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Abstract

Extended dynamic mode decomposition (EDMD) provides a class of
algorithms to identify patterns and effective degrees of freedom in com-
plex dynamical systems. We show that the modes identified by EDMD
correspond to those of compact Perron-Frobenius and Koopman operators
defined on suitable Hardy-Hilbert spaces when the method is applied to
classes of analytic maps. Our findings elucidate the interpretation of the
spectra obtained by EDMD for complex dynamical systems. We illustrate
our results by numerical simulations for analytic maps.

1 Introduction

The quest to identify effective degrees of freedom in a complex dynamical system
is a fundamental topic in almost all branches of science. The archetype and his-
torical origin of this endeavour can be seen in the derivation of thermodynamics
from microscopic equations of motion within a hydrodynamic description. Here,
the relevant macroscopic densities are determined by the classical conservation
laws of physics. In a mathematical setting the problem of identifying effective
degrees of freedom and reducing the dynamical description to a lower dimen-
sional set of equations can be cast in terms of centre manifold reductions [14] or
adiabatic elimination procedures [15]. In these classical situations the reduction
of the description to effective degrees of freedom has resulted in the derivation of
transport equations for systems far from equilibrium using projection operator
techniques [23, 32], an understanding of how dissipation emerges in many par-
ticle Hamiltonian systems [24], or the Bandtlow-Coveney equation for transport
properties in discrete-time dynamical systems [2], to name but a few. With the
advent of the study of complex and chaotic dynamical behaviour the focus has
shifted and broadened. Nowadays the problem of identifying relevant degrees of
freedom occupies a diverse range of scientific fields ranging from physics and the



life sciences, to computational studies of pattern recognition or data processing.
Many of the current algorithmic approaches have been inspired by the classical
ideas mentioned above. In a nutshell, these methods are based on identifying an
optimal mode decomposition which can be used to effectively describe the system
of interest.

A recent instalment of these ideas has become known as Dynamic Mode De-
composition, introduced in [27] and extended in [31]; see also [18] for an illus-
tration of this concept in the context of nonlinear stochastic systems. At their
core, these methods condense the dynamical observations into a suitably cho-
sen effective linear evolution matrix. The eigenvalues and eigenvectors of this
matrix then provide information concerning the relevance and structure of the
effective degrees of freedom of the system, and can sometimes be related to spec-
tral data of global evolution operators, known as Perron-Frobenius operators, or
their formal adjoints, known as Koopman operators. Data-driven methods to
approximate Perron-Frobenius and Koopman operators have become prominent
with the work of Dellnitz and Junge [9] and have since been extended in many
ways [8, 11, 22, 13, 17|, to mention but a few. For an overview of existing algo-
rithms, see the review articles [19, 7, 13] and references therein, in particular [19]
for comparison of various data-driven algorithms, [7] for an overview of applica-
tions in areas of engineering, and the introductory section of [13] for a historical
overview.

Empirically, these algorithms perform extremely well and are essentially fully
understood for finite-dimensional linear dynamical systems. However, open ques-
tions remain in more complex dynamical setups, regarding, for example, under
which conditions the algorithms converge and whether the limiting quantities are
signatures of the underlying dynamical system in the sense that they approximate
the spectral data of the relevant evolution operator. In this note our aim is to
contribute to this issue, by proving that a certain version of dynamic mode decom-
position, known as Extended Dynamic Mode Decompostion (EDMD), identifies
the correct effective degrees of freedom in an analytic setup when certain classes
of deterministic chaotic dynamical systems are studied.

In order to keep our presentation self-contained we start with a brief sketch of
EDMD in Section 2. In Section 3 we introduce a class of analytic circle maps, for
which rigorous statements about EDMD can be made. For this class of systems
we show that EDMD singles out eigenmodes of the Perron-Frobenius operator
on a suitably defined space of analytic functions. In this sense EDMD effectively
performs a coarse graining or smoothing of the dynamics. We shall also explain
that, in an appropriate setting, these results translate into strong spectral conver-
gence results for the corresponding Koopman operator. In Section 4 we illustrate
our findings through various numerical examples based on exactly solvable mod-
els. Finally, in Section 5, we put our results in a more general context, including
a discussion of higher dimensional dynamical systems or the relevance of our rig-
orous approach for general dynamic mode decompositions where no proofs can



be provided.

2 Extended Dynamic Mode Decomposition

In the following, we shall provide a brief, informal account of Extended Dynamic
Mode Decomposition (EDMD). Consider a discrete dynamical system

Zng1 = T(2n) (1)

given by map a 7: X — X on some phase space X. Assume that the dynamics
is observed through a collection of N scalar functions defined on the phase space
given by ¥(z) = (¢1(2),...,¥n(2))T. We record the dynamics at a sequence of
M phase space points 2z, ... (™) These points can be obtained from a time
series if the approach is used as a data analysis tool, or as a sample from a suitable
distribution of points in phase space if the goal is to investigate the underlying
equations of motion (1). Glossing over details of the underlying theory (see for
example, [31, 18, 17, 20] and references therein), the fundamental quantity of
EDMD is an N x N matrix

A=GH™, (2)
which is constructed from the observations as follows
| M
G =7 D2 r()in(), (k1=1..N), @
| M
Hyy ZM;W(ZW)WZ(Z(M), (k,l=1,...,N). (4)

Given the observations, the matrix A is an optimal representation of the dynamics
in terms of a finite dimensional linear equation of motion in the following sense:
it is a least squares solution to AX =Y where X = [¢(zV),... ¥ (z™)] and
Y = [(7(zM)), ..., h(r(z*)))].} For sufficiently large values of M and N the
eigenvalues and eigenvectors of A determine the effective modes of the system.
Eigenmodes with eigenvalues on or close to the complex unit circle are the slow
modes which are relevant for macroscopic behaviour and the long term dynamics.

The matrix A can be linked to the linear operator governing the underlying
dynamics (1), the Perron-Frobenius operator, or its formal adjoint, the Koopman
operator. Previous investigations [20] have shown that in the limit of large N and
M the matrix A is, in a certain sense, a suitable matrix representation, provided

LA solution to argmin 4 ||[AX — Y| is given by A = Y X, where X is the Moore-Penrose
pseudoinverse of X. The matrix A can be written as A = (Y XH)(XXH)~1if XX is invert-
ible, where X denotes the conjugate transpose of X. Furthermore, A = (Y XT)(XXT)~1 =

GH™!', assuming that for each observable v; there is a t; with wj(z(m)) = 1;(2(™)) for all
2(™) which holds for the observables used in this paper.



strong technical conditions are met. These conditions, however, may be difficult
to verify in concrete applications.

Numerical results show that EDMD can often be applied successfully as a
practical algorithm and indicate that output data (for example, eigenvalues of
A) exhibit nice convergence properties. We will prove that this is indeed the case
for a suitable class of dynamical systems, which will be introduced in the next
section.

3 EDMD for analytic maps

Let us consider a full branch analytic expanding map on an interval, say [0, 27].
Using the canonical mapping ¢ +— z = exp(ip) this map can be viewed as a map 7
in the complex plane leaving the unit circle T = {z € C: |z| = 1} invariant. The
map 7 will be analytic on T, provided that the branches of the original map on
[0, 27] satisfy matching conditions at the endpoints, and will thus have an analytic
extension to an open annulus A containing T. This means that such a map admits
a Laurent series on A which, on the unit circle, coincides with the Fourier series
expansion of the original interval map. Moreover, the Fourier coefficients will
decay exponentially. This last property is one of the crucial ingredients that will
allow us to define the evolution operators on sufficiently nice function spaces, as
discussed below. The second crucial ingredient is the expansivity of the map, by
which we mean that |7/(z)| > 1 for all z € T.

The fine statistical properties of the map 7 are captured by the Perron-
Frobenius operator (or transfer operator), which describes the forward evolution
of densities under the action of the system. For analytic expanding (orientation-
preserving) circle maps, it takes the form

(L)(2) = Z ¢5(2)f(¢5(2)), (5)

where ¢; denotes the j-th inverse branch of the analytic map 7. For instance,
for the simple Bernoulli shift map ¢ + 2¢ mod 27, the corresponding circle
map reads 7(z) = 2% with the two inverse branches given by ¢;(z) = /2 and
$2(2) = /2.

The operator in (5) is naturally defined on L'(T), the positive elements of
which are interpretable as probability densities, but for convenience it is often
considered as an operator restricted to L?*(T) so that Hilbert space methods can
be used. Its adjoint is known as the Koopman operator, which turns out to be
the operator of composition with the map 7. However, the Hilbert space L?(T) is
“fairly large” so that the spectrum of the bounded operator L is the entire closed
complex unit disk, with each point in the open unit disk being an eigenvalue of
infinite multiplicity (see, for example, [16, Remark 4.4]). Intuitively, the function
space L*(T) simply contains too many “non-physical” observables.

4



In order to capture the behaviour observed in a time series one often restricts
the set of observables, that is, one takes a suitable subspace of L*(T), so that
decay rates show up as isolated spectral points of the Perron-Frobenius operator.
In a sense such a restriction corresponds to the coarse graining used in statistical
mechanics when moving from a conservative microscopic to a dissipative hydro-
dynamic description [24]. An elementary illustration of this aspect can be found
for instance in [26].

Spectral convergence. In order to obtain strong spectral results for our setup of
analytic circle maps, a suitable class of observables is a space of analytic functions.
Following the approach in [5] we restrict observables to be analytic functions on
an open annulus A containing the complex unit circle with an L?-extension to
the boundary of A, the so-called Hardy-Hilbert space H?(A). As shown in [5],
the Perron-Frobenius operator given by (5) considered on H?(A) is well-defined
and compact, which implies that it has a discrete spectrum of eigenvalues which
govern the correlation decay and the relaxation of analytic observables.

In addition, the Perron-Frobenius operator can be effectively approximated
by a sequence of finite rank operators. For this consider an orthogonal basis of
the underlying Hardy-Hilbert space, for instance, the canonical (non-normalised)
orthogonal basis 9,,(z) = 2™ with m € Z. The corresponding matrix elements
of the operator in (5) are then given by

Lu =5 | durlexplio))in(explic) do. ©)

The matrix elements with &k, = —N,..., N yield an N x N matrix repre-
sentation of a finite rank approximation of the Perron-Frobenius operator, with
N = 2N + 1. It has been shown in [5] that these approximations converge to
the Perron-Frobenius operator exponentially fast in operator norm. Hence, the
eigenvalues of the matrices of size N x N approximate the spectrum of the infinite-
dimensional compact operator £ as N tends to infinity. Moreover, convergence
of the eigenvalues occurs at an exponential rate and explicit error bounds can
be derived from the general theory. In summary, a finite dimensional matrix
approximation using (6) provides the spectrum of the compact Perron-Frobenius
operator and that of its adjoint.

More formally, the results can be stated as follows

Let 7 be an analytic expanding circle map, and L the corresponding Perron-
Frobenius operator, given by (5). Denote by {t{m}mez with ¥, (z) = 2™ the
canonical orthogonal basis in H?(A)and let Py be the orthogonal projection oper-
ator onto the subspace spanned by V_x, ..., V5, where N = 2N + 1.

(a) (Compactness of L)
The operator L is a well-defined, compact operator from H?*(A) to itself.
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(b) (Matrix representation)
A matriz representation of the finite rank operator Py LPy is given by (My)k,
with k,l =—N,...,N and My, = L_j,; as in (6).

(c) (Convergence in operator norm)
|£ — PNLPy||a2a)—m2a) = O(exp(—alN)) for some a > 0.

(d) (Eigenvalue convergence)
The spectrum o(L) of L consists of at most countably many non-zero eigen-
values X\, of finite multiplicity, with 0 the only possible accumulation point.

(i) If A" yen with A\N) € o(PyLPy) is a convergent sequence, that is,
AN 5 X, then )\ € o(L).

(i) For every A € o(L) there exists a sequence (\™))yen with AN €
o(PxLPy), such that \V) — .

More precisely, for suitable enumerations X\, with n € Ny of the respective
non-zero eigenvalues (taking algebraic multiplicities into account) of PnL Py
and L, we have: for every n

A (PNLPy) — A(L)| = Oexp(—aN)) as N — oo (7)
for some a > 0.

In practical applications, a-priori error bounds for (7) can be computed ex-
plicitly using [3].

For the proof of the above, observe that (a) follows from [5, Proposition 3.4]
and (c) is implied by the proof of [5, Lemma 3.3]. Item (b) follows from a cal-
culation using duality (see, for example, [28, Lemma 2.3]) and the inner product
of H*(A) from [5]. Ttems (i) and (ii) of (d) are known as Properties U and L
in [1], and follow from Corollaries 2.7 and 2.13 therein, respectively. Finally, the
exponential convergence of eigenvalues in (7) is an immediate consequence of [1,
Theorem 2.18] and the ensuing remarks, combined with (¢).

The relation between Perron-Frobenius and Koopman operators. We have
chosen to present our results formulated for the Perron-Frobenius operator. A
large part of the literature on data-driven methods such as EDMD is based on
the study of the Koopman operator, given by f + f o7, which is the adjoint
of the Perron-Frobenius operator when viewed on L?*(T). In order to obtain the
strong spectral convergence results described above, it was necessary to restrict
the domain of the Perron-Frobenius operator to the “smaller space” H?(A). This
space is densely and continuously embedded in L?*(T), and thus an example of a
test function space (see, for example, [30]), so that we have

H2(A) € LA(T) ~ LX(T)' ¢ H2(AY, 8)

6



where H?(A) is the topological dual® of H%(A). The structure (8) is known as a
rigged Hilbert space or Gelfand triple (see, for example, [12] or [6]), which has been
used in the context of dynamical systems to study spectral decompositions for
certain chaotic maps (see, for example, [4] and references therein). The (Banach
space) adjoint of the Perron-Frobenius operator £ restricted to a “small space”
H?(A) can be identified with a Koopman operator extended to a “large space”
H?(A)', on which it is compact.

Moreover, it turns out that in our setting of analytic expanding circle maps, it
is even possible to identify this extended operator on H%(A) with certain Koop-
man operators acting on spaces of analytic functions. As was shown in [5], the
space H?(A)" can be identified with the space of functions holomorphic on two
disks comprising the complement of the annulus A, denoted H?(D;,,) ® HE (Doys)-
Consequently, the expression (6) also yields the matrix representation of the
Koopman operator on this space.

Spectral convergence for EDMD. The results above imply that for analytic
circle maps, EDMD has strong convergence properties and captures the spectrum
of the associated Perron-Frobenius and Koopman operators. For a suitable choice
of sampling points 2™ the expression (3) estimates the matrix elements (6), as
established in [31] (see also [18] or [20]). For instance, when choosing equidistant
points on the unit circle, 2™ = exp(2mim/M), the expression (3) converges
exponentially in M to the integral (6). The matrix H in (4) takes account of
the orthonormalisation of the observables which was used in writing down the
matrix elements (6). Hence, EDMD with equidistant sample points applied to
analytic circle maps with analytic observables gives precisely the spectrum of
the corresponding compact Perron-Frobenius and Koopman operators. Thus,
EDMD singles out the physically observable decay rates and the corresponding
dissipative modes. We will illustrate this result in the next section by analytically
solvable examples and extend some of the results for the use of actual time series
analysis.

4 Exactly solvable models

In order to illustrate the convergence properties of EDMD, analytic maps with
accessible point spectrum are needed. Although the Perron-Frobenius operator
and its adjoint are compact on Hardy-Hilbert spaces, computing their eigenvalues
remains a challenging task. The first nontrivial family of analytic maps with

2The topological dual H?(A)" is the space of continuous linear functionals on H?(A)
equipped with the topology of uniform convergence. Whereas H?(A) consists of analytic func-
tions with exponentially decaying Fourier coefficients, the space H2(A)' is “fairly large”, that
is, on top of every function in L?(T) it also contains distributions or generalized functions, with
Fourier coefficients allowed to grow exponentially.



explicitly computable spectrum has been identified in [28]. The family comprises
circle maps 7 which analytically extend to a neighbourhood of the entire unit
disk (not just an annulus), that is, maps arising from Blaschke products. For
these maps, the entire spectrum of the Perron-Frobenius operator is determined
by fixed point properties of 7 inside the unit disk [5].

To be more explicit consider a Blaschke product of degree two, given by

Z—p z—p
T(2) = , Jpl < 1, 9

(0= T =Ll )
with two complex-valued parameters p = || exp(ia) and p = |p| exp(if3), where [
and p denote the complex conjugates of u and p, respectively. This map preserves
the unit circle, where (considered in angular coordinates) it induces a two-branch
interval map

Y = 2 + 2arctan (

|usin(p — @) )

1 —[u|cos(p — a)

ol sin(e = 5)
+ 2arctan (1 oo — ﬁ)) (mod 27) . (10)

The map (10) can be considered as an analytic deformation of the Bernoulli
shift map which is obtained for the choice p = p = 0. The map 7 is eventually
expanding® on the unit circle if and only if [25, Propositions 2.1, 3.1] it has a
unique (attracting) fixed point z, = 7(z,) in the unit disk, that is, |z.| < 1. As
shown? in [5], the powers of the multiplier 7/(z,) and their complex conjugates
are precisely the eigenvalues A, of the Perron-Frobenius operator

)\0 = 1, AQn_l = (T/(Z*>>n, )\2n = (m)n, n e N. (].1)

We use the map (9) to illustrate EDMD with a set of analytic observables.
An obvious choice is the set of the first N Fourier modes, that is, {i(z) = 2* :
—N < k < N} using complex notation z = exp(ig). Furthermore, as mentioned
in the previous section we evaluate (3) and (4) for equidistant nodes on the unit
circle 2™ = exp(2mim/M) with m = 0,..., M — 1. It is straightforward to
show that our observables are orthogonal in the sense that Hyy = 0 —p in (4), if
the number of nodes exceeds the number of observables, M > N = 2N + 1. It
remains to evaluate (3), for which we will consider maps of the form (9).

Let us first comment on the trivial parameter choice p = p = 0, that is, on
the Bernoulli shift map. Clearly 7(z) = 22 has fixed point z, = 0 with multiplier
7'(2.) = 0, so all eigenvalues of the Perron-Frobenius operator in (11) apart from
Ao vanish. For the application of EDMD, equation (3) can be easily evaluated

3A map 7: T — T is called eventually expanding if it has an iterate that is expanding.
4The results are stated for expanding Blaschke products, but can be extended to the even-
tually expanding case.



to yield Gre = d_o1¢, as long as the number of nodes is sufficiently large, that
is, M > 3N/2. Then the matrix A = GH ! is given by Ay, = dox, and its
eigenvalues in fact coincide with the leading part of the exact spectrum given by
(11).

For any non-trivial Blaschke map, the sums in (3) and the related finite-
dimensional eigenvalue problem need to be evaluated numerically. For that pur-
pose we set ;1 = p = 0.33 - exp(im/25) which results in a spectrum with a fairly
rich structure, so it can serve as a test for the efficiency of EDMD. Figure 1
shows the eigenvalues of A for M = 100 equidistant nodes, N = 11 and N = 21
observables compared with the exact expression (11). A set of N = 11 modes
are just sufficient to approximate the subleading complex eigenvalue pair (\; and
Ay = 5\1) while all the other values are spurious results. For a higher number of
modes, N = 21, about a quarter of the eigenvalues of A give reasonable estimates
of the correct spectrum. In particular, EDMD reproduces the leading part of the
spectrum of the compact Perron-Frobenius operator as asserted in Section 3.

° EDMD
9% (equidistant)
EDMD
(time series)

000 exact

XXX

Figure 1: Complex plane with exact eigenvalues (open symbols) and approxi-
mation by EDMD with M = 100 equidistant nodes (full symbols) or by EDMD
applied to time series of length M = 5-10* (crosses) for the Blaschke product in
(9), with = p = 0.33 - exp(in/25) for N = 11 modes (left) or N = 21 modes
(right).

The dependence of the numerical error on the order N of the eigenvalue
approximation is shown in Figure 2. As we want to disentangle the effect of
the two parameters, M and N, we take M large enough, M = 1000, so that all
matrix elements of the finite rank approximation PyLPy are estimated by the
sums (3) sufficiently accurately. Hence any visible error is due to the finite mode
approximation. An exponential decay (in N) of the eigenvalue approximation
error is clearly observable.



100 —

Bfym:p: . B e ‘
655 HoB B_ﬁ-‘-g ﬁ‘-ﬁﬁ'_'ﬁ‘"&“A--A...A.
o. o W.g-@ A
102 0. °.o = . Bep
... o. ol m. A
O, o, “EL =) = A,
Q) o. = Tm. A'-g
4 o, @. . ‘B A
107 |+ jol Q. . = AL
g [0} ° D"El_ l._. A a
Q o. 'm._m = A
r - ‘e. ! . A
106 L -0 ."'-, o, ‘.. -
‘@ o R
\ 0. ®0 NoN =
1o “a., L =N 1
© ) o
@, “e. 5.
100} oo ®. o ol
0. q
o o._...
1071 6.0 n=1 n e ."o... |
o n=2 ¢ o q
10| -0 n=3 O"@_ ]
B8 n=4 0. 0
A-A n=5 ©
1016 . . . . . .
10 20 30 40 50 60 70
N

Figure 2: Absolute error of the first five subleading complex-conjugate eigenvalue
pairs (Aa;—1, Ag,) computed by EDMD (with M = 1000 nodes) for a Blaschke
product (9), with 4 = p = 0.33 - exp(in/25), as a function of the number of
observables V.

5 Discussion

We have shown that EDMD singles out eigenvalues of compact Perron-Frobenius
or Koopman operators arising in an analytic setting. Moreover, the algorithm
converges at an exponential rate in the number of observables used.

EDMD as a data analysis tool. So far we have focussed on equidistant points
in phase space to evaluate EDMD. In applications one normally resorts to an
actual time series. If we reconsider the setup used for Figure 1 but now take
nodes generated from a time series, that is, 2m) = 5 — T(2Zm—1), we still obtain
an accurate approximation of the spectrum of the Perron-Frobenius operator (see
crosses in Figure 1), as long as we minimise statistical fluctuations in the sums
(3) and (4) by taking a time series of sufficient length. In fact, a slight modi-
fication of the arguments presented in Section 3 allows one to base the matrix
elements (6) on integrals with respect to the analytic invariant density instead of
the Lebesgue measure. Whereas the matrix entries in (6) change, the convergence
results remain unaffected®. In particular, EDMD exhibits the same convergence,
when used as a time series analysis tool.

°For a suitable density p, the appropriate Perron-Frobenius operator (with identical spec-
trum) is given by Lf = p~1L(fp), defined on a Hardy-Hilbert space with adapted inner prod-
uct. The results in Section 3 then hold for ﬁ, with appropriately chosen basis and projection
operators. In EDMD this change of basis is accounted for by the matrix H ! in (2).
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Convergence in M and N. Our approach is based on finite rank operators
represented by (6) converging in operator norm to a compact transfer operator.
The nodes used in EDMD, in (3) and (4), can naturally be considered as a sam-
pling of the corresponding integral. However, a rigorous estimate which involves
both quantities, M and N, appears to require taking the limit of large M first.
This may in fact not be necessary. While the approach so far was based on us-
ing orthogonal projectors, one can in fact directly link the matrix representation
involving sums with a compact transfer operator by employing non-orthogonal
projectors arising from collocation methods. It may thus be possible to show
convergence for the case of M and N of the same order.

Higher dimensional extensions and multifractal properties. So far one may
object that we have enforced an analytic setting and that the results are not
really surprising as the maps do not allow for any complex multifractal behaviour.
This is in fact not correct as analyticity is only required for the actual equation
of motion, whereas the relevant invariant measure itself could be singular with
respect to the phase space volume. In order to demonstrate this phenomenon,
we resort to analytical solutions of two-dimensional hyperbolic diffeomorphisms
which allow for fractal invariant measures if the Jacobian is not constant. The
presence of contracting and expanding directions requires using more involved
function spaces, that is, a particular class of anisotropic Hilbert spaces, for which
rigorous statements on spectral data of evolution operators are possible (see, for
example, [29] for technical details). We illustrate our point by considering an
analytic deformation of the cat map given by (¢1, p2) — (¢}, ¢5) with

90,1 =21 + o + 2arctan ( ll sin(er + 2 — @) ) ,

1 — || cos(p1 + 2 — o)
|pl sin(p1 + @2 — a) )
1 — |pu[cos(pr + @2 —a) )

(12)

Yy = 1 + o + 2arctan (

where p is a complex parameter with |u| < 1. This map is an analytic hy-
perbolic diffeomorphism of the torus, which for ;4 = 0 reduces to the cat map
(p1,02) = (201 + w2, 01 + @2). For non-vanishing g, the physical invariant
measure is singular with respect to phase volume with the corresponding in-
variant density exhibiting fractal properties, see Figure 3 (right). Employing
more elaborate machinery one can show that the corresponding Koopman op-
erator is compact on a suitable anisotropic Hilbert space (see [29] for similar
results). Moreover, the eigenvalues are determined by quantities associated with
the fixed points of the map (12) in complex polydisks, and are of the form
A= 0,01 = (—p)", Ao, = mn,n € N. Applying EDMD in this setting
reproduces the leading part of the exact spectrum, see Figure 3 (left). Rigorous
proofs of these statements will be presented elsewhere.
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Figure 3: Complex plane (left plot) with exact eigenvalues (open symbols) and
approximation by EDMD (full symbols) applied to an analytic deformation of the
cat map (12) with u = —0.6—0.55¢. Data obtained from EDMD with N = 11x11
Fourier modes and M = 201 x 201 nodes on a square lattice. Density plot (right)
illustrating the invariant measure for the map (12) for the same parameter values.

Altogether we have compelling evidence that convergence of EDMD points
towards an underlying compact operator structure which determines the effective
degrees of freedom in a complex dynamical setting.
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