k subsquare of some µ-fold inflation Q of a
superposition of n−1 MOLS of order n (since k ≤ u), and Q is a uniform (n×n)/u semi-
Latin square. Thus, both S and P are (n×n)/k subsquares of certain uniform (n×n)/u
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semi-Latin squares, with u− k < n− 1, and so by part 1, we have ES = EP = 1− µ/k,
and the proof of part 2 is complete.

Now suppose that U is the superposition of S and a Trojan square T , We know that
Q above is the superposition of P and some Trojan square T ′ having the same size as T .
By Bailey (1992), T and T ′ have the same canonical efficiency factors, so it follows from
the proof of part 1 that both S∗ and P ∗ have the same canonical efficiency factors, and
so too must S and P .

Bedford and Whitaker (2001) used sets of n − 1 MOLS of order n to construct effi-
cient (n × n)/k semi-Latin squares for certain k ≥ n, when n is a prime power. Their
construction starts by superimposing certain superpositions of n − 1 MOLS of order n,
which makes a uniform semi-Latin square U , and then if required, removing an n × n
Trojan semi-Latin square from U . Thus, by part 3 of the result above, an (n × n)/k
semi-Latin square constructed by their method has the same canonical efficiency factors
as a pseudo-Trojan (n × n)/k semi-Latin square P (n, k). This explains the numerical
observation by Bedford and Whitaker (2001) that the A-, D- and E-efficiency measures
of the squares they construct appear to be the same as the pseudo-Trojan squares of the
same size constructed by Bailey (1992). (However, Bedford and Whitaker’s calculation
of MV-efficiency measures of pseudo-Trojan squares is erroneous, and so their compari-
son with that measure for their squares is not valid.) Bedford and Whitaker (2001) also
conjectured that the semi-Latin squares coming from their construction are A-, D- and
E-optimal. However, one such square is a (5 × 5)/6 semi-Latin square, so the following
section provides counterexamples to their conjecture, as well as to Bailey’s.

5. Counterexamples to Bailey’s conjecture

The theory of the previous section shows that we cannot get a counterexample to
Bailey’s conjecture simply by removing a Trojan subsquare from some uniform semi-Latin
square, but suggests it may be fruitful to examine other subsquares of uniform squares.
Having found no counterexample to Bailey’s conjecture when n = 4, we enumerated the
uniform (5 × 5)/8 semi-Latin squares and studied their subsquares. It turns out that,
up to isomorphism, there are exactly 10 uniform (5 × 5)/8 semi-Latin squares. This
enumeration, via their duals, is easily accomplished by the DESIGN package, by applying
Corollary 6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
7 13 14 19 25 26 1 15 16 20 21 27 2 8 22 23 28 29 3 4 9 10 17 30 5 6 11 12 18 24
9 11 15 20 22 28 3 5 13 23 25 29 1 6 7 10 24 30 2 12 14 18 26 27 4 8 16 17 19 21
8 12 17 23 24 27 6 14 18 19 22 30 4 9 11 21 25 26 1 5 7 16 28 29 2 3 10 13 15 20

10 16 18 21 29 30 2 4 17 24 26 28 3 5 12 19 20 27 6 8 11 13 15 25 1 7 9 14 22 23

Figure 1: B(5, 6): a (5× 5)/6 counterexample to Bailey’s conjecture.

We then used the BlockDesigns function to enumerate the (5 × 5)/k subsquares of
each of these uniform squares, for k = 5, 6, up to the action of the automorphism group
of each such uniform square and the naming of symbols. This was done by enumerating
the (25, 5k, k, 5)-subdesigns (for k = 5, 6) of the duals of the (5 × 5)/8 uniform squares,
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31 32 33 34 35 36 37 38 39 40
33 37 31 39 32 34 35 40 36 38
36 40 35 38 37 39 31 34 32 33
35 39 32 40 31 38 33 36 34 37
34 38 36 37 33 40 32 39 31 35

Figure 2: A SOMA(2, 5) whose superposition with B(5, 6) is uniform.

up to the actions of their respective automorphism groups. We then analysed these
(5 × 5)/k subsquares, and found that, up to isomorphism, exactly 29 of these have a
higher A-measure than a pseudo-Trojan (5× 5)/k semi-Latin square. All these 29 have
k = 6, and of these 29, exactly 24 come from removing a (non-Trojan) SOMA(2, 5) from a
uniform square, and these 24 are precisely the ones with both A-measure and D-measure
higher than those of a (5× 5)/6 pseudo-Trojan square P (5, 6). Of course, all 29 have the
same E-measure, 2/3, as P (5, 6). We give in Figure 1 the unique (up to isomorphism)
(5 × 5)/6 semi-Latin square B(5, 6) with the best A-measure of the 29. It turns out
also to be uniquely D-optimal amongst the (5 × 5)/6 subsquares of uniform (5 × 5)/8
semi-Latin squares. In Figure 2 we display a SOMA(2, 5) such that the superposition of
B(5, 6) with this SOMA is uniform. We have:

AB(5,6) = 309578045/369257731 ≈ .838379,

DB(5,6) = (30592715909/3363025078125)1/29 ≈ .850387

(compare with (2)).

6. Efficient 6 × 6 semi-Latin squares

Pseudo-Trojan semi-Latin squares provide easy to construct and efficient (although
not necessarily optimal) (n × n)/k semi-Latin squares when n is a prime power. In
the case of n = 6, however, efficient (n × n)/k semi-Latin squares were known only for
k = 2 and 3. Here we provide new efficient (6 × 6)/k semi-Latin squares for k = 4, 5, 6,
obtained as subsquares of a certain remarkable (6× 6)/6 semi-Latin square. We remark
that efficient (6× 6)/k semi-Latin squares for k = 7, 8, 9, 10 are calculated and presented
in (Soicher, to appear), and are found as subsquares of a certain uniform (6 × 6)/10
semi-Latin square.

6.1. A remarkable (6× 6)/6 semi-Latin square
Let

A :=

1 13 31 14 20 26 21 27 33 4 10 16 11 23 29 6 12 36
16 29 33 1 10 23 6 13 20 12 14 27 4 21 36 11 26 31
14 23 36 4 27 31 1 12 29 11 13 21 6 16 26 10 20 33
4 12 26 6 11 33 16 23 31 1 20 36 10 13 27 14 21 29

11 20 27 12 16 21 10 26 36 6 29 31 1 14 33 4 13 23
6 10 21 13 29 36 4 11 14 23 26 33 12 20 31 1 16 27

.
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Then, up to isomorphism, A is the unique SOMA(3, 6) having an automorphism group
of order 72 (A is not an optimal SOMA). Let H be this automorphism group. It turns
out that, up to the naming of symbols, there is just one further H-invariant SOMA(3, 6),
which can be taken to be:

B :=

7 19 25 2 8 32 3 9 15 22 28 34 5 17 35 18 24 30
2 9 24 15 30 34 7 28 35 5 19 32 8 18 25 3 17 22
3 8 28 7 17 24 18 22 32 2 30 35 9 19 34 5 15 25

15 22 35 18 19 28 5 8 30 9 17 25 3 24 32 2 7 34
5 18 34 3 25 35 2 17 19 8 15 24 7 22 30 9 28 32

17 30 32 5 9 22 24 25 34 3 7 18 2 15 28 8 19 35

.

Now consider the superposition X6 of A and B. The symbols of X6 have been chosen
to highlight the fact that it is the superposition of six Latin squares, call them L1, . . . , L6,
with respective symbol sets

{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}, . . . , {31, 32, 33, 34, 35, 36}.

Note that a semi-Latin square S is a superposition of Latin squares if and only if its
dual S∗ is resolvable. (This can be checked and resolutions can be determined using the
DESIGN package.) Moreover, any two blocks of X6, not in the same row or column, meet
in 1 or 2 symbols. We have also determined that the group of all (semi-Latin square)
automorphisms of X6 has order 144, and that this group acts transitively on both the
union and the Cartesian product of the rows and columns of X6.

The canonical efficiency factors of X6 are 3/4 with multiplicity 16, 8/9 with multiplic-
ity 9, and 1 with multiplicity 10. As shown in Table 2, even if there were five MOLS of
order six, then each of the A-, D- and E-efficiency measures for X6 would be larger than
the corresponding measures for a pseudo-Trojan (6× 6)/6 semi-Latin square. Note also
that X6 cannot be a subsquare of a uniform (6× 6)/10 semi-Latin square, for otherwise,
the E-efficiency measure of X6 would be 2/3.

Now let Xk be the semi-Latin square formed by the superposition of L1, . . . , Lk. For
k = 2, . . . , 6, Table 2 records approximations to the A- and D-measures, as well as the E-
measure, of Xk. For k = 2, 3, 4, 5, the table also records (approximations to) the relative
efficiency measures of Xk compared to a hypothetical optimal superposition P (6, k) of
k MOLS of order 6 (were k MOLS of order 6 to exist), as well as the relative efficiency
measures of X6 compared to a hypothetical (6 × 6)/6 pseudo-Trojan semi-Latin square
P (6, 6) (were five MOLS of order 6 to exist). The approximations were determined in
GAP by rounding exactly determined values in the case of A-efficiency measures, and
rounding numerical approximations of (6k − 1)-th roots of exactly determined values in
the case of D-efficiency measures.

Now X2 and X3 are not quite as efficient as certain SOMAs of the same respective
sizes, but X4, X5 and X6 are new and efficient. Indeed, we conjecture that X5 and X6

are A-, D- and E-optimal.

7. Conclusion

This paper developed theoretical and computational methods to determine optimal
and efficient semi-Latin squares. The main theoretical advance was the study of efficiency
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k AXk
DXk

EXk
AXk

/AP (6,k) DXk
/DP (6,k) EXk

/EP (6,k)

2 .511628 .526849 1/3 .976744 .989350 2/3
3 .674492 .689909 1/2 .972062 .986658 3/4
4 .761394 .771929 5/8 .982088 .991334 5/6
5 .811126 .819262 7/10 .985938 .993038 7/8
6 .844221 .850612 3/4 1.00101 1.00031 9/8

Table 2: Efficiency measures of Xk.

properties of subsquares of uniform semi-Latin squares. The main computational meth-
ods were a group-theoretic framework for the enumeration of semi-Latin squares via their
duals, and the use of exact algebraic computing in the comparison of efficiency measures.
Both methods are implemented in the author’s DESIGN package, and the latter method
in particular has applications beyond semi-Latin squares.

All (4 × 4)/k semi-Latin squares were enumerated for k = 2, . . . , 10, and those that
are A-, D- and E-optimal were determined. We constructed efficient (6×6)/k semi-Latin
squares for k = 4, 5, 6, the example with k = 6 being particularly noteworthy. We also
applied our methods to find counterexamples to a long-standing conjecture of R.A. Bailey
and to a similar conjecture of D. Bedford and R.M. Whitaker.

At present, efficient (n×n)/k semi-Latin squares are known when there are k MOLS
of order n, when n is a prime-power, when n = 6 and k ≤ 10, when n = 6 and k =
5µ for some integer µ ≥ 2, and when there is a doubly transitive permutation group
of degree n and order nk. As far as n = 10 goes, there are two MOLS of order 10
(whose superposition forms an A-, D- and E-optimal semi-Latin square), but it is a
major unsolved problem as to whether there are three MOLS of this order. Soicher (1999)
constructed the first SOMA(3, 10)s, and at present, the SOMA(3, 10) with the best known
A-efficiency measure is that in Figure 4 of (Soicher, 1999). The first SOMA(4, 10) is
displayed on the webpage (Soicher, 2012), and the construction of an efficient (10×10)/6
semi-Latin square is given as an example in (Soicher, to appear).

Appendix A. Enumerating semi-Latin squares via their duals

The author’s DESIGN package (Soicher, 2011) is a refereed and officially accepted
GAP (The GAP Group, 2012) package which provides functionality for constructing,
enumerating, partitioning and studying block designs. The most important DESIGN
package function is BlockDesigns, which can construct and enumerate block designs
satisfying a wide range of user-specified properties. More generally, BlockDesigns can
enumerate subdesigns of a given block design ∆, such that the subdesigns each have the
same user-specified properties, such as each being a binary equireplicate block design
with the same given parameters. (Here a subdesign of ∆ means a block design with
the same treatment set as ∆ and whose block multiset is a submultiset of the blocks
of ∆.) The subdesigns are enumerated up to the action of a given subgroup G of the
automorphism group of ∆, and it can be required that each subdesign be invariant under
a given subgroup H of G.

In this appendix we show how to transform certain enumeration problems for semi-
Latin squares into enumeration problems for block designs (see also Bailey and Chigbu
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(1997)), in a way which allows the application of the function BlockDesigns in the
DESIGN package to perform the required enumerations. Explicit GAP code implementing
this approach can be found in (Soicher, to appear).

Let Sn denote the group of all permutations of {1, . . . , n}, let n > 1, and let

Wn := 〈Sn × Sn, τ | τ2 = 1, τ(a, b)τ = (b, a) for all a, b ∈ Sn〉.

Then Wn (which is isomorphic to the wreath product of Sn with the cyclic group of
order 2) acts on the set of duals of (n×n)/k semi-Latin squares as follows. Let S∗ = (V,B)
be such a dual, with treatment set V := {1, . . . , n}2 and block multiset B, and let
g ∈ Wn. (We consider a multiset to be a list, where order does not matter.) Then
g = (a, b) or g = (a, b)τ for some a, b ∈ Sn. For (i, j) ∈ V , define (i, j)(a,b) := (ia, jb) and
(i, j)(a,b)τ := (jb, ia). In this way, Wn acts on V . We find the g-image Bg of the block
multiset B of S∗ by applying g to each treatment in each block in B. It is not difficult to
see that (S∗)g := (V,Bg) is the dual of a semi-Latin square T isomorphic to S. Indeed,
if g = (a, b) then T is obtained from S by permuting its rows by a and its columns by b,
and if g = (a, b)τ then T is obtained from S by permuting its rows by a, its columns by b,
and then transposing. Conversely, suppose S and T are isomorphic (n×n)/k semi-Latin
squares, with respective duals S∗ and T ∗. Then T can be obtained from S by applying
some row permutation a, some column permutation b, followed possibly by transposing
and/or renaming symbols. Then (S∗)(a,b) = T ∗ if transposing does not take place, and
otherwise (S∗)(a,b)τ = T ∗. To summarize, we have proved the following:

Theorem 3. The orbits of Wn acting on the duals of (n×n)/k semi-Latin squares are in
one-to-one correspondence with the isomorphism classes of (n×n)/k semi-Latin squares.

We now define a Wn-invariant block design Un,k = (V,Bn,k), which contains the dual
of every (n × n)/k semi-Latin square. As before, V = {1, . . . , n}2. The block multiset
Bn,k consists of all the subsets of V of the form

{(1, 1π), (2, 2π), . . . , (n, nπ)},

with π ∈ Sn, and with each such block having multiplicity k (giving a total of kn!
blocks). Now if D = (V,B) is the dual of an (n × n)/k semi-Latin square, then D is
an (n2, nk, k, n)-design and D is a subdesign of Un,k (i.e. D and Un,k have the same
treatment set and B is a submultiset of Bn,k). The converse clearly holds: if D is an
(n2, nk, k, n)-subdesign of Un,k then D is the dual of some (n× n)/k semi-Latin square.

We have thus proved the following:

Theorem 4. The isomorphism classes of the (n× n)/k semi-Latin squares are in one-
to-one correspondence with the Wn-orbits of (n2, nk, k, n)-subdesigns of Un,k. Represen-
tatives of these orbits give the duals of isomorphism class representatives of the (n×n)/k
semi-Latin squares.

We may thus enumerate (the duals of) the (n × n)/k semi-Latin squares by using
the function BlockDesigns to enumerate the (n2, nk, k, n)-subdesigns of Un,k, up to
the action of Wn. However, there appear to be far too many semi-Latin squares for a
complete enumeration when n > 4 and k > 1, so additional constraints must be specified,
such as all the required duals being invariant under a given non-trivial subgroup of Wn.

Adaptations of Theorem 4 allow for enumerations (using the function BlockDesigns)
of semi-Latin squares satisfying certain Wn-invariant properties. For example:
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Corollary 5. The isomorphism classes of the SOMA(k, n)s are in one-to-one correspon-
dence with the Wn-orbits of the binary equireplicate subdesigns of Un,1 having parameters
(n2, nk, k, n) and the property that each pair of distinct blocks meet in at most one treat-
ment. Representatives of these orbits give the duals of isomorphism class representatives
of the SOMA(k, n)s.

Corollary 6. Suppose n− 1 divides k and let µ := k/(n− 1). The isomorphism classes
of the uniform (n × n)/k semi-Latin squares are in one-to-one correspondence with the
Wn-orbits of the subdesigns of Un,µ with the property that any two treatments having no
co-ordinate in common occur together in exactly µ blocks. Representatives of these orbits
give the duals of isomorphism class representatives of the uniform (n× n)/k semi-Latin
squares.

For example, we find that, up to isomorphism, there are just 277 uniform (5× 5)/12
semi-Latin squares. In (Soicher, to appear), we give explicit GAP code used to enumerate
the 98 uniform (6 × 6)/10 semi-Latin squares with the property that no two distinct
symbols occur together in more than two blocks.

Some call the isomorphism of semi-Latin squares defined in this paper “weak iso-
morphism”, with “strong isomorphism” not allowing the operation of transposing to be
used (see Bailey and Chigbu (1997)). More precisely, two (n× n)/k semi-Latin squares
are strongly isomorphic if one can be obtained from the other by applying one or more
of: a row permutation, a column permutation, and renaming symbols. This notion of
isomorphism can be accommodated simply by replacing Wn by its subgroup Sn × Sn.

Some straightforward applications of the methods of this appendix are implemented in
the DESIGN package function SemiLatinSquareDuals, which calls the function Block-
Designs appropriately. For example, the function call SemiLatinSquareDuals(4,5)
returns a list of the duals of the elements of a set of isomorphism class representa-
tives of the (4 × 4)/5 semi-Latin squares, and the function call SemiLatinSquare-
Duals(6,3,"default",[0,1]) returns a list of the duals of the elements of a set of
isomorphism class representatives of the SOMA(3, 6)s. Further information can be ob-
tained from the DESIGN package documentation.

Appendix B. Exact algebraic computation for comparing efficiency mea-
sures

In this appendix we outline the exact computational techniques implemented in the
DESIGN package function BlockDesignEfficiency, and which are used in this paper for
comparing the A-, D- and E-efficiency measures of binary equireplicate designs.

Let ∆ be a (v, b, r, k)-design that we wish to compare with other such designs. We
first compute the scaled information matrix F := F (∆) and its characteristic polynomial
χF (x). (It appears that GAP is efficient at calculating characteristic polynomials with
many low-degree factors, such as we often encounter in our current situation.) Let

e∆(x) := χF (x)/x = xv−1 + ev−2x
v−2 + · · ·+ e1x+ e0,

so that the zeros of e∆(x) (counting repeats) are the canonical efficiency factors δ1 ≤
· · · ≤ δv−1 of ∆. We have e0 6= 0 if and only if ∆ is connected, which we now assume is
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the case. Moreover,

(−1)v−1e0 =
v−1∏
i=1

δi = (D∆)v−1,

and we can compare D-measures by comparing their (v − 1)-th powers. Now the poly-
nomial

e−1
0 (e0x

v−1 + e1x
v−2 + · · ·+ ev−2x+ 1)

is monic and its zeros are 1/δ1, . . . , 1/δv−1, so −e1/e0 =
∑v−1
i=1 1/δi, and so

A∆ = −(v − 1)e0/e1.

We now outline how we determine E∆ exactly if it is rational, and otherwise, how we
determine an interval [a, b] containing E∆, such that a and b are rational and the length
of [a, b] is at most a given ε > 0. All computations take place over the rational numbers
and are performed exactly in GAP.

Let e(x) := e∆(x), let e′(x) denote the derivative of e(x), and let

f(x) := e(x)/gcd(e(x), e′(x)).

Then f(x) has the same zeros as e∆(x), but each with multiplicity 1. We then determine
the set R of rational zeros of f(x) and set

g(x) := f(x)/
∏
r∈R

(x− r).

If R is non-empty we apply a Sturm sequence (see Childs (1995, p.280–285)) to deter-
mine the number of (real) zeros of g(x) in [0,min(R)]. If there are none, then we have
that E∆ = min(R), and otherwise, we apply bisection and Sturm sequences repeatedly,
starting with the interval [0,min(R)], to find the required interval [a, b] containing E∆.
If R is empty then we again apply bisection and Sturm sequences repeatedly, this time
starting with the interval [0, 1]. The bisection process works as follows, given an initial
interval [c, d], with c, d rational, d − c > 0, and g(c) 6= 0 6= g(d). If d − c ≤ ε we stop,
with a := c and b := d. Otherwise, we calculate a Sturm sequence to find the number of
zeros of g(x) in [c, (c + d)/2]. If this number is not zero, we continue the process with
the interval [c, (c+ d)/2]; otherwise, we continue with the interval [(c+ d)/2, d].

Since ∆ is a binary equireplicate design, the canonical efficiency factors of ∆ not equal
to 1, and their multiplicities, are the same as those of the dual block design ∆∗ of ∆ (see
Bailey and Cameron (2009, Section 3.1.1)). Thus, if v exceeds the number b of blocks
of the connected design ∆, and b > 1, we may reduce the size of the calculations above
by applying them to ∆∗. We then have A∆ = (v − 1)/((b− 1)/A∆∗ + v − b), (D∆)v−1 =
(D∆∗)b−1,E∆ = E∆∗ .

There are of course other measures of efficiency for binary equireplicate designs than
the A-, D- and E-measures. One such measure, which is rational and can be computed
exactly by the function BlockDesignEfficiency is the MV-measure (see Bailey and
Royle (1997); Soicher (2011)).
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