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Abstract

We develop a discrete time version of the so-called Brussels formal-
ism in non-equilibrium statistical mechanics for continuous endomor-
phisms of a Banach space. We show that, if the evolution operator U
and the projector P are such that PU is a compact operator and the
spectral radius of (I — P)U(I — P) is strictly less than the spectral
radius of U, then the formalism holds and the evolution operator is
quasicompact.

1 Introduction

One of the oldest and most challenging problems in non-equilibrium sta-
tistical mechanics, not to say its raison d’étre, is the reconciliation of the
irreversible macroscopic laws governing the behaviour of matter in bulk with



the basic time symmetric microscopic equations of motion. A fertile branch
in this endeavour was initiated by Ludwig Boltzmann, whose search for the
origin of the second law of thermodynamics led him to a characterization of
dynamical processes in many-body systems by a kinetic equation, which is
now referred to as the Boltzmann equation. Since then numerous such equa-
tions have been derived: the Fokker-Planck equation for a Brownian particle,
the Vlasov and Balescu-Lenard equations for a plasma, to name but three.
Their common feature is that they describe the Markovian dynamics of sin-
gle particle distributions under certain physical conditions; the Boltzmann
equation, for example, gives a correct description only for dilute gases. These
conditions are usually formulated in terms of a limiting process for which an
appropriately chosen scaling parameter of the system vanishes (see e.g. [46]
and references therein).

However, in the past thirty years, a group working in Brussels has devel-
oped a formalism which dispenses with this limiting procedure, and provides
instead a means of deriving kinetic equations which are valid over some finite
range of values of the relevant parameter. In essence, the so-called ‘Brussels
formalism’ is based on the construction of an idempotent operator II, which
commutes with the Liouville operator of the system. In other words: II
projects onto a subspace which is invariant under the Liouvillian. It is for
this reason that the formalism is also referred to as ‘subdynamics’. Moreover,
the elements of the subspace can be shown to obey an autonomous evolution
equation, which is the desired kinetic equation.

Although this brief summary hardly does justice to the sophistication of
the approach it does represent the key aspects of the theory, as it stood in
1975. Further details may be found in the book by Balescu [3] or in the
original articles, e.g. [39], [12], [40], [13]. The theory was later generalized to
include systems with a time-dependent Liouvillian, in order to describe open
systems (see e.g., [4], [23], [7]).

In more recent times, the Brussels group, in collaboration with colleagues
based in Austin (Texas), has turned much of its attention to the study of
so-called ‘large Poincaré systems’, by which is meant a special class of non-
integrable systems characterized by a continuous spectrum (c.f. [35], [41],
[36]). These are introduced by taking the thermodynamic limit of non-
integrable systems which contain a finite number of particles. Emphasis
has shifted from the derivation of kinetic equations to the derivation of a
new spectral representation of the Liouvillian, thereby explicitly admitting



the possibility of complex eigenvalues which decay exponentially with time.
Nevertheless, the existence of an operator II, or more generally a set {I1()};c;
of such operators satisfying the conditions of completeness

S n® =1,

icl
idempotence and orthogonality
n@mne = 52.].1‘[(1')’
and commutativity with the Liouville operator
LII® — H(i)L,

remains at the heart of the approach.

Another new development was put forward by Hasegawa and Saphir in
a series of papers [14],[15],[16],[45],[17], who adapted the formalism to the
investigation of chaotic mappings. In particular, they were able to derive
a generalized spectral decomposition of the Frobenius Perron operator of
the baker’s transformation and the Bernoulli map. Their analysis was later
extended by Antoniou and Tasaki [1],[2] to the S-adic baker’s transformation
and the Rényi map.

In this paper we will take up the idea of a discrete time version of the
Brussels formalism and focus on conditions for which the formalism holds.
For the continuous time scenario Coveney and Penrose [8] have only recently
formulated a set of theorems which provide rigorous conditions under which
at least a part of the formalism holds in an arbitrary Hilbert space. After a
brief definition of the notation used in this paper, we will derive the discrete
time analogue of the generalized master equation in a Banach space setting;
this leads to the Brussels decomposition of the resolvent of the evolution
operator used by Hasegawa and Saphir. We will show that this decomposition
rigorously holds if the evolution operator U and the projector P are such that
PU is a compact operator. Under the additional assumption that the spectral
radius of (I — P)U(I — P) is strictly less than the spectral radius of U we will
be able to recover the main features of the Brussels formalism (Theorem 2).
The class of operators fulfilling these conditions will be shown to be the class
of quasicompact operators (Theorem 1) and will be studied in some detail
in section 5. Finally we give an example of a system for which the evolution
operator is quasicompact.



2 Notation

Throughout the present paper, z denotes a complex number and X a non-zero
complex Banach space. We use the notation £(X) for the Banach algebra
of bounded linear operators on X and K(X) for the closed two-sided ideal
of compact operators in £(X) . For T' € £(X) , the symbols o(7) and o(7T)
will be used for the resolvent set and the spectrum of 7" respectively; r(7T)
denotes the spectral radius of T and A(T') := {2 : |z| > r(T)} the annulus of
convergence of the von Neumann series of (2 —7T')~*. Finally, we write N'(T)
for the kernel and R(T) for the range of T

3 The discrete time master equation

One of the earliest attempts to generalize Boltzmann’s kinetic equation to
arbitrary systems was made by Pauli [34] who derived a master equation
for the time evolution of the probability distribution of a quantum system
by assuming that this was driven by the random steps in a Markov process,
a hypothesis which is not in general consistent with the Liouville equation.
Pauli’s approach was later improved by van Hove [21], [22], while Prigogine
and his collaborators [42] arrived at an exact master equation for an arbitrary
system. Similar equations were derived by Nakajima [32], Zwanzig [47], and
Montroll [29]. Their equivalence was shown by Zwanzig [48].

To keep the discussion general we take a Banach space X as a state space
and U € L(X) as the generator of the dynamical semigroup {U"}, -

The derivation of the discrete time master equation starts by introducing
a pair of projectors P and @ with P,QQ € £L(X) and Q = I — P into the
difference equation of the dynamical semigroup

Un—l—l =UU,

with the initial condition
UO = Ia

which leads to the following pair of equations:
PU,,, = PUPU, + PUQU, (1)
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The Brussels school refers to the P and () subspaces as the ‘vacuum’ and
the ‘correlations’, since in the original formalism P was meant to project on
the diagonal part of the density matrix of the system. It is important to
state that there is nothing explicitly required of the dimensionality of these
projectors which, according to this school, may be either finite or infinite.

Although this pair of operator equations can be solved by iteration, it
is much easier to use z-transform techniques, which are the discrete time
analogue of Laplace transforms (the appendix should be consulted for more
details). It is not difficult to see that all the terms occurring in (1) and (2)
are of geometric order owing to the submultiplicativity of the operator norm
in a Banach space. We have, for example,

|IPUPU,| < ||| U]™*".

We may, therefore, apply a z-transform and get:

z2(PU(z) — PUy) = PUPU(z) + PUQU(z) (3)
2(QU(z) — PUy) = QUPU(z) + QUQU(2), (4)
where we used the shifting theorem (see the appendix) and the definition
z
= Z = .
Ue) = 2l =

For z € A(QUQ) we can solve for QU(z) in (4)

QU(2) Q+ QUPU(z), ()

B z 1
C2-QUQRT 2 -QUQ
where we used Uy = 1. Inserting this into (3) yields

z 1
6

The Brussels school coined suggestive names for the continuous time ana-
logues of the operators in (5) and (6), which we shall also adopt: the ‘collision
operator’

2(PU(z) — P) = PUPU(z) + PUQ

. 1

¥(z) = PUQWQUR (7)



the ‘destruction operator’

1
D(z) := PUQ———
the ‘creation operator’
1
C(z) = WQUP, (9)
and the ‘reduced resolvent’
1

all of them are £(X) -valued functions holomorphic in A(QUQ). For the sake
of completeness we list their n-domain representations, that is their images
under an inverse z-transform:

PUQ(QUQ)" 'QUP n>1

b= 206 = { | el

PUQQUQ)™" n>1
. (12)

Dyi= 2,0 = { "

(QUQ)"'QUP n>1

o= 2710 = | = (13
5,:= 2,15 = { FUOTQ 2 (1)

The desired master equation may now be obtained from (6) qua inverse z-
transform:

PUn—|—1 = PUPU, + Dn—HQ + wn*PUna (15)

where ‘x” denotes the convolution of two sequences:

=0



Equation (15) is an operator identity which, acting on an initial state fo € X,
provides a relation for the P-component of the iterates f, := U, fo of fo

an+1 = PUan +Dn+1Qf0 +1/Jn*an (16)

This is a discrete time version of the generalized master equation.

We have thus arrived at an exact equation for the evolution of the reduced
densities Pf,. The second term on the right hand side of (16) describes the
influence of initial data about @ fy at time n = 0 on the subsequent time
evolution of the system. If () is appropriately chosen it can be assumed that
its effect should disappear in the long time (large n) limit. Equation (16)
is, however, non-Markovian, due to the summation present in the third or
collision term. Thus, to pass from this equation to a Markovian equation, we
need to restrict the influence of 1/, for large n. We will turn to this problem
in section 6.

4 The Brussels class

In order to understand the reasoning behind the Brussels formalism, we need
to derive an expression for (z) in terms of the operators previously intro-
duced. The z-transformed version of the master equation (15) is

2(PU(z) — P) = PUPU(z) + 2D(2) + ¢(2) PU(z).

We can formally solve for PU(z)

which, added to the equation for QU(z) (5)
QU(z) = 28(z) + C(z)PU(z),
yields the ‘Brussels decomposition’ of U(z):

U(z) = [P+C(2)]PU(z) + 28(2)
= [P—i-C(z)]z “PUP i) [P+ D(2)] + 28(2). (17)




For a justification of the manipulations involved so far the existence of [z —
PUP—1(z)]"! has to be ensured. This can be done by imposing the condition
that P and U are such that PU is compact. Note that dim PX < oo is a
sufficient but not necessary condition for PU to be compact.

Proposition 1 Let U, P, and Q be defined as above, with PU € K(X) .
Then z/[z — PUP — ¢(2)] is

1. meromorphic in the annulus A(QUQ) with only a finite number of poles
Zi,i el

2. holomorphic at infinity, i.e. (1/2)/[1/z2—PUP—(1/2)] is holomorphic
at 0.

Proof For z € A(QUQ) the operator %(PUP — ¥(z)) is holomorphic. Since
the product of a compact operator and a bounded operator is compact
L(PUP — ¢(z)) is also compact due to PU being compact. Furthermore

1—L(PUP — ¥(z)) is invertible for z large enough. This is easily seen by
taking into account that [3(=)] < (IPIUI QI (12| - 1QUQI)™" be-

comes arbitrary small for z large, and hence H%(PUP - ﬁ(z))” < 1 for z
large enough. The first assertion now follows from the analytic Fredholm
theorem (see [43, Theorem VI.14] and [10, VIL.11]). For the proof of the
second part let z € {z : |z| < 1/r(QUQ)} for r(QUQ) # 0 or z arbitrary if
r(QUQ) = 0. Then

o0

2p(1/2) = 3 2" PUQ(QUQ)"QUP,

n=0

hence [1 — zPUP — zt)(1/2)]~" holomorphic at 0. Using the same expansion
it is possible to show that lim, g HzPUP - Zl/J(l/Z)H = 0 and therefore that

[1 — 2PUP — 2zp(1/2)] ! is invertible at z = 0. This completes the proof.
QFED
Remark The same arguments may be used to prove a slightly extended

version of the proposition, in which the annulus A(QUQ) is replaced by an
arbitrary connected open subset of o(QUQ).



This proposition justifies the application of an inverse z-transform to eqn.
(17) thus yielding a new expression for Up,:

v, = L Czn{(mc’(z»

21

z—PUP—@@%P+D@»+S@%d&

The contour C has to enclose the poles z;,i € I as well as c(QUQ). As the
integrand is meromorphic in A(QU®) we can deform C such as to separate
the contributions from the poles resulting in a splitting of the integral :

Uy=30 4+ 5@ 4 ... 50 45 (18)
where p = card[ is the number of poles of the integrand in A(QU) and for
1<i<p

szziiaifm{“3+c@”

L PUP 90 [P+ D(z)]} dz (19)

1
z— PUP — 9(2)
The new contours C; enclose the poles z; only and C’ is a circle around the
origin with radius 7(QU®) + € with € > 0 small enough.

Note that the contribution from S(z) in (19) vanishes, since S(z) is holo-
morphic in A(QUQ). The operators E,(f) are the so-called ‘asymptotic evo-
lution operators’, which play an important réle in the Brussels approach; we
shall study them further in Section 6. For the moment we only remark that
these operators are supposed to describe the dominant long time behaviour
of U,.

In order to obtain the splitting of the evolution in (18) the existence of a
pole in A(QUQ) needs to be ensured. It obviously suffices to require that

r(QUQ) < rU),

which is a mathematical formulation of the hypothesis of rapid decay of cor-
relations frequently assumed in derivations of Markovian kinetic equations.
We now cast these results into the following definition:

A 1

Em——iﬁf{@+6@)

2w Je

(P+D(2)) + S(z)} dz

Definition Let X be a Banach space. An operator U € £(X) is said to
belong to the Brussels class Q'(X) of X if there is a projector QQ € L(X)
such that (I — Q)U is compact and r(QUQ) < r(U).

An explicit characterization of the Brussels class is given in the next section.

9



5 Quasicompact operators and the Brussels
class

To give a characterization of the Brussels class put forward in the previous
section we introduce a class of operators called quasicompact operators.

Definition A bounded operator U is said to be quasicompact if there is a
k € IN and a compact operator K such that

|v* - K| <r@)*.
The set of all quasicompact operators on X will be denoted by Q(X).

We begin by proving some elementary properties of quasicompact opera-
tors:

Lemma 1 Let U € L(X) be an operator such that U* is compact for some
k € INg. Then U is quasicompact if and only if it is not quasinilpotent, i.e.

r(U) # 0.
Proof The proof follows directly from HU’“ - U’“H =0<r(U).

QED
For a new characterization of Q(X') we need the following:
Definition Let T € £(X) . Define
k(T):=inf{||T - K| : K € K(X) }.
We can now formulate the following lemma.
Lemma 2 An operator U € L(X) is quasicompact if and only if
Jim K(UMY™ < r(U).

Proof The ‘if’ part is trivial. For the ‘only if’ part we show that

k(U™) < w(U™)R(UM), (20)

10



because then the sequence x(U™)'/™ converges to its greatest lower bound (by

[38, Section I, Problem 98]) and the assertion follows. To prove (20) observe
that

inf HUm+“-Kﬂ
keK(X)

IN

Wmhﬂwm+&W—mmw

N

< U™ =K IU* = K|
where K, Ky € K(X) .

QFED
The sum and the product of two quasicompact operators need not be quasi-

compact, as the following example shows:

Example Let X = [2. Define

x (21, T2, T3, T, T5, T, L7, T8y - - - )5

Sr = (371,0,0,1'3,0,375,0,.’1)7,...),

Tx = (0,29,74,0,16,0,25,0,...),

STz (0,0,0, 24,0, 26,0, zs, . . .),
(S+T)x = (x1,22,%4,%3, Te, T, Tg, L7y -.)-

Observe that S,7 € L(X) and that for n € IN,

S" 2y = (21,0,0,...),
T2z = (0,29,0,...),
(ST)" = ST
(S+T)™ =1
(S+T)! = S4T

Using the spectral radius formula we get

r(8) = Jim 157" =l |57 =1

and with a similar argument

r(T)y=r(ST)=r(S+T)=1.

11



Now, since S%,7? € K(X) and S and T are not quasinilpotent, S and T
are quasicompact by Lemma 1. However, ST is a projector with an infinite
dimensional range, and therefore ST ¢ K(X) . Since K(X) is closed in
L(X) it follows that

k((ST)")Y™ =1 as n — .

Therefore ST is not quasicompact by Lemma 1. Furthermore (S + T)?" =
I ¢ K(X) and again it follows that S + 7" is not quasicompact.

Unlike IC(X) the class of quasicompact operators Q(X) is not a subspace
of £(X) and not an ideal of £(X) in general. Nevertheless the following is
true:

Proposition 2 U is quasicompact if and only if its adjoint U* s quasicom-
pact.

Proof Since an endomorphism K of a Banach space is compact if and only
if its adjoint is compact (by [19, Prop. 42.2 and 42.3]) we get

H(U*)k _K*

=|v* - K| < r(U) =r@").

QED

Q(X) is not closed in £(X) . We show this by giving an example of a se-
quence of quasicompact operators converging uniformly to an operator which
is not quasicompact.

Example Let X = [? and define {S,} .. C £(X) through

nelN

Spz = ((1/2)"21,0,0, 23,0, x5, . . .).

Then for 7 > 2 _ _
Sl =((1/2)Yx4,0,0,...) € K(X)

and since r(S,) = (1/2)", every S, is quasicompact. However, lim,, ,, S, =
0, which is not quasicompact.

In order to see why quasicompact operators appear in this context we
recall Browder’s definition of the essential spectrum oess(T) of an operator
T e L(X) [6].

12



An element z € o(T) is said to belong to oess(T) if one or more of the
following is true:

(i)  R(z—T) is not closed in X
(ii)  zis a limit point of o(7T’)

(iil)  (JN(z—T)" is infinite dimensional.

r=1

By analogy with the spectral radius of T' the essential spectral radius r.ss(T)
is defined to be
Tess(1) = sup{|z| : z € 0ess(T)}.

There are various other definitions of the essential spectrum in the literature,
and in general they are not equivalent. Fortunately for any of the standard
definitions the essential spectral radius is the same (see [11, I.4]) and is given
by the Nussbaum formula [31]:

Tess(T) = lim w(T™)Y/". (21)

n—oo

Using the above results, we are now able to prove the following lemma:

Lemma 3 Let U be a quasicompact operator. Then for every 0 < e <
(r(U) = 1ess(U)) the set o.(U) :=a(U)N{z: |z| > Tess(U) + €} is not empty
and consists of a finite set of eigenvalues with finite multiplicity.

Proof For U quasicompact we conclude from Lemma 2 and eqn. (21) that
Tess(U) < r(U). The set o.(U) is not empty, since at least one point of o(U)
lies on the circle {z : |z| = r(U)}. For every z € o.(U), the range of z — U
is dense in X but z — U is not invertible, hence z — U is not injective and z
is an eigenvalue with finite multiplicity by the definition of o.(U). Finally,
since o.(U) is compact and contains no limit points, it can only consist of a
finite number of elements.

QED

Using an argument by Keller [27] we are now able to prove the following
theorem which constitutes a complete description of the Brussels class.

13



Theorem 1 A bounded operator on a Banach space belongs to the Brussels
class if and only if it s quasicompact:

Q(X) = Q(X).

Proof ‘=’ (See [27, Prop. 2.2]) Let U belong to the Brussels class. Then
there is a projector @ € L£(X) such that r(QUQ) < r(U) and P :=1—Q
with PU € K(X) . We show by induction on n that

U™ — (QUQ)"™ U is compact for all n € IN (22)
For n =1 this is trivial. Assuming that eqn. (22) holds for n, then
Untl — (QUQ)U =

PUU™ + QUU™ — QU(QUQ)™ U + QUP(QUQ)"'U
= PUU™+QUP(QUQ)" U + QU (U™ — (QUQ)"U).

The first term in this sum is compact since PU is compact. The second term
is only different from 0 for n = 1, in which case its compactness follows from
that of PU, whereas the last term is compact by the induction assumption.
That U is quasicompact now follows from

lim [(QUQ)"'U)|)" = r(QUQ) < r(U).

‘=" Let € > 0. Since U is quasicompact P can be chosen to be the projector
onto the eigenspaces of the eigenvalues of U in o.(U), by Lemma 3 P is
a finite rank operator, which implies that PU is compact. The inequality
r(QUQR) < r(U) follows from the fact that QUQ = QU = UQR has no
eigenvalues in o (U).

QED
6 Subdynamics

Let us return to equation (18). We show that this splitting of the evolution
operator gives rise to independent ‘subdynamics’ in the following sense.

14



Theorem 2 Let U belong to the Brussels class and let z;,1 € {1,...,p}
denote the poles of [z — PUP — ¢(2)]"! in A(QUQ). Then p > 1 and there
are p + 1 bounded projectors T1® i € {0, ..., p} with

p o

no=1 (23)
i=0
O = §,11% for i, j € {0,...,p} (24)
un® =119U for i€ {0,...,p}. (25)
Moreover the asymptotic evolution operators 25;7 can be written
o) =1® (26)
B0 = 220 4+ 37 (128 AL (27)
=1

where

1 1
A; = — 7{ z— 2z dz
YT o ci( 2 z2—U
and C; is a contour enclosing the pole z; only. The remainder operator 3,
obeys

5] < Ka” (28)
for some constant K and r(QUQ) < a < mineyy, . {2 }-

Proof This proceeds directly. Let 0 < € < mineq,..p{|2|} — r(QUQ) and
observe that the Brussels decomposition of the resolvent (17) is valid for a
connected subset of the complex z-plain, that is for {z : |z| > r(QUQ) +
€} except for a finite number of points, due to Proposition 1 and U being
quasicompact. We may therefore replace the integrand in (19) by 2"/(z —U)
and use the following Laurent series expansion:

1 ne @ Al ] 1

z—U:él S Y

ZTA o

17(©
+Z—U ’

where I1¥) and A; are the eigenprojection and the eigennilpotent associated
with z;, and ﬁl‘[(o) is holomorphic in z;,7 € {1,...,p} with

mo.—q1_— (H(l) R H(p)) ]

15



This is a standard result and may be found in [25, IT1.6.5]. Now trivially (23),
(24) and (25) hold. Finally (26) and (27) follow from a simple integration

n n\ n—l
Lj{ z ds — 6i~<l)zj forlg‘n
2mi Je; (2 — z;)H! 0 otherwise

while (28) is a consequence of

A 1 2"
S = —7( o g
2mi Jer z — U ?

and the fact that =TI is analytic in {2 : [2| > r(QUQ) + €}

QED

We have recovered the basic features of subdynamics as defined by the Brus-
sels school. The temporal evolution of the system may be separated into
independently evolving parts by virtue of the projectors II). The long time
behaviour in the subspace II®) X is governed by (27). Note that since

A? =0 for n > v,

where v; is the algebraic multiplicity of z; , i.e. the dimension of II) X, the
evolution of a probability density f; at time n = 0 entirely lying in IT®) X for
n large (i.e. for n > 1;) is given by

f nf + n—lA f + + n! n—V—f—lAu—lf

no e T (n—v+1)lr—1)" .

Thus, for a mode with non-vanishing eigennilpotent, i.e. for eigenvectors
belonging to a an eigenvalue which is not simple, we get a coupling of the
generalized eigenvectors. The decay, however, will still be exponential, since
|| fn]| is dominated by (|z;| + €)™ for every € > 0.

7 The p-transformation

We now give an example of a dynamical system for which the associated
Frobenius-Perron operator (see for example [28]) on a suitably chosen Banach
space is quasicompact. More explicitly, we shall study the following map:

T:10,1] — [0, 1]

16



Tz = Bz mod 1 with 8 € INT.

This map is usually referred to as the ‘S-transformation’ or the ‘S-adic Rényi
map’. It has been extensively studied throughout the last 30 years and is
nowadays considered to be the simplest example of a chaotic system. Only
recently a generalized spectral decomposition of the associated Frobenius-
Perron operator for 3 = 2 was obtained by Hasegawa and Saphir [45],[17]
and for 3 € INT by Antoniou and Tasaki [1].

The Frobenius-Perron operator U of the dynamical system (7', \), where
A denotes Lebesgue measure, can easily be calculated [28]:

U:L'()\)— L'())

B-1
Uf(x) =6y F(B~ (@ +1)).

i=0
Keller [26] showed that the L'-spectrum of the Frobenius-Perron operator of a
non-invertible transformation is the closed unit disk, hence we cannot expect
U to be quasicompact on L'()\). Nevertheless, the operator U turns out to
be quasicompact when its domain is restricted to certain dense subspaces of
L'()), as we shall now prove .

To this end, recall that for m € IN, a € (0.1] the space C™* of all
complex-valued m-times differentiable functions on [0.1], the mth derivative
of which is Holder-continuous with exponent «;, is dense in L' ()\) and becomes
a complex Banach space when furnished with the norm:

1 e = 11+ 1™l

where
fl,, == max sup fu
= g, suw [19)
and
||f|| = sup ‘f(x) - f(y)‘
* z,y€[0,1] |.Z‘ - y|a
TFy

We shall see in the proof of Proposition 3 that U is a bounded linear operator
on (C™, ||.||,,.o)- In order to show that U is even quasicompact we need the
following version of the Tonescu-Tulcea Marinescu ergodic theorem given by
Hennion [18]:

17



Theorem 3 (Hennion, 1993) Let (X,||.||) be a Banach space and U a
bounded linear operator on (X, ||.||). If there is a norm |.| on X, such that

(i) U:(X,|.||) = (X,]|.]) is compact
(i) for every n € IN, there are positive reals Ry, r,, such that
lim inf, o0 ()" =: 7 < r(T) and

(U™ fIl < B | f| + 7 |l fI for all f € X,
then U is quasicompact and ress(U) < 7.
We are now able to prove the main result of this section:

Proposition 3 Let U be the Frobenius-Perron operator of the [-transfor-
mation (T, \), then for m € IN,a € (0, 1] the operator U is a quasicompact
endomorphism of (C™,[|.[|,, ,) and ress(U) < p(m+a),

Proof Fix m € IN and « € (0,1]. Let f € C™?, then
B-1

Uf(z) =871 f(B7 (z +1))
i=0

is m-times continuously differentiable and for 0 < j < 'm

B
(U (@) = 503 fO(BH ( +1)).

Furthermore, we have the following inequalities, the proof of which we shall
supply later:

Ufl < [l (29)

(WA ™l < B~ £ (30)

Now, (30) implies that U f € C™*®. Moreover, combining (29) and (30) yields
10 e = 1UF |+ U™l

< fl + BT F (31)

< N fllmya - (32)

Hence U € L(C™*) with the operator norm of U obeying ||[U|| < 1. Since
Ul =1, we have r(U) = 1.
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Equation (31) also implies
||Uf||m,a S |f‘m + Bi(m+a) ||f||m,a7

which can be iterated to give for n € INT

n—1
||Unf||m,a S Z ﬁ_Z(m+a) ‘f‘m + ﬁ_n(m+a) ||f||m,a *
=0

Clearly, ||, is a norm on C™*; since the natural embedding of C™® in C™
is compact (see for example [11, Theorem V.1.1]), every ||.[|,, ,-bounded set
in C™* is |.|, -relatively compact and therefore

U= (€™ lna) = (€™ L)

is compact. The assertion of the proposition now follows from Theorem 3:
U is quasicompact and 7.,,(U) < 8~ (m+®) We only need to prove (29) and
(30). Inequality (29) follows from (7), which yields

. o Bl _
sup [(Uf)D(z)] = BUDY sup |9 (B (2 + 1))l
z€[0,1] i=0 z€[0,1]
< BT sup |f9(x)
z€[0,1]

for 0 < j < m, and therefore |Uf| < |f|,,. Finally we have the following
estimates

miny | 200 (F (B (@ +14) — F™ (B Ly +14)))|

IOH™)a = sup B ;
x,y€[0,1] |=’f - y\
TF£Y
p-1 (m) (-1 N #(m)(p-1 .
< oS gy VOB @) - Py + )
i=0 z,y€[0,1] |1: - y|a
T£Y
/371 m m
= p Y sup |/ )(f)—f(a)(yﬂ
i=0 m,yE[,B—lz;éﬂ—l(z‘Jrl)] ez —y|
T£Y

< gl fmg,
which proves inequality (30).
QED

19



8 Discussion

Our work shows that the possibility of an analytic continuation of the Brus-
sels operators inside the spectrum of the evolution operator U, together with
a restriction to compact projectors P (such that PU € K(X) ), guarantees
the existence of independent subdynamics for U. This result is somewhat
similar to the investigation of Coveney and Penrose [8], who have shown that
in the continuous time scenario the existence of an isolated pole of the resol-
vent of U below the real axis is ensured whenever the time-domain collision
operator is bounded above in norm by an exponentially decaying function of
time and the projector P is a finite range operator. The connection with our
result is seen by taking into account that for our definition of the Brussels
class the discrete time-domain collision operator is of geometric order (the
discrete time analogue of exponentially bounded) with the least such bound
being less than r(U).

The requirement imposed by our analysis for the existence of the discrete
time Brussels formalism in statistical mechanics, namely that the evolution
operators in question must be quasicompact, is less restrictive than it might
appear to be at first sight. Convergence results, such as central limit theorems
or exponential decay of correlations obtained via spectral properties of the
Frobenius Perron operator are usually linked to finding suitable restrictions
of the domain of the Frobenius Perron operator on which it is quasicompact.
For example, in their studies of the ergodic properties of piecewise monotonic
transformations of the interval Hofbauer and Keller [20], Rychlik [44], and
Keller [26] make use of the fact that the induced Frobenius Perron operator,
the spectrum of which is the whole unit disk when considered as an endo-
morphism of L', is quasicompact on the space of functions of bounded vari-
ation. This situation is reminiscent of the recently developed rigged Hilbert
space approach to the Brussels formalism, wherein a spectral representa-
tion of indecomposable operators of a Hilbert space can be obtained for a
suitable restriction of the domain of the relevant operator [14],[15],[1],[2].
The analysis carried out in the present paper also shares various features in
common with the measure-theoretic approach to the selection of ‘canonical’
non-equilibrium ensembles recently developed by Coveney and Penrose [9)].
We hope to return in the future with a more detailed examination of these
particular relationships.
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Appendix. The Z-Transform

The material covered here is an easy generalization of the standard methods
(see e.g. [24], [30]).

Let X be a complex Banach space. A sequence {7}, of bounded
operators T, € L£(X) is said to be of geometric order, if there exist positive
reals, A and a, and an integer ng, such that for all n > nyg

ITall < Ad™ (33)
Then the z-transform of {1}, .. is defined by

ZIT,) :=T(z) = éTnz_”.

Theorem 4 (Properties) Let {T,},. be a sequence of geometric order
with constant a as in (33). The z-transform Z[T,] is unique and holomorphic
in the extended annulus {z : |z| > a} U {oo}.

Proof The assertion follows from the fact that Z[T,]| is a Laurent series
with no positive powers and radius of convergence r not exceeding a by
the Cauchy-Hadamard formula:

r = lim ||T,||'" < a.

n—oQ

QED

Note that if
T,=1T",

then Z[T,] is up to a factor z identical with the von Neumann series of the

resolvent of 71" -
z
Z[T" = Tz ™" = .
M=y Tt

n=0
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Theorem 5 (Inversion formula) The inverse z-transform Z~1 is given by

2T = o f 77T d,

- 2mi
where C may be any contour enclosing all singularities of T (2).
Proof This is just the expression for the coefficients of a Laurent series.

QED

The following theorems are particularly useful for handling difference equa-
tions:

Theorem 6 (Shifting Theorem) If Z[T,]| = T (z), then for k > 0

Z[This] = 2* (T(z) — ngz—"> :

Proof This follows from

o

Z Toiez ™ = 2F Z Toiiz FF)
n=0 n=0
[e's} k—1
= 2k (Z Tz = Tnz_”> .
n=0 n=0
QED

Theorem 7 (Convolution Theorem) Given {1,}, . and {T}}, . with

z-transforms T (z) and T'(z) respectively we can define the convolution of the
two series by

{Tn*TA}ne]N = { ?:O TiT;L—i}nE]Na

its z-transform being given by

Z[T+T,) = T(2)T'(2).
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Proof We only need to take into account that 7, = 0 for n < 0 by definition.

Then
T(z)T’(z) = Z Z TnTn’z_(n_m’) = Z Z TnTn’—nZ_n’
n=0n'=0 n=0n'=n
= Z Z TnTn’—nZ_n, = Z[Tn*TrIL]
n’=0n=0
QED
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