A note on mixing in interval maps
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We construct a class of simple dynamical systems for which all correlation properties, i.e., the
entire spectrum of the Perron-Frobenius operator, is accessible by analytical means. As an appli-
cation we discuss an example of an interval map with a small number of branches where the decay
of correlations can be made arbitrarily fast. The analysis sheds light on the problem of relating
correlation decay with other dynamical quantities such as Lyapunov spectra.
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Introduction — The decay of correlations in dynami-
cal systems, or to put it in experimentalists’ terms, the
lineshape in spectra, is one of the most fundamental top-
ics in nonequilibrium statistical physics. The study of
mechanisms which cause correlation decay and relaxation
processes, i.e., the emergence of dissipative behaviour,
has a long tradition in theoretical physics with signifi-
cant impact for applications. Historically, the question
of the emergence of irreversibility and the computation
of relaxation rates can be attributed to the celebrated
idea of fluctuation dissipation relations as first empha-
sised by Einstein [1] and then extended by Onsager to
the regime close to equilibrium [2]. There have been nu-
merous, mostly not entirely successful attempts to extend
these concepts beyond the linear regime, aiming to estab-
lish how the underlying microscopic Hamiltonian struc-
ture impacts at the macroscopic irreversible level. Recent
approaches focus on fluctuation relations (see [3] for a re-
cent overview), but compelling experimental support for
such concepts is still missing.

Understanding the occurrence of irreversibility in
macroscopic systems based on first principles, i.e. start-
ing from a microscopic level, remains a largely open prob-
lem. Simple mathematical toy models play an important
role, to uncover the underlying formal structures which
cause irreversibility [4]. Even abstract spectral theory is
able to contribute to some of these issues. Such ideas are
at the heart of the link between statistical physics and
modern approaches in dynamical systems theory [5, 6],
where both areas mutually benefit.

The aim of this article is to make a small contribution
in this direction, by studying the relaxation rates in the
most basic dynamical models from a rigorous perspec-
tive , and illustrating the occurring challenges. For that
purpose we will construct a model with arbitrarily fast
decay rates, keeping other relevant dynamical quantities
almost unaffected.

Low dimensional maps facilitate studying the impact
of macroscopic observations on correlation decay, and the
link between decay rates and other dynamical quantities
in some detail. Prominent examples in this context are
models for anomalous dynamics, which are often based

on the impact of marginally stable sets on the resulting
algebraic correlation decay [7]. Here we are concerned
with a simpler set-up of mixing dynamics, where correla-
tion decay is always exponential and the corresponding
transfer operators possess a spectral gap. It is impossible
to give a fair account of the entire body of the mathemat-
ical literature but a substantial part of the area probably
started with [8]. The point we want to stress is that it is
surprisingly difficult to estimate the actual exponential
decay rate from the properties of the dynamical system,
e.g., from the shape of a one dimensional map.

It seems to be a common perception that the time scale
of correlation decay in chaotic dynamical systems is re-
lated to sensitivity of the underlying dynamics, i.e., with
Lyapunov exponents. Even though such relations are not
as straightforward as suggested by the analysis of piece-
wise linear models [9], correlation decay times are often
viewed as estimates for Lyapunov exponents [10]. One
should, of course, keep in mind that on formal mathe-
matical grounds no relation has to be expected as both
time scales, the decorrelation time and the Lyapunov
time, probe different formal properties of the underlying
transfer operator, namely the spectral gap vs. the de-
pendence of the largest eigenvalue on parameters. Thus,
the cause of correlation decay and the underlying mech-
anisms which determine the actual time scales are quite
blurred.

It is in fact difficult to estimate numerical values for
relaxation rates from the shape of the map, and that
task is not facilitated by the absence of any non-trivial
example which can be solved by analytical means. Hence
we will develop a new paradigmatic model class which
can give new analytical insight in complex behaviour,
in particular, with regards to relaxation properties. In
this context we will also address the question whether
one can achieve an arbitrarily fast correlation decay in
interval maps.

A rigorous account — We consider analytic expanding
full branch interval maps T : [-1,1] — [-1, 1], i.e., maps
which consist of analytic branches with slope larger than
one such that each branch maps onto the entire interval
I = [-1,1] (see, e.g., Fig. 1). Furthermore, we require



that the map can be extended to an analytic map on
the complex unit circle 7: S — St by 7(exp(inz)) =
exp(inT(x)); that is, the different branches match up in
an analytic way. Maps of this type are known to have
nice dynamical properties. In particular, every such map
possesses an invariant measure p which is given in terms
of an analytic density, and the correlation function for
analytic observables ¢ and ¢
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decays exponentially. The rate of decay is determined by
the spectral properties of the Perron-Frobenius operator
associated to T'. If ®q,..., P g are the inverse branches
of the map T', we can choose a neighbourhood D C C of
I such that the associated Perron-Frobenius operator

K
Lif= Z@Z - (f o Pk) (2)
k=1

is well defined and compact when considered on the
Banach space of bounded holomorphic functions on D
equipped with the supremum norm [11].

It is well established but probably not widely known
that the spectral properties of the Perron-Frobenius op-
erator L are linked with the properties of the complex
analytic map 7 on the complex unit circle (see, e.g., the
remark in [12]). Eigenvalues and eigenfunctions of £ fall
into two classes [13]. Eigenfunctions which are periodic
correspond to eigenfunctions of the Perron-Frobenuis op-
erator Lg1 of the associated map 7 on the complex unit
circle, and vice versa. In addition, there are eigenvalues
which are given by the inverse powers of the slope of T’
at the fixed point at the interval endpoint, (T77(—1))~",
n > 1. The corresponding eigenfunctions cannot be ex-
tended analytically to the complex unit circle. Hence,
solving the eigenvalue problem for the operator L; re-
duces to solving the corresponding problem of Lg1 and
using the following relation between their spectra

o(Lr) = o(La) UL(T(-1)) ™ :in>1}.  (3)

The simplest example illustrating this is the well-
known Bernoulli map on the interval T'(x) = 22 —sgn(z),
whose Perron-Frobenius operator has eigenvalues 1/2",
n > 0, which are caused by the fixed point slope. On the
complex unit circle this maps translates to 7(z) = 22.
This dynamical system only has the trivial spectrum
{0, 1}, i.e., correlations for periodic analytic observables
decay super-exponentially.

This dichotomy naturally raises the question whether
there can be a relation between mixing rates and other
measures of chaoticity such as entropy or Lyapunov ex-
ponents. Partial answers can be found, e.g., as upper
bounds of the mixing rate in terms of the entropy for real
analytic suspension flows [14], and in terms of Lyapunov

exponents for piecewise linear Markov maps [15]. One
purpose of this note is to show that there are expand-
ing interval maps for which the exponential rate of decay
can be made arbitrarily large whereas the Lyapunov ex-
ponent or the entropy remains bounded.

To address such an issue one needs a sufficiently rich
class of models where the entire spectrum of the Perron-
Frobenius operator is accessible. It is well known that
analytic maps acting on the complex unit circle which
are also analytic in the entire unit disk can be written as
so-called finite Blaschke products [16]
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These induce full branch interval maps if the complex

phase is chosen such that 8(—1) = —1, as each factor has

modulus one on the unit circle. Expansivity of the map

is equivalent to 8 having a unique fixed point z, = 3(z4)

within the complex unit disk. Such a fixed point then

determines the invariant density of the interval map via
the analytic expression

p(x) = (1= |2]?)/(2] exp(inz) — 2.[). ()

Apart from these classical results it is a recent discovery
[17] that this fixed point also determines the entire spec-
trum of the Perron-Frobenius operator associated to the
corresponding map on the unit circle:

o(Ls) = {10} U{(F )", (FG) in =11 (6)

Using eq.(3) all eigenvalues of the Perron-Frobenius op-
erator on the interval, £;, are then easily computed by
supplementing eq.(6) with the powers of the inverse slope
at the interval endpoint. Finite Blaschke products thus
constitute an ideal laboratory for testing certain aspects
of dynamical systems theory as all relevant quantities are
accessible.

Decay of autocorrelations — We shall now construct a
dynamical system with arbitrarily fast correlation decay,
but with the counter-intuitive constraint of leaving other
dynamical quantities such as the Lyapunov exponent and
the invariant density essentially unaffected. Following
the previous section, the idea is to construct a Bernoulli-
type map but with large fixed point slope. To this end
we consider the finite Blaschke product

z—0b
:Z2l—bz (7)

for b € (—1,1). It is straightforward to compute that
eq.(7) induces a three-to-one analytic expanding map

B(z)
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B(x) = 3z + % arctan ( )) —2m  (8)
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on the interval I = [—1,1]. Here m labels the three
branches of the map, where m = —1 if x < — arccos((1 +



FIG. 1: The interval map in eq.(8) for parameter values b = 0
(thin solid) and b = —0.95 (thick solid). The dashed line
shows the pointwise limit as b — —1. The two crosses indicate
the non-trivial zeros of the map for b = —0.95.

b)/2)/m, m = 1 if © > arccos((1 + b)/2)/m, and m = 0
otherwise (see Fig. 1). The map B has fixed points at
—1 and 1 with slope B'(—1) = B'(1) = (3+1b)/(1 +b).
For the trivial case b = 0, eq.(8) yields the tripling map,
while a non-zero parameter value induces curvature. In
the pointwise limit b — —1, eq.(8) approaches a version
of the Bernoulli map with offset. This limiting case will
play an important role in our investigation.

The fixed point of eq.(7) within the unit disk is given
by z. = 0 for any value of the parameter b. Thus, the
invariant density eq.(5) of the interval map eq.(8) is con-
stant. Hence, for any b € (—1, 1) the Lyapunov exponent
for B with respect to this invariant measure is given by
A = [;InB'(z)dz/2 and with little effort can be calcu-
lated explicitly as

A=l ((3+82+ V/I-0)0-17)/2), (9)

see Fig. 2. In addition, we have §’(z.) = 0, and by eq.(6)
there is no contribution from periodic eigenfunctions to
the point spectrum of the Perron-Frobenius operator £
in eq.(2). Thus all eigenvalues are caused by the inverse
of the fixed point slope at © = —1 and we end up with

o(Lr) = {1,00U{((1+b)/(3+b)" :n>1}. (10)

The exponential rate of decay « for the correlation func-
tion in eq.(1) for generic analytic observables ¢ and 1 is
related to the subleading eigenvalue pus = (1+0)/(3+ b)
of L1 via o = —Inpuy = —In((14+b)/(3+b)). Obviously,
all the eigenvalues can be made arbitrarily small and the
correlation decay arbitrarily fast, if the parameter b is
chosen close to —1, while the Lyapunov exponent A in
eq.(9) and the invariant density remain largely unaffected
(see Fig. 2). Hence, « is not bounded by any finite multi-
ple of A as b approaches —1, unlike the case of piecewise
linear Markov maps considered in [15], where a bound
a < 2A has been established.

b

FIG. 2: Eigenvalues of the Perron-Frobenius operator in
€q.(10) for the interval map in eq.(8), as a function of the pa-
rameter b (solid lines), in logarithmic scale. The dashed line
shows the inverse Lyapunov multiplier exp(—A), see eq.(9).

How are the spectral properties discussed so far re-
flected in the actual shape of the correlation function?
On the one hand, as all eigenvalues approach zero in the
limit b — —1 one expects a very fast asymptotic decay.
On the other hand, the actual map B largely looks like
a shifted version of the Bernoulli map (see Fig. 1) and
one would naively expect an exponential decay according
to the inverse slope. To clarify the picture let us look in
some detail at the coordinate autocorrelation function,
i.e., at eq.(1) for the observables ¢(x) = ¢(x) = x. As
the mean value vanishes we are concerned with evaluat-
ing the integrals

Cpo(n) = %/xB(”)(:zr) dz . (11)
I

It is fairly straightforward but slightly tedious to work
out these integrals numerically to high precision. Given
n, one computes cylinder sets of generation n and then
performs the integral over each of these intervals with a
suitable integration routine. For that purpose we have
used a quadruple precision version of the QUADPACK
routines [18]; the result is displayed in Fig. 3. The asymp-
totic decay of the correlation function is determined by
the subleading eigenvalue. However, as the parameter
b approaches —1 the autocorrelation function develops
a pronounced transient exponential shape which follows
the correlation decay of the shifted Bernoulli map. In
this way the correlation function bridges the dichotomy
pointed out in the previous paragraph.

There is a crossover between the transient (slow) ex-
ponential decay governed by the average slope of the
map and the (fast) exponential decay determined by
the maximal slope, i.e., by the subleading eigenvalue
of the Perron-Frobenius operator. One can develop a
simple heuristic argument to estimate the time scale at
which this transition between the two different exponen-
tial regimes takes place. For the correlation function
eq.(11) to be affected by the fine structure of the map
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FIG. 3: Autocorrelation function eq.(11) of the map B in
eq.(8) for different values of the parameter b (symbols with
dashed lines as guide for the eye), on a logarithmic scale.
Solid straight lines indicate the asymptotic decay as computed
from the subleading eigenvalue of the Perron-Frobenius oper-
ator. The dashed straight line displays the correlation func-
tion Cro(n) = —1/(6 x 2™) of the pointwise limit map as
b — —1 (see Fig. 1). Arrows show the respective estimates of
the crossover time scale n. according to eq.(12).

B, the time n has to be sufficiently large, allowing the
dynamics to explore the small regions near x = +1 where
the map has large slope. The size A of these two in-
tervals can be estimated by the zeros of the map close
to x = %1 (see Fig. 1). These zeros follow either from
eq.(7) or eq.(8), yielding =+ arccos((b — 1)/2)/7 so that
A =1-—arccos((b—1)/2)/7 =~ V/1+b/7m as b — —1.
From the dynamical perspective the correlation integral
(11) at time n resolves phase space features which are
averaged over cylinder sets of the corresponding gener-
ation. As in the limit b — —1 the map has effectively
slope 2, the size of these cylinder sets is given by 27".
Hence, the regions with large slope, where the dynamics
differs from the shifted Bernoulli map, become relevant
for the correlation function when 27" ~ /1 +b/m, and
we obtain for the crossover time scale the estimate

ne~—1In(14+0)/(2In2), (b— -1). (12)
This simple argument predicts rather well the actual
structure visible in Fig. 3. The formal challenge of course
remains to develop a consistent and general mathemati-
cal framework for evaluating such features based on spec-
tral properties of the Perron-Frobenius operator.
Conclusion — Given a dynamical system, the decay rate
of correlations is difficult to predict, using simple features
of the system only. The absence of analytically solvable
examples which can be investigated in detail has hindered
further progress in this direction in the past. The family
of examples presented here constitutes a new paradigm
and makes progress in this direction possible. It can be
easily extended to account for more sophisticated fea-
tures such as coupled systems and spatial degrees of free-
dom, thus shedding light on correlation decay in coupled

complex structures.

Our example shows that even in the simplest possi-
ble setup, correlation decay can be made arbitrarily fast,
independently of the Lyapunov exponent. Such an obser-
vation is somewhat counter-intuitive and shows that one
cannot expect correlation decay to be caused by a simple
mechanism. In particular, a strongly unstable fixed point
on its own is by no means a sufficient condition for the
fast decay reported here. As the analysis proves, a deli-
cate global balance of dynamical features, which, in the
present case, is induced by the required analytical prop-
erties, is essential. Nevertheless, expansivity, but not the
Lyapunov exponent, is still one of the key ingredients for
the decay of correlations. It is easy to confirm that for
interval maps which can be extended analytically to the
circle, the maximal expansion rate

. 1 n
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determines a lower bound for the subleading eigenvalue
via |uz| > exp(—A4), or equivalently an upper bound for
the mixing rate, a < Ay. This rigorous statement is in
line with previously reported relations between mixing
rates and generalised Lyapunov spectra [9].

Although the spectrum of the Perron-Frobenius op-
erator determines the asymptotic correlation decay, the
present explicit example demonstrates that one has to be
careful about its actual implications. On an intermediate
time scale, probably relevant in real applications, the cor-
relation decay may be governed by different mechanisms.
Rigorous mathematical tools to cover such features and
the observed crossover still need to be developed; pseu-
dospectra could provide a suitable tool. A benchmark
for success would be to capture all aspects of such a dy-
namically generated finite time scale phenomenon with
the intrinsically generated dynamical crossover towards
the asymptotic behaviour.
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