EIGENVALUES OF TRANSFER OPERATORS FOR
DYNAMICAL SYSTEMS WITH HOLES
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ABSTRACT. For real-analytic expanding open dynamical systems
in arbitrary finite dimension, we establish rigorous explicit bounds
on the eigenvalues of the corresponding transfer operators acting
on spaces of holomorphic functions. In dimension 1 the eigenvalue
decay rate is exponentially fast, while in dimension d it is O(G”l/d)
as n — oo for some 0 < 0 < 1.

1. INTRODUCTION

For an expanding map 7' : X — X, the Perron-Frobenius operator

P defined by

f)
PIE = 2 )

and more general transfer operators £ defined by

Lf(z) = Z e?W f(y)

Ty=x

Ty=x

with potential function ¢ : X — R, are important objects in the
thermodynamic formalism approach to ergodic theory.

Given a subset H C X, which we regard as a hole in X, it is nat-
ural to consider modified operators Py and Ly, defined by Pyf =
P(fxx\u) and Luf = L(fxx\m), in view of their connections with
escape rate (see, for example, [6, 9]) and various equilibrium measures
supported by the survivor set X, = N T "(X \ H).

The purpose of this note is to describe, in the case where 7' is piece-
wise analytic and H is a suitable hole, explicit estimates on the spectral
asymptotics of Py and Ly when acting on various Banach spaces of
holomorphic functions.*

'When acting on these spaces, Py has a strictly positive spectral radius 6, with
d > 0 an eigenvalue such that —logd is the corresponding escape rate (see e.g. [14]
for one-dimensional maps); thus escape is at an exponential rate, rather than any-
thing faster. Moreover, 6-"P}1 — o, where p is the density function for the
Pianigiani-Yorke measure [15].
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Specifically, we take X C R? to be compact and connected, and X =
{X.}ier a finite partition (consisting of non-empty pairwise disjoint
subsets of X, each one open in R whose union is dense in X). The
map T : X — X is assumed Borel measurable, with 7'(X;) open in
R? for each i € Z, and Ty, : X; — T(X;) a C! diffeomorphism which
can be extended to a C' map on X;. We assume that T is full branch,
ie. T(X;) = X for alli € Z, and expanding, i.e. there exists # > 1 such
that if z,y € X; for some i € Z then || T(z) — T(y)|| > |z — y||. Each
T|x, has an inverse branch T;, defined so that T o T; is the identity
on the interior of X, and T; o T the identity on X;, and satisfying
SUP,eine(x) 177 ()| ey < 871 for all i € Z, where || - || ge) denotes
the induced operator norm on L(RY) = L((R<,]| - ||)). We assume that
T : X — X is real analytic, i.e. there is a bounded connected open set
D c C¢, with X C D, such that each T} has a holomorphic extension
to D.

For simplicity we shall take the hole H to be a union of some (but not
all) elements of X'. In fact with some extra effort, and more cumber-
some notation, the techniques described here extend to the case where
H is a union of members of some refinement VI_jT~'X (a so-called
Markov hole). Let J C T be such that U;cesX; = X \ H. Transfer
operators Ly for the open dynamical system 7’| x\ g then take the form

EHf:ZwifoTia (1)
ieJ

where the weight functions w; are related to the potential function ¢ by
w; = exp(poT;) on X, and assumed to admit a holomorphic extension
to D which in turn extends continuously to D. In the particular case
¢ = —log|T"|, when w; are the holomorphic extensions to D of |T/|
on X, the corresponding transfer operator is precisely the modified
Perron-Frobenius operator Py. We shall always assume that D has
the property that the closure of U;c 7T;(D) lies inside D itself, referring
to such domains D as being admissible for the map T'; this technical
requirement, which we always assume without further comment, will
ensure that Ly preserves suitable Banach spaces of functions holomor-
phic on D.

The structure of the article is as follows. We begin in §2 by consid-
ering transfer operators £y acting on the Banach space? U(D) of those
holomorphic functions on D which extend continuously to D equipped
with the usual supremum norm ||w|lypy = sup,ep|w(z)|. We show

2The study of transfer operators on this space U(D) was inaugurated by Ruelle
[18].
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(Theorems 1 and 2) that in dimension d = 1, the eigenvalues \,(Ly)
(arranged in order of decreasing modulus) converge to zero exponen-
tially fast, deriving an explicit bound for |A,(Lg)|. In higher dimen-
sions d > 2 there are similar explicit bounds (see Theorem 3), though
here the convergence to zero is® O(G”l/d) as n — oo, for some 6 € (0,1).
In §3 we show that in fact the eigenvalues for Ly : U(D) — U(D) are
identical to those for Ly acting on a variety of Banach spaces A(D)
of holomorphic functions. This suggests the possibility of improving
the bounds of §2 by judicious choice of A(D), a strategy we pursue in
§4 where A(D) is chosen to be Hilbert Hardy space H?(D), yielding
Theorems 6 and 7.

2. EIGENVALUE ESTIMATES VIA WEYL’S INEQUALITY
We begin with an explicit estimate on the eigenvalues of the modified
Perron-Frobenius operator in dimension d = 1:

Theorem 1. For an expanding interval map, the eigenvalues of the
modified Perron-Frobenius operator Py : U(D) — U(D) satisfy

|An(Pr)| < 0" '/n Supz IT!(2)| forallm>1, (2)
zeD e
provided each T extends holomorphically to a disc D C C, where § < 1

is such that U;c 7T;(D) is contained in the concentric disc whose radius
is 0% times that of D.

The bounds in Theorem 1 are readily computed for specific maps 7"

Example 1. As in [2], we consider the map

9z : 1
= {1 H0sesy
10z — 1 1f%<x§%, for1 <¢<9
Note that the inverse branches {T;}o<;<9 are given by
x
T =
o) 9+

and
Ti(z)=(x+1i)/10 for1<i<9.
Choosing Markov hole H = [1/5,1] corresponds to setting J =

(0,1},

3Ruelle [18], following Grothendieck [11], stated the asymptotics were O(6™)
as n — oo, independent of the dimension d, though Fried [10] corrected this to
O(Q”l/d). One novelty of our results, relative to Fried and Ruelle, is that the
constant 6, as well as the implicit constant in the big-O asymptotics, are rendered
explicit.
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We claim that the eigenvalues of the modified Perron-Frobenius op-
erator Py : U(D) — U(D) are bounded by

A (Prr)| < %\/57@ (%) for all n.> 1. (3)

In particular, note that the case n = 1 yields a bound on the escape
rate v (see, for example, [6]) for this open dynamical system, namely
v > —log 77/320.

Let D be the disc of radius 1 centred at 0. Noting that Tp(—1) =
—1/8, T\(=1) = 0, Ty(1) = 1/10, and T1(1) = 1/5, we see that
UiesT;(D) is contained in the disc of radius 1/5 centred at 0. This
means we may set § = 1/4/5 in Theorem 1. Note that |T}(2)|+|T}(2)| =

ﬁ + %, and the supremum of this expression on D is the value

77/320, attained (on the boundary of D) at z = —1. The bound (3)
then follows from (2).

In fact Theorem 1 is a special case of the following one-dimensional
result:

Theorem 2. For an expanding interval map, the eigenvalues of the
transfer operator Ly : U(D) — U(D) satisfy:

M(Ly)| < 0" N/n supz lwi(2)|  for alln > 1, (4)

zeD ieT

provided each w; and T; extend holomorphically to the disc D C C,
where 0 < 1 is such that U;e 7T;(D) is contained in the concentric disc
whose radius is 0% times that of D.

Proof. Let D" denote the concentric disc whose radius is r = 6? times
that of D. First we observe that Ly f := Zie 7 Wi+ foT; defines a contin-
uous operator Ly : U(D') — U(D). To see this, fix f € U(D’) and note
that w;- foT; € UED) with [lw; - f o Tillypy < llwillypy ||f|lU(D,) for ev-
ery i € J. But ||Lufllom) < Xics ||wz‘||U(D) ||f||U(D’)7 so Ly f € U(D)
and Ly is continuous. Now ||Ly| < W =: sup,.p > icq lwi(2)], be-
cause for f € U(D') we have [f(Ti(2))| < [[fllypy for every = €

D, i € J; thus by the maximum modulus principle ||Lxfllopy =
sup.ep |(Luf)(2)] < sup.ep diey [wi(2)] [F(T(2)] < W fllyon-

Recall that if L : By — By is a continuous operator between Banach
spaces then for k > 1, its k-th approzimation number ay(L) is defined
by ar(L) = inf{||L — K|| | K : By — By linear with rank(K) < k}, and
in general ay(LiLy) < ||L1|| ax(Lz) (see [16, 2.2]).
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Now clearly Ly = LyJ, where J : U(D) — U(D') denotes the
canonical embedding, so

aw(Lr) < || Lxllan(J) < Wag(J) forallk>1. (5)

Moreover, it can be shown that Ly is compact; in fact, it is of expo-
nential class (see [3]), and in particular nuclear of any order.
Before proceeding recall that Weyl’s inequality (see, for example,
[12]) asserts that [[o_, |\(Lr)| < n™? [[h_, ax(Ly) for every n € N.4
Together with (5) this yields the inequality

|An(Lr)| < Wnl/QHak(J)l/” foralln > 1, (6)

k=1

because [A,(Lx)| < Ty [Me(La) Y™
Using a result originally due to Babenko (see [1] or [17, Theorem
VIIL.2.1]) we see

a(J) < vt foralll >1,
hence ], a;(J)V/" < i St =L = p(=1/2 g6 (6) becomes
|>\n<£H)| < Wn1/27“(”_1)/2 7

which is the desired bound (4). O

In higher dimension d the rate of eigenvalue decay is slower than

exponential, and can be shown to be O(@”l/d) as n — oo, for some
0 € (0,1). The main new ingredient in the following result, proved in
[5], is an estimate due to Farkov [8] on the approximation numbers of
the embedding operator J in higher dimensions, namely a;(J) < 7%,
where t; := k for (k_cller) << (k;d).
Theorem 3. In dimension d > 1, suppose the Fuclidean ball D C C¢
is such that U;e 7T;(D) is contained in the concentric ball whose radius
is v < 1 times that of D. Setting W = sup,cp ;c;|wi(2)|, the
eigenvalues of Ly : U(D) — U(D) can be bounded by

W @y entst e s (7)

ML) <

4This is a Banach space version of Weyl’s original inequality [19] in Hilbert space;
the constant n™/? is optimal (see [12]).



6 O. F. BANDTLOW & O. JENKINSON

3. THE COMMON SPECTRUM

It turns out that a more oblique approach yields different, and some-
times better, bounds on the eigenvalues of Ly : U(D) — U(D). This
approach consists of varying the space upon which Ly acts. Clearly, in
general U(D) is not the only function space preserved by a transfer op-
erator Ly, and we would expect the spectrum of Ly to vary according
to the space on which it acts. There is interest, however, in identifying
a class of spaces A(D) which are sufficiently closely related to U(D) to
ensure that the spectrum of Ly on these spaces is precisely the same
as that of Ly : U(D) — U(D). This motivates the following definition:

Definition 1. For a non-empty open connected set D C C¢, a Banach
space A(D) of holomorphic functions f : D — C is called favourable if
it contains U(D), with the natural embedding U(D) < A(D) having
norm 1, and if f +— f(z) is continuous on A(D) for each z € D.

Transfer operators L can be shown (see [5]) to preserve all favourable
spaces® A(D), with the eigenvalues of L : A(D) — A(D) related to a
certain entire function:

Theorem 4. The transfer operator Ly defined by (1) preserves ev-
ery favourable space A(D) of holomorphic functions on D. It has a
well-defined spectral trace Tapy(Lu) = > 0y M(Lulapy) and spectral
determinant det 4(py, related by

o0 zn .
det (I = 2Ll ap)) = exp (‘ ; ZTA(D)(ﬁH)> ) (8)
for all z € C in a suitable neighbourhood of 0, and such that, counting
multiplicities, the zeros of the entire function z — det(I — zLy|a(p))

are precisely the reciprocals of the eigenvalues of Ly : A(D) — A(D).

Motivated by the possibility that the trace and determinant do not
in fact vary with the choice of favourable space A(D), we follow Ruelle
[18] in considering the following function:

Definition 2. For given weight functions w;, ¢ € J, the associated
dynamical determinant is the entire function A : C — C, defined for
all z of sufficiently small modulus by

5As always, we are making the standing assumption that D is an admissible
domain, i.e. that the closure of U;c 7T;(D) lies in D.
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where for i = (i1,...,i,) € J" weset T;, :=T; o---0T;, and w; :=
szl wj, o Tp,_,i, where B, : J" — Tk denotes the projection P =
(i1,...,4) with the convention that T, = id, and z; denotes the
(unique, by [7]) fixed-point of 7} in D.

Theorem 5. For every favourable space A(D), the determinant of the
transfer operator Ly : A(D) — A(D) defined by (1) is precisely the
dynamical determinant A, and its eigenvalue sequence is precisely the
same as for L:U(D) — U(D).

Proof. The common trace formula
w;(2)

det I —T/())

A0y (L) forallmn >1 (10)
can be established (see [5]), valid for every favourable space A(D) on
which Ly acts, so that equality of determinants follows from compar-
ison of (8) and (9). The equality of the eigenvalue sequences follows
from the fact that the determinants are spectral. (l

4. HILBERT HARDY SPACE

In view of Theorem 5 we are now at liberty to make particular choices
of favourable spaces, in the hope of obtaining interesting new bounds
on the eigenvalues of the transfer operator £ : U(D) — U(D).

For p € [1,00), the Hardy space HP(D) (see [13, Ch. 8.3]) is a
favourable space, and we will be particularly interested in the Hilbert
Hardy space H2(D).® The following eigenvalue bounds, valid in dimen-
sion 1, are obtained by choosing favourable space A(D) = H?(D) for
D c C adisc:

Theorem 6. With the hypotheses and notation of Theorem 2,

W n—1
A (Lr)| < Vi 6 foralln > 1. (11)
Proof. As in the proof of Theorem 3, let D’ denote the concentric disc
whose radius is 7 = 6% times that of D, and let J : H*(D) — H>(D')
denote canonical embedding. It can be shown that, for all n > 1,

Aa( L)l < W] Tan()H", (12)

k=1

6Tf D has C? boundary then H?(D) can be identified with the L?(dD, o)-closure
of U(D), where o denotes (2d — 1)-dimensional Lebesgue measure on the boundary
D, normalised so that o(9D) = 1. The inner product in H?(D) is given (see [13,
Ch. 1.5 and 8)) by (f,9) = [, f* g% do, where, for h € H*(D), the symbol h*
denotes the corresponding nontangential limit function in L?(9D, o).
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an inequality which is superior to (6), by virtue of the original Hilbert
space version of Weyl’s inequality, namely [[;_, [\ (L) < [[,—; ax(L)
(see [16, 3.5.1], [19]). An argument (see [4]) exploiting the interplay
between the reproducing kernel of H?(D), and an orthonormal basis
for H?(D) then allows the estimate

rn—l
1)< = 13
and substituting into (12) yields the result. O

Example 2. Comparing (12) with (4), we see that Theorem 6 leads to
improved eigenvalue bounds whenever n > 1/(1 — #*). In Example 1
we can choose § = 1/v/5, therefore for all n > 2 > 25/24, the estimate

775 1\
M0 < 5 7 ()

derived from (12) is sharper than the previous bound (3) on the eigen-
values of the modified Perron-Frobenius operator.

A more elaborate version of the proof of Theorem 6 (see [4] for de-
tails) gives the following higher dimensional analogue, which for suffi-
ciently large values of n yields estimates which are superior to those of
Theorem 3:

Theorem 7. With the hypotheses and notation of Theorem 3,

Wvd

(1 —r2)i? =0/ @) i @YY o gl > 1
T - T

(14)

[An(La)] <
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