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Abstract. We explicitly determine the spectrum of transfer operators (acting

on spaces of holomorphic functions) associated to analytic expanding circle
maps arising from finite Blaschke products. This is achieved by deriving a

convenient natural representation of the respective adjoint operators.

1. Introduction

One of the major strands of modern ergodic theory is to exploit the rich links
between dynamical systems theory and functional analysis, making the powerful
tools of the latter available for the benefit of understanding complex dynamical
behaviour. In classical ergodic theory, composition operators occur naturally as
basic objects for formulating concepts such as ergodicity or mixing [24]. These
operators, known in this context as Koopman operators, are the formal adjoints of
transfer operators, the spectral data of which provide insight into fine statistical
properties of the underlying dynamical systems, such as rates of mixing (see, for
example, [5]).

In the literature, the term ‘composition operator’ is mostly used to refer to
compositions with analytic functions mapping a disk into itself, a setting in which
operator-theoretic properties such as boundedness, compactness, and most impor-
tantly explicit spectral information are well-established (good references are [20]
or the encyclopedia on the subject [7]). The purpose of the present article is to
demonstrate that in a particular analytic setting, the spectra of transfer operators
can be deduced directly from certain composition operators.

Let τ be a real analytic expanding map on the circle and {φk : k = 1, . . . ,K}
the set of local inverse branches of τ . Then the associated transfer operator L (also
referred to as Ruelle-Perron-Frobenius or simply Ruelle operator), defined by

(Lf)(z) =
K∑
k=1

φ′k(z)(f ◦ φk)(z), (1.1)

preserves and acts compactly on certain spaces of holomorphic functions [17, 18, 21].
The spectrum of L can be understood by passing to its (Banach space) adjoint

operator L∗. This strategy has been explored in the context of Ruelle operators
acting on the space of functions locally analytic on the Julia set of a rational function
R, see [1, 10, 11, 23]; in particular, explicit expressions for Fredholm determinants
of certain Ruelle operators have been derived. In our setting of analytic expanding
circle maps, we adopt a similar approach, that is, we analyse the spectrum of L by
deriving a natural explicit representation of L∗ (Proposition 4.5). As a by-product
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we obtain a more conceptual proof of results in [21], where the spectrum of L for
a certain family of analytic circle maps was determined using a block-triangular
matrix representation.

In the spirit of approaching problems in the world of real numbers by making
recourse to complex numbers, we consider finite Blaschke products, a class of ra-
tional maps on the Riemann sphere Ĉ = C ∪ {∞} preserving the unit circle. One
of the striking features of Blaschke products is that they partition the Riemann
sphere into simple dynamically invariant regions: the unit circle, the unit disk and
the exterior disk in Ĉ. As a consequence, the spectrum of L∗ can be determined by
studying the spectrum of composition operators on spaces of holomorphic functions
on these dynamically invariant regions.

Our main result (Theorem 5.4) can be summarized as follows. Let B be a finite
Blaschke product such that its restriction τ to the unit circle T = {z : |z| = 1}
is expanding. Denote by H2(A) the Hardy-Hilbert space of functions which are
holomorphic on some suitable annulus A (containing T) and square integrable on
its boundary ∂A (see Definition 2.1). Then the transfer operator L associated to τ
is compact on H2(A), with spectrum

σ(L) = {λ(z0)n : n ∈ N0} ∪ {λ(z0)
n

: n ∈ N} ∪ {0} ,

where λ(z0) is the multiplier of the unique attracting fixed point z0 of B in the
unit disk. This implies that for finite Blaschke products which give rise to analytic
expanding circle maps, the derivative of the fixed point in the unit disk completely
determines the spectrum of L.

The paper is organized as follows. In Section 2, we review basic definitions and
facts about Hardy-Hilbert spaces on annuli. The following Section 3 is devoted
to analytic expanding circle maps and their corresponding transfer operators. In
Section 4, we explicitly derive the structure of the corresponding adjoint operators
after having established a suitable representation of the dual space. This structure
is then used in Section 5 in order to obtain the spectrum of transfer operators
associated to analytic expanding circle maps arising from finite Blaschke products,
thus proving our main result.

2. Hardy-Hilbert spaces

Throughout this article Ĉ = C ∪ {∞} denotes the one point compactification of
C. For U ⊂ Ĉ, we write cl(U) to denote the closure of U in Ĉ. For r > 0 we use

Tr = {z ∈ C : |z| = r} ,
T = T1

to denote circles centred at 0, and

Dr = {z ∈ C : |z| < r} ,

D∞r = {z ∈ Ĉ : |z| > r} ,
D = D1

to denote disks centred at 0 and ∞. Given r < 1 < R the symbol

Ar,R = {z ∈ C : r < |z| < R}

will denote an open annulus containing the unit circle T.
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We write Lp(Tr) = Lp(Tr, dθ/2π) with 1 ≤ p < ∞ for the Banach space of
p-integrable functions with respect to normalized one-dimensional Lebesgue mea-
sure on Tr. Finally, for U an open subset of Ĉ we use Hol(U) for the space of
holomorphic functions on U .

Hardy-Hilbert spaces on disks and annuli will provide a convenient setting for
our analysis. We briefly recall their properties in the following.

Definition 2.1 (Hardy-Hilbert spaces). For ρ > 0 and f : Tρ → C write

Mρ(f) =
∫ 2π

0

|f(ρeiθ)|2 dθ
2π
.

Then the Hardy-Hilbert spaces on Dr and Ar,R are given by

H2(Dr) =

{
f ∈ Hol(Dr) : sup

ρ↗r
Mρ(f) <∞

}
,

and

H2(Ar,R) =

{
f ∈ Hol(Ar,R) : sup

ρ↗R
Mρ(f) + sup

ρ↘r
Mρ(f) <∞

}
.

The Hardy-Hilbert space on the exterior disk D∞R is defined accordingly, that is
f ∈ H2(D∞R ) if f ∈ Hol(D∞R ) (or, equivalently, f ◦ ς holomorphic on D1/R with
ς(z) = 1/z) and supρ↘RMρ(f) < ∞. Finally, H2

0 (D∞R ) ⊂ H2(D∞R ) denotes the
subspace of functions vanishing at infinity.

A comprehensive account of Hardy spaces over general domains is given in the
classic text [8]. A crisp treatment of Hardy spaces on the unit disk can be found
in [16, Chapter 17]), while a good reference for Hardy spaces on annuli is [19]. We
shall now collect a number of results which will be useful in what follows.

Any function in H2(U), where U is a disk or an annulus, can be extended to
the boundary in the following sense. For f ∈ H2(Dr) there is an f∗ ∈ L2(Tr) such
that

lim
ρ↗r

f(ρeiθ) = f∗(reiθ) for a.e. θ,

and analogously for f ∈ H2(D∞R ). Similarly, for f ∈ H2(Ar,R) there are f∗1 ∈
L2(Tr) and f∗2 ∈ L2(TR), with limρ↘r f(ρeiθ) = f∗1 (reiθ) and limρ↗R f(ρeiθ) =
f∗2 (Reiθ) for a.e. θ. It turns out that the spaces H2(U) are Hilbert spaces with
inner products

(f, g)H2(Dr) =
∫ 2π

0

f∗(reiθ)g∗(reiθ)
dθ

2π

and

(f, g)H2(Ar,R) =
∫ 2π

0

f∗1 (Reiθ)g∗1(Reiθ)
dθ

2π
+
∫ 2π

0

f∗2 (reiθ)g∗2(reiθ)
dθ

2π
.

Similarly, for H2(D∞R ).

Notation 2.2. In order to avoid cumbersome notation, we shall write f(z) instead
of f∗(z) for z on the boundary of the domain.
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Remark 2.3. It is not difficult to see that E = {en : n ∈ Z} where

en(z) =
zn

dn
, with dn =

√
r2n +R2n (2.1)

is an orthonormal basis for H2(Ar,R). In particular, it follows that f ∈ Hol(Ar,R)
is in H2(Ar,R) if and only if f(z) =

∑∞
n=−∞ cnen(z) with

∑∞
n=−∞ |cn|2 < ∞,

where the coefficients are given by cn = cn(f) = (f, en)H2(Ar,R). Note also that
‖f‖2H2(Ar,R) =

∑∞
n=−∞ |cn|2.

3. Circle maps and transfer operators

The purpose of this section is to establish compactness of transfer operators on
Hardy-Hilbert spaces for analytic expanding circle maps, defined as follows.

Definition 3.1. We say τ : T→ T is an analytic expanding circle map if
(i) τ is analytic on T;

(ii) |τ ′(z)| > 1 for all z ∈ T.

In particular, τ is a K-fold covering for some K > 1. With a slight abuse of
notation we continue to write τ for its holomorphic extension to an open annulus
Ar,R for r < 1 < R and let

A = {Ar,R : τ and 1/τ holomorphic on Ar,R} .

Before proceeding to the definition of transfer operator associated to τ we require
some more notation. Given two open subsets U and V of C we write

U ⊂⊂ V

if cl(U) is a compact subset of V .
By the expansivity of τ and [21, Lemma 2.2], we can choose A0, A

′ and A in A
with

A0 ⊂⊂ A′ ⊂⊂ A and τ(∂A0) ∩ cl(A) = ∅. (3.1)

Given an analytic expanding circle map τ , we associate with it a transfer operator
L by setting

(Lf)(z) =
K∑
k=1

φ′k(z)(f ◦ φk)(z) , (3.2)

where φk denotes the k-th local inverse of τ .
As we shall see presently, the above choices of the annuli guarantee that L is

a well-defined linear operator which maps H2(A) compactly to itself. In order to
show this, we shall employ a factorization argument, similar to the ones used in
[4, 21]. Let H∞(A′) be the Banach space of bounded holomorphic functions on A′

equipped with the supremum norm. We can write L = L̃J , where L̃ : H∞(A′) →
H2(A) is a lifted transfer operator given by the same functional expression (3.2)
and J : H2(A)→ H∞(A′) is the canonical embedding

H∞(A′)
L̃

%%JJJJJJJJJ

H2(A)
?�

J

OO

L
// H2(A)
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We use H∞(A′) instead of H2(A′) as this choice allows for an easy proof of conti-
nuity of L̃ in Lemma 3.2.

Let R,R′ denote the radii of the circles forming the ‘exterior’ boundaries, and r, r′

the radii of the circles forming the ‘interior’ boundaries of A and A′, respectively,
that is, A = Ar,R and A′ = Ar′,R′ .

Lemma 3.2. The transfer operator L̃ given by (3.2) maps H∞(A′) continuously
to H2(A).

Proof. We can factorize L̃ as L̃ = Ĵ L̂, where L̂ : H∞(A′)→ H∞(A), given by the
functional expression (3.2), is continuous by [21, Lemma 2.5], and Ĵ : H∞(A) ↪→
H2(A) is the canonical embedding. �

Next, we establish compactness of J : H2(A) ↪→ H∞(A′) given by

(J f)(z) = f(z) for z ∈ A′.

Let {en : n ∈ Z} be the orthonormal basis for H2(A) given by (2.1), then any
f ∈ H2(A) can be uniquely expressed as f =

∑
n∈Z cn(f)en. For N ∈ N define the

finite rank operator JN : H2(A)→ H∞(A′) by

(JNf)(z) =
N−1∑

n=−N+1

cn(f)en(z) for z ∈ A′.

Lemma 3.3. Let J and JN be as above. Then

lim
N→∞

‖J − JN‖H2(A)→H∞(A′) = 0.

In particular, the embedding J is compact.

Proof. For z ∈ A′, it follows by the Cauchy-Schwarz inequality that

|(J f)(z)− (JNf)(z)| ≤

 ∑
|n|≥N

|cn(f)|2
1/2 ∑

|n|≥N

|en(z)|2
1/2

≤ ‖f‖H2(A)

 ∑
|n|≥N

|zn|2

r2n +R2n

1/2

≤ ‖f‖H2(A)

∑
n≥N

∣∣∣ z
R

∣∣∣2n +
∑
n≥N

∣∣∣r
z

∣∣∣2n
1/2

.

Thus,

‖J f − JNf‖H∞(A′) ≤ ‖f‖H2(A)

((
R′

R

)2N 1
1− (R′R )2

+
( r
r′

)2N 1
1− ( rr′ )

2

)1/2

,

and the assertion follows. �

The factorization L = L̃J together with Lemmas 3.2 and 3.3 now imply the
following result.

Proposition 3.4. The transfer operator L : H2(A)→ H2(A) in (3.2) is compact.
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Remark 3.5. Closer inspection of Lemma 3.3 reveals that the singular values of
J decay at an exponential rate. Thus J and hence L are trace-class. In fact,
using results from [2] it is possible to show that both the singular values and the
eigenvalues of L decay at an exponential rate, a property that L shares with other
transfer operators arising from analytic maps (see, for example, [9, 3]).

4. Adjoint operator

A central step in showing our main result is to find an appropriate representa-
tion of the dual space on which the adjoint of the transfer operator has a simple
structure.

For the remainder of this section we set A = Ar,R and denote by H2(A)∗ the
strong dual of H2(A), that is, the space of continuous linear functionals on H2(A)
equipped with the topology of uniform convergence on the unit ball. We will
show that H2(A)∗ is isomorphic to the topological direct sum H2(Dr)⊕H2

0 (D∞R ),
equipped with the norm ‖(h1, h2)‖2 = ‖h1‖2H2(Dr)

+‖h2‖2H2
0 (D∞R ). Similar represen-

tations of the duals of Hardy spaces for multiply connected regions can be found
in [15, Proposition 3]. The present set-up is sufficiently simple to allow for a short
proof of the representation.

Proposition 4.1. The dual space H2(A)∗ is isomorphic to H2(Dr) ⊕ H2
0 (D∞R )

with the isomorphism given by

J : H2(Dr)⊕H2
0 (D∞R )→ H2(A)∗

(h1, h2) 7→ l,

where

l(f) =
1

2πi

∫
Tr
f(z)h1(z) dz +

1
2πi

∫
TR
f(z)h2(z) dz (f ∈ H2(A)). (4.1)

Proof. We will first show that (4.1) defines a continuous functional l ∈ H2(A)∗

and that J is a bounded linear operator. In order to see this note that for any
(h1, h2) ∈ H2(Dr)⊕H2

0 (D∞R ) the linear functional l = J(h1, h2) is bounded, since
for any f ∈ H2(A) with ‖f‖H2(A) ≤ 1

|l(f)| ≤
(
r ‖h1‖H2(Dr)

+R ‖h2‖H2
0 (D∞R )

)
.

It follows that

‖J(h1, h2)‖H2(A)∗ ≤
√
r2 +R2

√
‖h1‖2H2(Dr)

+ ‖h2‖2H2
0 (D∞R )

and ‖J‖H2(Dr)⊕H2
0 (D∞R )→H2(A)∗ ≤

√
r2 +R2. Hence, J is well defined and bounded.

For injectivity, we suppose that l = J(h1, h2) = 0 and show that h1 = 0 and
h2 = 0. In order to see this note that any (h1, h2) ∈ H2(Dr) ⊕ H2

0 (D∞R ) can be
written h1(z) =

∑∞
n=0 anz

n and h2(z) =
∑∞
n=1 a−nz

−n with suitable coefficients
an ∈ C. Now let

E = {en : n ∈ Z} with en(z) =
zn

dn
denote the orthonormal basis of H2(A) given in Remark 2.3. A short calculation
using Lebesgue dominated convergence shows that

0 = (J(h1, h2))(en) =
a−n−1

dn
for all n ∈ Z, (4.2)
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which implies h1 = 0 and h2 = 0. Thus J is injective.
Finally, in order to show that J is surjective, fix l ∈ H2(A)∗. We will construct

(h1, h2) ∈ H2(Dr)⊕H2
0 (D∞R ) such that J(h1, h2) = l.

By the Riesz representation theorem there is a unique g ∈ H2(A) such that
l(f) = (f, g)H2(A) for all f ∈ H2(A). Moreover, g can be uniquely expressed as
g =

∑
n∈Z cn(g)en. Now define

h1(z) =
∞∑
n=0

c−n−1(g)d−n−1z
n for z ∈ Dr,

h2(z) =
∞∑
n=1

cn−1(g)dn−1z
−n for z ∈ D∞R .

(4.3)

Using ‖g‖2H2(A) =
∑
n∈Z |cn(g)|2 < ∞, it follows that h1 ∈ H2(Dr) and h2 ∈

H2
0 (D∞R ). Combining (4.2) and (4.3) we obtain

(J(h1, h2))(en) =
a−n−1

dn
=
cn(g)dn
dn

= cn(g) = (en, g)H2(A)

for every n ∈ Z. Since the above equality also holds for all finite linear combinations
of elements in E the continuity of J implies

(J(h1, h2))(f) = (f, g)H2(A) = l(f)

for all f ∈ H2(A). Thus J is surjective. �

Remark 4.2. The inverse J−1 of J can be obtained using the kernel Kz ∈ H2(A)
defined by Kz(w) = 1/(z − w) for z ∈ Ĉ \ cl(A). More precisely, J−1 is given by
l 7→ (h1, h2), where h1(z) = l(−Kz) for z ∈ Dr and h2(z) = l(Kz) for z ∈ D∞R .

Returning to the setting of Section 3, let τ be an analytic expanding circle map
and A = Ar,R ∈ A an annulus satisfying (3.1) such that the associated transfer
operator L : H2(A)→ H2(A) is well defined and compact. Using the representation
of the dual space H2(A)∗ obtained in the previous lemma, we shall shortly derive
an explicit form for the adjoint operator of L.

Before doing so we require some more notation. Define C(r) : H2(Dr)→ L2(Tr)
by

(C(r)h)(z) = h(τ(z)) for z ∈ Tr , (4.4)
and C(R) : H2

0 (D∞R )→ L2(TR) by

(C(R)h)(z) = h(τ(z)) for z ∈ TR . (4.5)

It turns out that C(r) and C(R) are compact, the proof of which relies on the
following fact.

Lemma 4.3. Let K be a compact subset of a disk D in C. Then there exists a
constant cK depending on K only such that for any f ∈ H2(D)

sup
z∈K
|f(z)| ≤ cK ‖f‖H2(D) .

Proof. This follows, for example, from [4, Lem. 2.9], or by a calculation using the
Cauchy-Schwarz inequality similar to the proof of Lemma 3.3. �

We now have the following.

Lemma 4.4. The operators C(r) and C(R) are compact.
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Proof. The choice of A = Ar,R in (3.1) implies that r0 = supz∈Tr |τ(z)| < r, and
we can choose a disk Dr′ with Dr0 ⊂⊂ Dr′ ⊂⊂ Dr.

Let C̃(r) : H2(Dr′)→ L2(Tr) be defined by the functional expression as in (4.4),
but now considered on H2(Dr′). The operator is continuous since∥∥∥C̃(r)h

∥∥∥
L2(Tr)

≤ sup
z∈τ(Tr)

|h(z)| ≤ sup
z∈cl(Dr0 )

|h(z)| ≤ cK ‖h‖H2(Dr′ )
,

where we have used Lemma 4.3 with K = cl(Dr0). The lemma follows since we can
write C(r) = C̃(r)J̃ with J̃ : H2(Dr) ↪→ H2(Dr′) denoting the canonical embed-
ding, which is compact (see, for example, [4, Lemma 2.9]). The argument for C(R)

is similar. �

Next, we need to define certain projection operators on L2(Tρ). For any g ∈
L2(Tρ) we can write g(z) =

∑
n∈Z gnz

n, so that g = g+ + g− with g+(z) =∑∞
n=0 gnz

n and g−(z) =
∑∞
n=1 g−nz

−n. Since ‖g‖2L2(Tρ) =
∑∞
n=−∞ |an|2ρ2n < ∞,

the functions g+ and g− can be viewed as functions in H2(Dρ) and H2
0 (D∞ρ ), respec-

tively. Then we define the bounded projection operators Π(ρ)
+ : L2(Tρ) → H2(Dρ)

and Π(ρ)
− : L2(Tρ)→ H2

0 (D∞ρ ) by

Π(ρ)
+ (g) = g+ and Π(ρ)

− (g) = g−. (4.6)

Finally, let L∗ : H2(A)∗ → H2(A)∗ denote the adjoint operator of L in the
Banach space sense, that is, (L∗l)(f) = l(Lf) for all l ∈ H2(A)∗ and f ∈ H2(A).
The following proposition provides an explicit representation L′ of L∗ via

L′ = J−1L∗J,

as an operator on H2(Dr)⊕H2
0 (D∞R ) given by compositions of C(ρ), Π(ρ)

− and Π(ρ)
+

for ρ = r,R.

Proposition 4.5. Let L : H2(A) → H2(A) be the transfer operator associated to
an analytic expanding circle map τ , with A ∈ A as in (3.1). Then the isomorphism
J conjugates the adjoint L∗ of L to

L′ : H2(Dr)⊕H2
0 (D∞R )→ H2(Dr)⊕H2

0 (D∞R )

given by

L′ =

 Π(r)
+ C(r) Π(R)

+ C(R)

Π(r)
− C(r) Π(R)

− C(R)

 , (4.7)

that is L′ = J−1L∗J .

Proof. We want to show that L∗J = JL′, that is,

(L∗J(h1, h2))(f) = (JL′(h1, h2))(f) (4.8)

for all (h1, h2) ∈ H2(Dr)⊕H2
0 (D∞R ) and f ∈ H2(A). For any such (h1, h2) and f ,

the adjoint property yields

(L∗J(h1, h2))(f) = (J(h1, h2))(Lf)

=
1

2πi

∫
Tr

(Lf)(z)h1(z) dz +
1

2πi

∫
TR

(Lf)(z)h2(z) dz .
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Now let a basis for H2(Dr) ⊕ H2
0 (D∞R ) be given by P = {(pn, 0) : n ∈ N0} ∪

{(0, p−n) : n ∈ N} with pn(z) = zn, where pn ∈ H2(Dr) if n ≥ 0 and pn ∈ H2
0 (D∞R )

if n < 0.
Take f ∈ E , where E is the basis for H2(A) given by (2.1). For n ∈ N0 and

(h1, h2) = (pn, 0) ∈ P we get

(L∗J(h1, 0))(f) =
1

2πi

∫
Tr

(Lf)(z)h1(z) dz

(a)
=

1
2πi

∫
T
(Lf)(z)h1(z) dz

=
1

2πi

K∑
k=1

∫
T
φ′k(z)(f ◦ φk)(z)h1(z) dz

(b)
=

1
2πi

K∑
k=1

∫
φk(T)

f(w)(h1 ◦ τ)(w) dw

(c)
=

1
2πi

∫
T
f(w)(h1 ◦ τ)(w) dw

(d)
=

1
2πi

∫
Tr
f(w)(h1 ◦ τ)(w) dw .

Here, equalities (a) and (d) follow since the integrands are analytic on A, equality
(b) follows by change of variables with w = φk(z) and τ(w) = z, and equality (c)
is a consequence of the fact that

⋃
k φk(T) = T up to measure zero. Then, by the

definition of Π(r)
+ and Π(r)

− ,

(L∗J(h1, 0))(f)

=
1

2πi

∫
Tr
f(w)(Π(r)

+ (h1 ◦ τ))(w) dw +
1

2πi

∫
Tr
f(w)(Π(r)

− (h1 ◦ τ))(w) dw

=
1

2πi

∫
Tr
f(w)(Π(r)

+ (h1 ◦ τ))(w) dw +
1

2πi

∫
TR
f(w)(Π(r)

− (h1 ◦ τ))(w) dw

=(JL′(h1, 0))(f).

The penultimate equality follows from the fact that Π(r)
− (h1 ◦ τ) ∈ H2

0 (D∞r ).
Analogously, for n ∈ N and (h1, h2) = (0, p−n) ∈ P, the same argument shows

(L∗J(0, h2))(f) = (JL′(0, h2))(f).

Hence, for f ∈ E , by linearity (4.8) holds for all finite linear combinations of basis
elements (h1, h2) in P. Since these form a dense subspace of H2(Dr) ⊕H2

0 (D∞R ),
and L∗, L′ and J are continuous operators, equality (4.8) holds for all (h1, h2) ∈
H2(Dr)⊕H2

0 (D∞R ) and f ∈ E . By continuity, this extends to all f ∈ H2(A), which
completes the proof. �

Remark 4.6. Lemma 4.4 and continuity of the projection operators in (4.6) imply
that L′ is compact. Note, however, that this also follows from compactness of L
guaranteed by the choice of A in (3.1).
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5. Spectrum for Blaschke products

Having discussed transfer operators L associated with analytic expanding cir-
cle maps and a convenient representation of the corresponding adjoint operators
(Proposition 4.5), we shall now use this representation to obtain the full spectrum
of L for finite Blaschke products, a class of circle maps defined as follows.

Definition 5.1. For n ≥ 2, let {a1, . . . , an} be a finite set of complex numbers in
the open unit disk D. A finite Blaschke product is a map of the form

B(z) = C

n∏
i=1

z − ai
1− aiz

,

where |C| = 1.

It follows from the definition that

(i) B is a meromorphic function on Ĉ with zeros ai and poles 1/ai;
(ii) B is holomorphic on a neighbourhood of D with B(D) = D and B(T) = T.

Note also that a function f is holomorphic on an open neighbourhood of D with
f(T) = T if and only if f is a finite Blaschke product (see, for example, [6, Exercise
6.12]).

Let τ : T → T denote the restriction of a finite Blaschke product B to T. A
short calculation shows that τ is expanding if

∑n
i=1(1 − |ai|)/(1 + |ai|) > 1 (see

[12, Corollary to Prop. 1] for details). Expansiveness of τ can also be expressed in
terms of the nature of the fixed points of B, as the following result shows.

Proposition 5.2. Let B and τ be as above. Then the following conditions are
equivalent.

(a) |τ ′(z)| > 1 for all z ∈ T.
(b) B has exactly n− 1 fixed points on T, which are repelling, and two fixed points

z0 ∈ D and ẑ0 = 1/z0 ∈ Ĉ \ D, which are attracting.

Proof. See [14, Prop. 2.1] and [22]. �

Crucial for the proof of our main theorem is the notion of a composition operator,
which we briefly recall.

Definition 5.3. Let U be an open region in Ĉ. If ψ : U → U is holomorphic, then
Cψ : Hol(U) → Hol(U) defined by Cψf = f ◦ ψ is called a composition operator
(with symbol ψ).

Note that in the literature the term ‘composition operator’ is mostly used in the
context of holomorphic functions. The operators in (4.4) considered on L2(Tr) do
not formally fall into this category, but will turn out to be composition operators
for Blaschke product symbols.

We are now able to state our main result.

Theorem 5.4. Let B be a finite Blaschke product such that τ = B|T is an analytic
expanding circle map. Then

(a) the transfer operator L : H2(A)→ H2(A) associated with τ is well defined and
compact for some annulus A ∈ A, and
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(b) the spectrum of L : H2(A)→ H2(A) is given by

σ(L) = {λ(z0)n : n ∈ N0} ∪ {λ(ẑ0)n : n ∈ N} ∪ {0} , (5.1)

where λ(z0) and λ(ẑ0) = λ(z0) are the multipliers1 of the unique fixed points z0
and ẑ0 of B in D and Ĉ \ D, respectively.

Proof. The first assertion is obvious, as τ is an analytic expanding circle map and
we can choose A = Ar,R ∈ A as in (3.1) such that L is well defined and compact
by the results in Section 3.

For the second claim, we will use the fact that the spectrum of L coincides with
that of its adjoint L∗, which together with the structure of the representation L′ of
L∗ will allow us to deduce (5.1).

We start by observing that for the chosen A we have B(∂A) ∩ cl(A) = ∅, as
well as B(Dr) ⊂⊂ Dr and B(D∞R ) ⊂⊂ D∞R . It follows that f ◦ B ∈ H2(Dr) for any
f ∈ H2(Dr), and f ◦B ∈ H2(D∞R ) for any f ∈ H2(D∞R ), so that C(r)

B f = f ◦B and
C

(R)
B f = f ◦B define composition operators on H2(Dr) and H2(D∞R ), respectively.

It is a standard fact that B(Dr) ⊂⊂ Dr guarantees compactness of C(r)
B (see, for

example, [7, pp. 128-129]). Similarly for C(R)
B . It is also well known (see [13,

Lem. 7.10] or [7, Thm. 7.20]) that all eigenvalues of a compact composition operator
Cψ are simple and are given by the non-negative integer powers of the multiplier
of the unique attracting fixed point of ψ. Hence,

σ(C(r)
B ) = {λ(z0)n : n ∈ N0} ∪ {0}

and
σ(C(R)

B ) = {λ(ẑ0)n : n ∈ N0} ∪ {0},
where z0 and ẑ0 are the unique attracting fixed points of B in Dr and D∞R , respec-
tively (see Proposition 5.2).

We now explain how to use these observations to determine the spectrum of L′
given in (4.7). Note that Π(r)

+ C
(r)
B = C

(r)
B and Π(r)

− C
(r)
B = 0, where Π(r)

+ and Π(r)
−

are the projection operators in (4.6). Thus the operator L′ is given by

L′ =

 C
(r)
B Π(R)

+ C
(R)
B

0 Π(R)
− C

(R)
B

 . (5.2)

In particular, L′ leaves H2(Dr) ⊕ {0} invariant. The operator Π(R)
− C

(R)
B is not a

composition operator on H2
0 (D∞R ), but we can relate its spectrum to the spectrum

of C(R)
B on H2(D∞R ). More precisely,

σ(Π(R)
− C

(R)
B ) = σ(C(R)

B ) \ {1}, (5.3)

as we shall see below. Then, using (5.3) the assertion of the theorem follows, since

σ(L′) = σ(C(r)
B ) ∪ σ(Π(R)

− C
(R)
B )

= {λ(z0)n : n ∈ N0} ∪ {λ(ẑ0)n : n ∈ N} ∪ {0} ,
and σ(L) = σ(L∗) = σ(L′).

1Recall that the multiplier λ(z∗) of a fixed point z∗ of a rational map R is given by R′(z∗) if

z∗ ∈ C and 1/R′(z∗) if z∗ =∞. For Blaschke products the equality λ(ẑ0) = λ(z0) follows from a
straightforward calculation.
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It remains to prove (5.3). For brevity, we drop the superscript (R) from Π(R)
− ,

Π(R)
+ and C(R)

B since we only consider functions in H2(D∞R ) in what follows. Observe
that for f ∈ H2(D∞R ), we have (Π+f)(z) = f(∞), which implies

CBΠ+ = Π+ and Π−CB = Π−CBΠ− . (5.4)

Note that 1 is an eigenvalue of CB if and only if the corresponding eigenfunction
is constant. Take µ ∈ σ(CB) with µ(1 − µ) 6= 1. Since CB is compact, there is a
non-zero f ∈ H2(D∞R ) with CBf = µf . The second equality in (5.4) now implies
Π−CBΠ−f = µΠ−f . But since µ 6= 1 the eigenvector f is non-constant, so we have
0 6= Π−f ∈ H2

0 (D∞R ) and thus µ ∈ σ(Π−CB).
To show the converse inclusion, take µ ∈ σ(Π−CB) with µ 6= 0. Since Π−CB

is compact, there is a non-zero f ∈ H2
0 (D∞R ) with Π−CBf = µf . First observe

that2 µ 6= 1. Next we note that if µ(µ − 1) 6= 0, then (1 − µ)f − Π+CBf 6= 0 (for
otherwise f would be zero). Finally, we use (5.4) to show that (1− µ)f −Π+CBf
is an eigenfunction of CB with eigenvalue µ:

CB ((1− µ)f −Π+CBf) = (1− µ)(CBf + (µf −Π−CBf))− CBΠ+CBf

= µ(1− µ)f + (1− µ)(I −Π−)CBf −Π+CBf

= µ ((1− µ)f −Π+CBf) .

Thus σ(Π−CB) = σ(CB) \ {1} as claimed. �

The following examples illustrate our main result.

Example 5.5. The map B(z) = zn for n ≥ 2 has two attracting fixed points z0 = 0
and ẑ0 =∞ with λ(z0) = λ(ẑ0) = 0. Thus σ(L) = {0, 1}.

Curiously enough, these are not the only examples for which σ(L) = {0, 1}, as
the next example shows.

Example 5.6. Let B(z) = z2(z − b)/(1 − bz) for b ∈ (−1, 1). Then B|T is an
expanding 3-to-1 circle map. As the multipliers of the attracting fixed points of B
are vanishing, just as in Example 5.5, we get σ(L) = {0, 1}.

Example 5.7. For the family of maps B(z) = z(µ−z)/(1−µz) considered in [21],
the restriction B|T is an expanding circle map for any µ ∈ D. The attracting fixed
points are z0 = 0 and ẑ0 =∞ with λ(z0) = µ and λ(ẑ0) = µ. Thus

σ(L) = {µn : n ∈ N0} ∪ {µn : n ∈ N} ∪ {0} .

References

[1] V. Baladi, Y. Jiang, and H. H. Rugh. Dynamical determinants via dynamical conjugacies for
postcritically finite polynomials. J. Stat. Phys., 108(5-6):973–993, 2002.

[2] O. F. Bandtlow. Resolvent estimates for operators belonging to exponential classes. Integr.
Equ. Oper. Theory, 61:21–43, 2008.

[3] O. F. Bandtlow and O. Jenkinson. Explicit eigenvalue estimates for transfer operators acting
on spaces of holomorphic functions. Adv. Math., 218:902–925, 2008.

[4] O. F. Bandtlow and O. Jenkinson. On the Ruelle eigenvalue sequence. Ergodic Theory Dynam.
Systems, 28(06):1701–1711, 2008.

[5] A. Boyarsky and P. Gora. Laws of Chaos: Invariant Measures and Dynamical Systems in
One Dimension (Probability and its Applications). Birkhäuser, 1997.
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