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Abstract. For real-analytic expanding open dynamical systems
in arbitrary finite dimension, we establish rigorous explicit bounds
on the eigenvalues of the corresponding transfer operators acting
on spaces of holomorphic functions. In dimension 1 the eigenvalue
decay rate is exponentially fast, while in dimension d it is O(θn1/d

)
as n →∞ for some 0 < θ < 1.

1. Introduction

For an expanding map T : X → X, the Perron-Frobenius operator
P defined by

Pf(x) =
∑
Ty=x

f(y)

|T ′(y)|
,

and more general transfer operators L defined by

Lf(x) =
∑
Ty=x

eϕ(y)f(y)

with potential function ϕ : X → R, are important objects in the
thermodynamic formalism approach to ergodic theory.

Given a subset H ⊂ X, which we regard as a hole in X, it is nat-
ural to consider modified operators PH and LH , defined by PHf =
P(fχX\H) and LHf = L(fχX\H), in view of their connections with
escape rate (see, for example, [6, 9]) and various equilibrium measures
supported by the survivor set X∞ = ∩∞n=0T

−n(X \H).
The purpose of this note is to describe, in the case where T is piece-

wise analytic and H is a suitable hole, explicit estimates on the spectral
asymptotics of PH and LH when acting on various Banach spaces of
holomorphic functions.1

1When acting on these spaces, PH has a strictly positive spectral radius δ, with
δ > 0 an eigenvalue such that − log δ is the corresponding escape rate (see e.g. [14]
for one-dimensional maps); thus escape is at an exponential rate, rather than any-
thing faster. Moreover, δ−nPn

H1 → %, where % is the density function for the
Pianigiani-Yorke measure [15].
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Specifically, we take X ⊂ Rd to be compact and connected, and X =
{Xi}i∈I a finite partition (consisting of non-empty pairwise disjoint
subsets of X, each one open in Rd, whose union is dense in X). The
map T : X → X is assumed Borel measurable, with T (Xi) open in
Rd for each i ∈ I, and T |Xi

: Xi → T (Xi) a C1 diffeomorphism which
can be extended to a C1 map on Xi. We assume that T is full branch,
i.e. T (Xi) = X for all i ∈ I, and expanding, i.e. there exists β > 1 such
that if x, y ∈ Xi for some i ∈ I then ‖T (x)− T (y)‖ ≥ β ‖x− y‖. Each
T |Xi

has an inverse branch Ti, defined so that T ◦ Ti is the identity
on the interior of X, and Ti ◦ T the identity on Xi, and satisfying
supx∈int(X) ‖T ′

i (x)‖L(Rd) ≤ β−1 for all i ∈ I, where ‖ · ‖L(Rd) denotes

the induced operator norm on L(Rd) = L((Rd, ‖ · ‖)). We assume that
T : X → X is real analytic, i.e. there is a bounded connected open set
D ⊂ Cd, with X ⊂ D, such that each Ti has a holomorphic extension
to D.

For simplicity we shall take the hole H to be a union of some (but not
all) elements of X . In fact with some extra effort, and more cumber-
some notation, the techniques described here extend to the case where
H is a union of members of some refinement ∨n−1

i=0 T−iX (a so-called
Markov hole). Let J ⊂ I be such that ∪i∈JXi = X \ H. Transfer
operators LH for the open dynamical system T |X\H then take the form

LHf =
∑
i∈J

wif ◦ Ti , (1)

where the weight functions wi are related to the potential function ϕ by
wi = exp(ϕ ◦Ti) on X, and assumed to admit a holomorphic extension
to D which in turn extends continuously to D. In the particular case
ϕ = − log |T ′|, when wi are the holomorphic extensions to D of |T ′

i |
on X, the corresponding transfer operator is precisely the modified
Perron-Frobenius operator PH . We shall always assume that D has
the property that the closure of ∪i∈JTi(D) lies inside D itself, referring
to such domains D as being admissible for the map T ; this technical
requirement, which we always assume without further comment, will
ensure that LH preserves suitable Banach spaces of functions holomor-
phic on D.

The structure of the article is as follows. We begin in §2 by consid-
ering transfer operators LH acting on the Banach space2 U(D) of those
holomorphic functions on D which extend continuously to D equipped
with the usual supremum norm ‖w‖U(D) = supz∈D |w(z)|. We show

2The study of transfer operators on this space U(D) was inaugurated by Ruelle
[18].
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(Theorems 1 and 2) that in dimension d = 1, the eigenvalues λn(LH)
(arranged in order of decreasing modulus) converge to zero exponen-
tially fast, deriving an explicit bound for |λn(LH)|. In higher dimen-
sions d ≥ 2 there are similar explicit bounds (see Theorem 3), though

here the convergence to zero is3 O(θn1/d
) as n →∞, for some θ ∈ (0, 1).

In §3 we show that in fact the eigenvalues for LH : U(D) → U(D) are
identical to those for LH acting on a variety of Banach spaces A(D)
of holomorphic functions. This suggests the possibility of improving
the bounds of §2 by judicious choice of A(D), a strategy we pursue in
§4 where A(D) is chosen to be Hilbert Hardy space H2(D), yielding
Theorems 6 and 7.

2. Eigenvalue estimates via Weyl’s inequality

We begin with an explicit estimate on the eigenvalues of the modified
Perron-Frobenius operator in dimension d = 1:

Theorem 1. For an expanding interval map, the eigenvalues of the
modified Perron-Frobenius operator PH : U(D) → U(D) satisfy

|λn(PH)| ≤ θn−1
√

n sup
z∈D

∑
i∈J

|T ′
i (z)| for all n ≥ 1 , (2)

provided each T ′
i extends holomorphically to a disc D ⊂ C, where θ < 1

is such that ∪i∈JTi(D) is contained in the concentric disc whose radius
is θ2 times that of D.

The bounds in Theorem 1 are readily computed for specific maps T :

Example 1. As in [2], we consider the map

T (x) =

{
9x

1−x
if 0 ≤ x ≤ 1

10

10x− i if i
10

< x ≤ i+1
10

, for 1 ≤ i ≤ 9

Note that the inverse branches {Ti}0≤i≤9 are given by

T0(x) =
x

9 + x

and
Ti(x) = (x + i)/10 for 1 ≤ i ≤ 9 .

Choosing Markov hole H = [1/5, 1] corresponds to setting J =
{0, 1}.

3Ruelle [18], following Grothendieck [11], stated the asymptotics were O(θn)
as n → ∞, independent of the dimension d, though Fried [10] corrected this to
O(θn1/d

). One novelty of our results, relative to Fried and Ruelle, is that the
constant θ, as well as the implicit constant in the big-O asymptotics, are rendered
explicit.
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We claim that the eigenvalues of the modified Perron-Frobenius op-
erator PH : U(D) → U(D) are bounded by

|λn(PH)| ≤ 77

320

√
5n

(
1√
5

)n

for all n ≥ 1 . (3)

In particular, note that the case n = 1 yields a bound on the escape
rate γ (see, for example, [6]) for this open dynamical system, namely
γ ≥ − log 77/320.

Let D be the disc of radius 1 centred at 0. Noting that T0(−1) =
−1/8, T1(−1) = 0, T0(1) = 1/10, and T1(1) = 1/5, we see that
∪i∈JTi(D) is contained in the disc of radius 1/5 centred at 0. This
means we may set θ = 1/

√
5 in Theorem 1. Note that |T ′

0(z)|+|T ′
1(z)| =

9
|9+z|2 + 1

10
, and the supremum of this expression on D is the value

77/320, attained (on the boundary of D) at z = −1. The bound (3)
then follows from (2).

In fact Theorem 1 is a special case of the following one-dimensional
result:

Theorem 2. For an expanding interval map, the eigenvalues of the
transfer operator LH : U(D) → U(D) satisfy:

|λn(LH)| ≤ θn−1
√

n sup
z∈D

∑
i∈J

|wi(z)| for all n ≥ 1 , (4)

provided each wi and Ti extend holomorphically to the disc D ⊂ C,
where θ < 1 is such that ∪i∈JTi(D) is contained in the concentric disc
whose radius is θ2 times that of D.

Proof. Let D′ denote the concentric disc whose radius is r = θ2 times
that of D. First we observe that L̂Hf :=

∑
i∈J wi·f◦Ti defines a contin-

uous operator L̂H : U(D′) → U(D). To see this, fix f ∈ U(D′) and note
that wi ·f ◦Ti ∈ U(D) with ‖wi · f ◦ Ti‖U(D) ≤ ‖wi‖U(D) ‖f‖U(D′) for ev-

ery i ∈ J . But ‖L̂Hf‖U(D) ≤
∑

i∈J ‖wi‖U(D) ‖f‖U(D′), so L̂Hf ∈ U(D)

and L̂H is continuous. Now ‖L̂H‖ ≤ W =: supz∈D

∑
i∈J |wi(z)|, be-

cause for f ∈ U(D′) we have |f(Ti(z))| ≤ ‖f‖U(D′) for every z ∈
D, i ∈ J ; thus by the maximum modulus principle ‖L̂Hf‖U(D) =

supz∈D |(L̂Hf)(z)| ≤ supz∈D

∑
i∈J |wi(z)| |f(Ti(z))| ≤ W ‖f‖U(D′).

Recall that if L : B1 → B2 is a continuous operator between Banach
spaces then for k ≥ 1, its k-th approximation number ak(L) is defined
by ak(L) = inf {‖L−K‖ |K : B1 → B2 linear with rank(K) < k}, and
in general ak(L1L2) ≤ ‖L1‖ ak(L2) (see [16, 2.2]).
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Now clearly LH = L̂HJ , where J : U(D) ↪→ U(D′) denotes the
canonical embedding, so

ak(LH) ≤ ‖L̂H‖ak(J) ≤ Wak(J) for all k ≥ 1 . (5)

Moreover, it can be shown that LH is compact; in fact, it is of expo-
nential class (see [3]), and in particular nuclear of any order.

Before proceeding recall that Weyl’s inequality (see, for example,
[12]) asserts that

∏n
k=1 |λk(LH)| ≤ nn/2

∏n
k=1 ak(LH) for every n ∈ N.4

Together with (5) this yields the inequality

|λn(LH)| ≤ Wn1/2

n∏
k=1

ak(J)1/n for all n ≥ 1 , (6)

because |λn(LH)| ≤
∏n

k=1 |λk(LH)|1/n.
Using a result originally due to Babenko (see [1] or [17, Theorem

VIII.2.1]) we see

al(J) ≤ rl−1 for all l ≥ 1 ,

hence
∏n

l=1 al(J)1/n ≤ r
1
n

Pn
l=1 l−1 = r(n−1)/2, so (6) becomes

|λn(LH)| ≤ Wn1/2r(n−1)/2 ,

which is the desired bound (4). �

In higher dimension d the rate of eigenvalue decay is slower than
exponential, and can be shown to be O(θn1/d

) as n → ∞, for some
θ ∈ (0, 1). The main new ingredient in the following result, proved in
[5], is an estimate due to Farkov [8] on the approximation numbers of
the embedding operator J in higher dimensions, namely al(J) ≤ rtl ,
where tl := k for

(
k−1+d

d

)
< l ≤

(
k+d

d

)
.

Theorem 3. In dimension d ≥ 1, suppose the Euclidean ball D ⊂ Cd

is such that ∪i∈JTi(D) is contained in the concentric ball whose radius
is r < 1 times that of D. Setting W := supz∈D

∑
i∈J |wi(z)|, the

eigenvalues of LH : U(D) → U(D) can be bounded by

|λn(LH)| < W

rd
n1/2 r

d
d+1

(d!)1/dn1/d

for all n ≥ 1 . (7)

4This is a Banach space version of Weyl’s original inequality [19] in Hilbert space;
the constant nn/2 is optimal (see [12]).
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3. The common spectrum

It turns out that a more oblique approach yields different, and some-
times better, bounds on the eigenvalues of LH : U(D) → U(D). This
approach consists of varying the space upon which LH acts. Clearly, in
general U(D) is not the only function space preserved by a transfer op-
erator LH , and we would expect the spectrum of LH to vary according
to the space on which it acts. There is interest, however, in identifying
a class of spaces A(D) which are sufficiently closely related to U(D) to
ensure that the spectrum of LH on these spaces is precisely the same
as that of LH : U(D) → U(D). This motivates the following definition:

Definition 1. For a non-empty open connected set D ⊂ Cd, a Banach
space A(D) of holomorphic functions f : D → C is called favourable if
it contains U(D), with the natural embedding U(D) ↪→ A(D) having
norm 1, and if f 7→ f(z) is continuous on A(D) for each z ∈ D.

Transfer operators LH can be shown (see [5]) to preserve all favourable
spaces5 A(D), with the eigenvalues of LH : A(D) → A(D) related to a
certain entire function:

Theorem 4. The transfer operator LH defined by (1) preserves ev-
ery favourable space A(D) of holomorphic functions on D. It has a
well-defined spectral trace τA(D)(LH) =

∑∞
n=1 λn(LH |A(D)) and spectral

determinant detA(D), related by

det
A(D)

(I − zLH |A(D)) = exp

(
−

∞∑
n=1

zn

n
τA(D)(Ln

H)

)
, (8)

for all z ∈ C in a suitable neighbourhood of 0, and such that, counting
multiplicities, the zeros of the entire function z 7→ det(I − zLH |A(D))
are precisely the reciprocals of the eigenvalues of LH : A(D) → A(D).

Motivated by the possibility that the trace and determinant do not
in fact vary with the choice of favourable space A(D), we follow Ruelle
[18] in considering the following function:

Definition 2. For given weight functions wi, i ∈ J , the associated
dynamical determinant is the entire function ∆ : C → C, defined for
all z of sufficiently small modulus by

∆(z) = exp

−∑
n∈N

zn

n

∑
i∈J n

wi(zi)

det(I − T ′
i (zi))

 , (9)

5As always, we are making the standing assumption that D is an admissible
domain, i.e. that the closure of ∪i∈J Ti(D) lies in D.
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where for i = (i1, . . . , in) ∈ J n we set Ti := Tin ◦ · · · ◦ Ti1 , and wi :=∏n
k=1 wik ◦ TPk−1i, where Pk : J n → J k denotes the projection Pki =

(i1, . . . , ik) with the convention that TP0i = id, and zi denotes the
(unique, by [7]) fixed-point of Ti in D.

Theorem 5. For every favourable space A(D), the determinant of the
transfer operator LH : A(D) → A(D) defined by (1) is precisely the
dynamical determinant ∆, and its eigenvalue sequence is precisely the
same as for L : U(D) → U(D).

Proof. The common trace formula

τA(D)(Ln
H) =

∑
i∈In

wi(zi)

det(I − T ′
i (zi))

for all n ≥ 1 (10)

can be established (see [5]), valid for every favourable space A(D) on
which LH acts, so that equality of determinants follows from compar-
ison of (8) and (9). The equality of the eigenvalue sequences follows
from the fact that the determinants are spectral. �

4. Hilbert Hardy space

In view of Theorem 5 we are now at liberty to make particular choices
of favourable spaces, in the hope of obtaining interesting new bounds
on the eigenvalues of the transfer operator L : U(D) → U(D).

For p ∈ [1,∞), the Hardy space Hp(D) (see [13, Ch. 8.3]) is a
favourable space, and we will be particularly interested in the Hilbert
Hardy space H2(D).6 The following eigenvalue bounds, valid in dimen-
sion 1, are obtained by choosing favourable space A(D) = H2(D) for
D ⊂ C a disc:

Theorem 6. With the hypotheses and notation of Theorem 2,

|λn(LH)| ≤ W√
1− θ4

θn−1 for all n ≥ 1 . (11)

Proof. As in the proof of Theorem 3, let D′ denote the concentric disc
whose radius is r = θ2 times that of D, and let J : H2(D) ↪→ H∞(D′)
denote canonical embedding. It can be shown that, for all n ≥ 1,

|λn(LH)| ≤ W
n∏

k=1

ak(J)1/n , (12)

6If D has C2 boundary then H2(D) can be identified with the L2(∂D, σ)-closure
of U(D), where σ denotes (2d− 1)-dimensional Lebesgue measure on the boundary
∂D, normalised so that σ(∂D) = 1. The inner product in H2(D) is given (see [13,
Ch. 1.5 and 8]) by (f, g) =

∫
∂D

f∗ g∗ dσ, where, for h ∈ H2(D), the symbol h∗

denotes the corresponding nontangential limit function in L2(∂D, σ).
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an inequality which is superior to (6), by virtue of the original Hilbert
space version of Weyl’s inequality, namely

∏n
k=1 |λk(L)| ≤

∏n
k=1 ak(L)

(see [16, 3.5.1], [19]). An argument (see [4]) exploiting the interplay
between the reproducing kernel of H2(D), and an orthonormal basis
for H2(D) then allows the estimate

an(J) ≤ rn−1

√
1− r2

, (13)

and substituting into (12) yields the result. �

Example 2. Comparing (12) with (4), we see that Theorem 6 leads to
improved eigenvalue bounds whenever n > 1/(1 − θ4). In Example 1
we can choose θ = 1/

√
5, therefore for all n ≥ 2 > 25/24, the estimate

|λn(PH)| ≤ 77

320

5√
24

(
1√
5

)n−1

derived from (12) is sharper than the previous bound (3) on the eigen-
values of the modified Perron-Frobenius operator.

A more elaborate version of the proof of Theorem 6 (see [4] for de-
tails) gives the following higher dimensional analogue, which for suffi-
ciently large values of n yields estimates which are superior to those of
Theorem 3:

Theorem 7. With the hypotheses and notation of Theorem 3,

|λn(LH)| < W
√

d

rd(1− r2)d/2
n(d−1)/(2d) r

d
d+1

(d!)1/dn1/d

for all n ≥ 1 .

(14)

References

[1] K. I. Babenko, Best approximations to a class of analytic functions (Russian),
Izv. Akad. Nauk SSSR Ser. Mat., 22 (1958), 631–640

[2] W. Bahsoun and C. Bose, Quasi-invariant measures, escape rates and the effect
of the hole, Discrete Contin. Dynam. Sys., 27 (2010), 1107–1121.

[3] O. F. Bandtlow, Resolvent estimates for operators belonging to exponential
classes, Integr. Equat. Oper. Th., 61 (2008), 21–43.

[4] O. F. Bandtlow and O. Jenkinson, Explicit a priori bounds on transfer operator
eigenvalues, Comm. Math. Phys., 276 (2007), 901–905.

[5] O. F. Bandtlow and O. Jenkinson, On the Ruelle eigenvalue sequence, Ergod.
Theor. Dyn. Syst., 28 (2008), 1701–1711.

[6] M. Demers & L.-S. Young, Escape rates and conditionally invariant measures,
Nonlinearity, 19 (2006), 377–397.

[7] C. J. Earle & R. S. Hamilton, A fixed point theorem for holomorphic mappings,
in Global Analysis (S. Chern & S. Smale, Eds.), Proc. Symp. Pure Math., Vol.
XVI, pp. 61–65, American Mathematical Society, Providence R.I., 1970.



EIGENVALUES OF TRANSFER OPERATORS 9

[8] Yu. A. Farkov, The N -widths of Hardy-Sobolev spaces of several complex vari-
ables, J. Approx. Theory, 75 (1993), 183–197.

[9] A. Ferguson & M. Pollicott, Escape rates for Gibbs measures, Ergod. Theor.
Dyn. Syst., 32 (2012), 961–988.

[10] D. Fried, Zeta functions of Ruelle and Selberg I, Ann. Sci. Ec. Norm. Sup. 9
(1986), 491–517

[11] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem.
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