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Abstract. For a, α > 0 let E(a, α) be the set of all compact operators A on a
separable Hilbert space such that sn(A) = O(exp(−anα)), where sn(A) denotes
the n-th singular number of A. We provide upper bounds for the norm of the
resolvent (zI −A)−1 of A in terms of a quantity describing the departure from
normality of A and the distance of z to the spectrum of A. As a consequence we
obtain upper bounds for the Hausdorff distance of the spectra of two operators
in E(a, α).

1. Introduction

Let A and B be compact operators on a Hilbert space. It is known that if
‖A−B‖ is small then the spectra of A and B are close in a suitable sense (for
example, with respect to the Hausdorff metric on the space of compact subsets of
C). Just how close are they? Standard perturbation theory gives bounds in terms
of quantities that require a rather detailed knowledge of the spectral properties of
both operators, for example the norms of the resolvents of A and B along contours
in the complex plane, which are difficult to obtain in practice.

The main concern of this article is to derive an upper bound for the norm of the
resolvent (zI − A)−1 of an operator A belonging to certain subclasses of compact
operators in terms of simple, readily computable quantities, typically involving the
distance of z to the spectrum of A and a number measuring the departure from
normality of A. As a result, we obtain simple upper bounds for the Hausdorff
distance of the spectra of two operators in these subclasses. Estimates of this type
have previously been obtained for operators in the Schatten classes (see [Gil, Ban])
and more generally (but less sharp), for operators belonging to Φ-ideals (see [Pok]).

These subclasses, termed exponential classes, are constructed as follows. For
a, α > 0 let E(a, α) denote the collection of all compact operators on a separable
Hilbert space for which sn(A) = O(exp(−anα)), where sn(A) denotes the n-th sin-
gular number of A. As we shall see, E(a, α) is not a linear space (see Remark 2.9),
hence a fortiori not an operator ideal, and may thus be viewed as a slightly patho-
logical object in this context. There is nevertheless compelling reason to consider
these classes: on the one hand, the resolvent bounds given in [Ban, Gil, Pok], while
applicable to operators in E(a, α), can be improved significantly (see Remark 3.2),
the lack of linear structure posing almost no problem for the derivation of these
improvements. On the other hand, operators belonging to exponential classes arise
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naturally in a number of different ways. For example, if A is an integral operator
with real analytic kernel given as a function on [0, 1]d× [0, 1]d, then A ∈ E(a, 1/d)
for some a > 0 (see [KR]). Other examples of operators in the exponential class
E(a, 1/d) for some a > 0 include composition operators on Bergman spaces over
domains in Cd whose symbols are strict contractions, or more generally transfer
operators corresponding to holomorphic map-weight systems on Cd, the latter pro-
viding one of the motivations to look more closely into the properties of operators
belonging to exponential classes (see Example 2.3 (iv) and [BanJ1, BanJ2]).

This article is organised as follows. In Section 2 we define the exponential classes
and study some of their properties. In particular, we shall give a sharp descrip-
tion of the behaviour of exponential classes under addition (see Proposition 2.8),
and a sharp characterisation of the eigenvalue asymptotics of an operator in a
given exponential class (see Proposition 2.10). Some of the arguments in this sec-
tion rely on results concerning monotonic arrangements of sequences, which are
presented in the Appendix. In Section 3 we will use techniques similar to those al-
ready employed in [Ban] to obtain resolvent estimates for operators in E(a, α) (see
Theorem 3.13). In particular we shall give a sharp estimate for the growth of the
resolvent of a quasi-nilpotent operator in E(a, α) (see Proposition 3.1). These esti-
mates will then be used in the final section to deduce Theorem 4.2, which provides
spectral variation and spectral distance formulae for operators in E(a, α).

Notation 1.1. Throughout this article H and Hi will be assumed to be separable
Hilbert spaces. We use L(H1, H2) to denote the Banach space of bounded linear op-
erators from H1 to H2 equipped with the usual norm and S∞(H1, H2) ⊂ L(H1, H2)
to denote the closed subspace of compact operators from H1 to H2. We shall often
write L or S∞ if the Hilbert spaces H1 and H2 are understood.

For A ∈ S∞(H1, H2) we use

sk(A) := inf { ‖A− F‖ : F ∈ L(H1, H2), rank(F ) < k } (k ∈ N)

to denote the k-th approximation number of A, and s(A) to denote the sequence
{sk(A)}∞k=1.

The spectrum and the resolvent set of A ∈ L(H, H) will be denoted by σ(A)
and %(A), respectively. For A ∈ S∞(H, H) we let λ(A) = {λk(A)}∞k=1 denote the
sequence of eigenvalues of A, each eigenvalue repeated according to its algebraic
multiplicity, and ordered by magnitude, so that |λ1(A)| ≥ |λ2(A)| ≥ . . .. Similarly,
we write |λ(A)| for the sequence {|λk(A)|}∞k=1.

We note that the approximation numbers coincide with the singular numbers,
that is,

sk(A) =
√

λk(A∗A) (k ∈ N) ,

where A∗ ∈ L(H2, H1) denotes the adjoint of A ∈ L(H1, H2). For more information
about these notions see, for example, [Pie, GK, DS, Rin].

2. Exponential classes

Exponential classes arise by grouping together all operators A whose singular
numbers sn(A) decay at a given (stretched) exponential rate, that is, sn(A) =
O(exp(−anα)) for fixed a > 0 and α > 0. Our main concern in this section
will be to investigate how these classes behave under addition and multiplication,
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and to determine the rate of decay of the eigenvalue sequence of an operator in a
given class. Some of the arguments in this section depend on results concerning
monotonic arrangements of sequences, which are discussed in the Appendix.

Definition 2.1. Let a > 0 and α > 0. Then

E(a, α) :=

{
x ∈ CN : |x|a,α := sup

n∈N
|xn| exp(anα) < ∞

}
,

and

E(a, α; H1, H2) :=

{
A ∈ S∞(H1, H2) : |A|a,α := sup

n∈N
sn(A) exp(anα) < ∞

}
.

are called exponential classes of type (a, α) of sequences and operators, respectively.
The numbers |x|a,α and |A|a,α are called (a, α)-gauge or simply gauge of x and A,
respectively.

Whenever the Hilbert spaces are clear from the context, we suppress reference
to them and simply write E(a, α) instead of E(a, α; H1, H2).

Remark 2.2. Note that E(a, α) is a Banach space when equipped with the gauge
| · |a,α. On the other hand, the set E(a, α), the non-commutative analogue of
E(a, α), is not even a linear space in general (see Proposition 2.8 and Remark 2.9
below). The reason for this is that if a sequence lies in E(a, α) then a rearrangement
of this sequence need not; in particular E(a, α) is not a Calkin space in the sense
of [Sim2, p. 26] (cf. also [Cal]). However, E(a, α; H, H) turns out to be a pre-ideal
(see Remark 2.6).

Operators belonging to exponential classes arise naturally in a number of dif-
ferent contexts.

Example 2.3.
(i) Let σ be a complex measure on the circle group T such that its Fourier trans-
form satisfies

|σ̂(n)| ≤ exp(−a|n|) (n ∈ Z) .

It is not difficult to see that this is the case if and only if σ is absolutely contin-
uous with respect to Haar measure on T and the corresponding Radon-Nikodým
derivative is holomorphic on T .

Let L2(T ) be the complex Hilbert space of square-integrable functions on T ,
with respect to Haar measure on T . Let A : L2(T ) −→ L2(T ) be the convolution
operator

Af = f ∗ σ .

The spectrum of A is σ̂(Z)∪{0} and the spectrum of A∗A equals σ̂ ∗ σ̃(Z)∪{0} =
|σ̂(Z)| ∪ {0}, where dσ̃(t) = dσ(t−1) (cf. [BerF, p. 87]). Moreover, A is a compact
operator and the non-zero eigenvalues of A are precisely the numbers σ̂(n) for
n ∈ Z. In order to locate A in the scale of exponential classes, we enumerate the
eigenvalues of A as follows

xn = σ̂

(
(−1)n

4
(2n + (−1)n − 1)

)
(n ∈ N).
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Then the sequence x belongs to the class E(a/2, 1) with |x|1/2,1 ≤ exp(a/2) since∣∣∣∣σ̂((−1)n

4
(2n + (−1)n − 1)

)∣∣∣∣
≤ exp

(
−a

∣∣∣∣(−1)n

4
(2n + (−1)n − 1)

∣∣∣∣)
≤ exp

(
−a

2
(n− 1)

)
= exp

(a

2

)
exp

(
−a

2
n
)

.

By Corollary 5.4 the decreasing arrangement x(+) of x also belongs to E(a/2, 1)
with |x(+)|1/2,1 ≤ exp(a/2). Thus s(A) = |λ(A)| ∈ E(a/2, 1) and hence A ∈
E(a/2, 1) with |A|a/2,1 ≤ exp(a/2).

(ii) A variant of the above example is discussed by König and Richter [KR], who
showed that if A is an integral operator on the space of Lebesgue square-integrable
functions on the d-dimensional unit-cube [0, 1]d whose kernel is real analytic on
[0, 1]d × [0, 1]d, then A ∈ E(1/d).

(iii) For a domain Ω ⊂ Rd with d > 1 let h2(Ω) be the Bergman space of
Lebesgue square-integrable harmonic functions on Ω. If Ω1, Ω2 ⊂ Rd are two
domains such that Ω2 is compactly contained in Ω1, that is Ω2 is a compact subset
of Ω1, then the canonical embedding J : h2(Ω1) ↪→ h2(Ω2) given by Jf = f |Ω2

belongs to the exponential class E(1/(d − 1)). Moreover, for domains Ω1 and Ω2

with simple geometries it is possible to sharply locate J in an exponential class
E(a, 1/(d− 1)) and calculate the corresponding (a, 1/(d− 1))-gauge of J exactly.
See [BanC].

(iv) For Ω ⊂ Cd a bounded domain, let L2
Hol(Ω) denote the Bergman space of

holomorphic functions which are square-integrable with respect to 2d-dimensional
Lebesgue measure on Ω. Given a collection {φ1, . . . , φK} of holomorphic maps
φk : Ω → Ω and a collection {w1, . . . , wK} of bounded holomorphic functions
wk : Ω → C consider the corresponding linear operator A on L2

Hol(Ω) given by

Af :=
K∑

k=1

wk · f ◦ φk .

If ∪kφk(Ω) is compactly contained in Ω (see the previous example for the definition)
then A is a compact endomorphism of L2

Hol(Ω) and A ∈ E(a, 1/d), where a depends
on the geometry of Ω and ∪kφk(Ω) (see [BanJ1]).

Operators of this type, known as transfer operators, play an important role in
the ergodic theory of expanding dynamical systems due to the remarkable fact
that their spectral data can be used to gain insight into geometric and dynamic
invariants of a given expanding dynamical system (see [Rue]). As a consequence, it
is of interest to determine spectral properties of these operators exactly, or at least
to a given accuracy. The latter problem, namely that of calculating rigorous error
bounds for spectral approximation procedures for these operators provided one of
the main motivations to study operators in exponential classes (see [BanJ2]).

We shall now study some of the properties of the classes E(a, α). First we note
that if we order the indices (a, α) reverse lexicographically, that is, by defining

(a, α) ≺ (a′, α′) :⇔ (α < α′) or (α = α′ and a < a′),
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then we obtain the following inclusions.

Proposition 2.4. Let a, a′ > 0 and α, α′ > 0. Then

(i) (a, α) ≺ (a′, α′) ⇔ E(a′, α′) $ E(a, α);
(ii) (a, α) ≺ (a′, α′) ⇔ E(a′, α′) $ E(a, α).

Proof. The proof of (i) is straightforward and will be omitted. Assertion (ii) follows
from (i) together with the observation that A ∈ E(a, α) iff s(A) ∈ E(a, α) and the
fact that for every monotonically decreasing x ∈ E(a, α) there is a compact A with
s(A) = x.

�

While E(a, α) is not, in general, a linear space, it does enjoy the following closure
properties.

Proposition 2.5. Let a, α > 0. If A ∈ L(H2, H1), B ∈ E(a, α; H3, H2), and
C ∈ L(H4, H3), then |ABC|a,α ≤ ‖A‖ |B|a,α ‖C‖. In particular,

L(H2, H1) E(a, α; H3, H2) L(H4, H2) ⊂ E(a, α; H4, H1).

Proof. Follows from
sk(ABC) ≤ ‖A‖ sk(B) ‖C‖

for k ∈ N (see [Pie, 2.2]). �

Remark 2.6. The proposition implies that

L(H, H) E(a, α; H, H) L(H, H) ⊂ E(a, α; H, H) .

Thus the classes E(a, α; H, H), while lacking linear structure, satisfy part of the
definition of an operator ideal. In other words, E(a, α; H, H) is what is sometimes
referred to as a pre-ideal (see, for example, [Nel]).

We now consider in more detail the relation between different exponential classes
under addition. We start with a general result concerning the singular numbers of
a sum of operators.

Proposition 2.7. Let Ak ∈ S∞(H1, H2) for 1 ≤ k ≤ K. Then

sn

(
K∑

k=1

Ak

)
≤ Kσn (n ∈ N),

where σ denotes the decreasing arrangement (see the Appendix) of the K singular
number sequences s(A1), . . . , s(AK).

Proof. Set A :=
∑K

k=1 Ak. The compactness of the Ak means they have Schmidt
representations

Ak =
∞∑
l=1

sl(Ak)a
(k)
l ⊗ b

(k)
l ,

where {a(k)
l }l∈N and {b(k)

l }l∈N are suitable orthonormal systems in H1 and H2 re-
spectively. Here a ⊗ b, where a ∈ H1 and b ∈ H2, denotes the rank-1 operator
H1 → H2 given by

(a⊗ b)x = (x, a)H1 b .
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Let ν : N → N and κ : N → N be functions that effect the decreasing arrange-
ment of the singular numbers of the Ak in the sense that

σn = sν(n)(Aκ(n)) (n ∈ N).

Then

A =
∞∑

n=1

σna
(κ(n))
ν(n) ⊗ b

(κ(n))
ν(n) ,

which suggests defining, for each m ∈ N0, the rank-m operator Fm : H1 → H2 by

F0 := 0 ,

Fm :=
m∑

n=1

σna
(κ(n))
ν(n) ⊗ b

(κ(n))
ν(n) (m ∈ N).

If x ∈ H1 and y ∈ H2 then

|((A− Fm−1)x, y)H2 | ≤
∞∑

n=m

σn

∣∣∣(x, a
(κ(n))
ν(n) )H1(b

(κ(n))
ν(n) , y)H2

∣∣∣
≤ σm

∞∑
n=1

∣∣∣(x, a
(κ(n))
ν(n) )H1(b

(κ(n))
ν(n) , y)H2

∣∣∣
= σm

K∑
k=1

∞∑
l=1

∣∣∣(x, a
(k)
l )H1(b

(k)
l , y)H2

∣∣∣
≤ σm

K∑
k=1

√√√√ ∞∑
l=1

∣∣∣(x, a
(k)
l )H1

∣∣∣2
√√√√ ∞∑

l=1

∣∣∣(b(k)
l , y)H2

∣∣∣2
≤ σm

K∑
k=1

‖x‖H1
‖y‖H2

= σmK ‖x‖H1
‖y‖H2

.

This estimate justifies the rearrangements (since the series are absolutely conver-
gent) and also yields ‖A− Fm−1‖ ≤ Kσm, from which the assertion follows. �

Proposition 2.8. Suppose that An ∈ E(an, α; H1, H2) for 1 ≤ n ≤ K. Let

A :=
∑K

n=1 An and a′ := (
∑K

n=1 a
−1/α
n )−α. Then

(i) A ∈ E(a′, α) with |A|a′,α ≤ K max1≤n≤K |An|an,α. In particular

E(a1, α) + · · ·+ E(aK , α) ⊂ E(a′, α) .

(ii) If both H1 and H2 are infinite-dimensional then the inclusion above is sharp
in the sense that

E(a1, α) + · · ·+ E(aK , α) 6⊂ E(b, α) ,

whenever b > a′.

Proof. Assertion (i) follows from Proposition 2.7 and Corollary 5.4 (i), which gives
an upper bound on the rate of decay of the decreasing arrangement of the sequences
s(A1), . . . , s(AK).



RESOLVENT ESTIMATES 7

For the proof of (ii) define K sequences s(1), . . . , s(K) by

s(k)
n := exp(−akn

α) (n ∈ N) .

It turns out that it suffices to exhibit K compact operators Ak with sn(Ak) = s
(k)
n

such that s(A) is the decreasing arrangement of the sequences s(1), . . . , s(K). To
see this, note that then Ak ∈ E(ak, α) for k ∈ {1, · · · , K}. At the same time
sn(A) ≥ exp(−a′(n + K)α) by Corollary 5.4 (ii), so that A 6∈ E(b, α) whenever
b > a′.

In order to construct these operators we proceed as follows. Since each Hi was

assumed to be infinite-dimensional we can choose an orthonormal basis {h(i)
n }n∈N

for each of them. For each k = 1, . . . , K, we now define a compact operator
Ak : H1 → H2 by

Akh
(1)
n :=

{
s
(k)
(n+(k−1))/Kh

(2)
n for n ∈ KN− (k − 1),

0 for n 6∈ KN− (k − 1).

It is not difficult to see that sn(Ak) = s
(k)
n . Moreover, it is easily verified that

the singular numbers of A are precisely the numbers of the form s
(k)
n with n ∈ N

and k = 1, . . . , K. Thus, s(A) is the decreasing arrangement of the sequences
s(1), . . . , s(K) as required.

�

Remark 2.9. The proposition implies that E(a, α) + E(a, α) ⊂ E(2−αa, α), but
E(a, α) + E(a, α) 6⊂ E(a, α), because 2−αa < a. In particular, E(a, α) is not a
linear space.

The following result establishes a sharp bound on the eigenvalue decay rate in
each exponential class.

Proposition 2.10. Let a, α > 0 and A ∈ E(a, α; H, H). Then

λ(A) ∈ E(a/(1 + α), α) with |λ(A)|a/(1+α),α ≤ |A|a,α .

If H is infinite-dimensional, the result is sharp in the sense that there is an operator
A ∈ E(a, α; H, H) such that λ(A) 6∈ E(b, α) whenever b > a/(1 + α).

Proof. If A ∈ E(a, α) then sk(A) ≤ |A|a,α exp(−akα). Using the multiplicative

Weyl inequality [Pie, 3.5.1] we have

|λk(A)|k ≤
k∏

l=1

|λl(A)| ≤
k∏

l=1

sl(A) ≤
k∏

l=1

|A|a,α exp(−alα) =

= |A|ka,α exp(−a
k∑

l=1

lα). (1)

But
∑k

l=1 lα ≥
∫ k

0
xα dx = 1

1+α
kα+1, which combined with (1) yields

|λk(A)| ≤ |A|a,α exp(−akα/(1 + α)).
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Sharpness is proved in several steps. We start with the following observa-
tion. Let τ1 ≥ . . . ≥ τN ≥ 0 be positive real numbers. Consider the matrix
C(τ1, . . . , τN) ∈ L(CN , CN) given by

C(τ1, . . . , τN) :=


0 τ1 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 τN−1

τN 0 . . . 0 0

 .

It easy to see that
sn(C(τ1, . . . , τN)) = τn

and
|λ1(C(τ1, . . . , τN))| = · · · = |λN(C(τ1, . . . , τN))| = (τ1 · · · τN)1/N .

The desired operator is constructed as follows. Fix a > 0 and α > 0. Next
choose a super-exponentially increasing sequence Nn, that is, Nn is increasing and
limn→∞ Nn−1/Nn = 0. For definiteness we could set Nn = exp(n2).

Put N0 = 0 and define

dn := Nn −Nn−1 (n ∈ N).

Define matrices An ∈ L(Cdn , Cdn) by

An = C(exp(−a(Nn−1 + 1)α), . . . , exp(−a(Nn)α)).

Then
sk(An) = exp(−a(Nn−1 + k)α) (1 ≤ k ≤ dn)

and
|λk(An)| = exp(−apα

n) (1 ≤ k ≤ dn),

where

pn :=
1

dn

Nn∑
l=Nn−1+1

lα.

Put

H :=
∞⊕

n=1

Cdn ,

and let A : H → H be the block-diagonal operator

(Ax)n = Anxn.

Clearly, the singular numbers of A are given by sk(A) = exp(−akα) and the moduli
of the eigenvalues are the numbers exp(−apα

n) occurring with multiplicity dn.
Before checking that A has the desired properties we observe that

pα
n =

1

dn

Nn∑
l=Nn−1+1

lα ≤ 1

dn

∫ Nn+1

Nn−1+1

xα =

=
1

α + 1

1

dn

((Nn + 1)α+1 − (Nn−1 + 1)α+1) =
1

α + 1
Nα

n δn, (2)

with limn→∞ δn = 1. The latter follows from the fact that the sequence Nn was
chosen to be super-exponentially increasing.
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Suppose now that b > a/(α + 1). Since |λNn(A)| = exp(−apα
n) we have

|λNn(A)| exp(bNα
n ) ≥ exp(− a

α + 1
Nα

n δn + bNα
n ) = exp(Nα

n (b− a

α + 1
δn)).

Thus
|λNn(A)| exp(bNα

n ) → +∞ as n →∞,

which means that λ(A) 6∈ E(b, α). �

Remark 2.11. Similar results have been obtained by König and Richter [KR,
Proposition 1], though without estimates on the gauge of λ(A).

3. Resolvent estimates

In this section we shall derive an upper bound for the norm of the resolvent
(zI − A)−1 of A ∈ E(a, α) in terms of the distance of z to the spectrum of A
and the departure from normality of A, a number quantifying the non-normality
of A. We shall employ a technique originally due to Henrici [Hen], who used it in
a finite-dimensional context. The basic idea is to write A as a perturbation of a
normal operator having the same spectrum as A by a quasi-nilpotent operator. A
similar argument can be used to derive resolvent estimates for operators belonging
to Schatten classes (see [Gil] (and references therein) and [Ban]).

Following the idea outlined above we start with bounds for quasi-nilpotent op-
erators.

Proposition 3.1. Let a, α > 0.

(i) If A ∈ E(a, α; H, H) is quasi-nilpotent, that is, σ(A) = {0}, then∥∥(I − A)−1
∥∥ ≤ fa,α(|A|a,α), (3)

where fa,α : R+
0 → R+

0 is defined by

fa,α(r) =
∞∏

n=1

(1 + r exp(−anα)).

Moreover, fa,α has the following asymptoticss:

log fa,α(r) ∼ a−1/α α

1 + α
(log r)1+1/α as r →∞. (4)

(ii) If H is infinite-dimensional the estimate (3) is sharp in the sense that there
is a quasi-nilpotent B ∈ E(a, α; H, H) such that

log
∥∥(I − zB)−1

∥∥ ∼ log fa,α(|zB|a,α) as |z| → ∞. (5)

Proof. Fix a, α > 0.
(i) Since A is trace class and quasi-nilpotent a standard estimate (see, for ex-

ample, [GGK, Chapter X, Theorem 1.1]) shows that∥∥(I − A)−1
∥∥ ≤ ∞∏

n=1

(1 + sn(A)) .

Thus ∥∥(I − A)−1
∥∥ ≤ ∞∏

n=1

(1 + |A|a,α exp(−anα)) = fa,α(|A|a,α).
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It remains to prove the growth estimate (4). We proceed by noting that fa,α

extends to an entire function of genus zero with fa,α(0) = 1. Moreover, the maxi-
mum modulus of fa,α(z) for |z| = r equals fa,α(r). The growth of fa,α can thus be
estimated by

N(r) ≤ log fa,α(r) ≤ N(r) + Q(r) , (6)

where N(r) =
∫ r

0
t−1n(t) dt, Q(r) = r

∫∞
r

t−2n(t) dt and n(r) denotes the number
of zeros of fa,α lying in the closed disk with radius r centred at 0 (see [Boa, p. 47]).

Since n(r) = ba−1/α(log+ r)1/αc, where log+(r) = max {0, log r} and b·c denotes
the floor-function, we have, for r ≥ 1,

N(r) = a−1/α

∫ r

1

t−1(log t)1/α dt + O(log r)

= a−1/α α

1 + α
(log r)1+1/α + O(log r) ; (7)

while Q satisfies

Q(r) = O((log r)1/α) as r →∞ . (8)

To see this, note that

Q(r) ≤ a−1/αr

∫ ∞

r

t−2(log t)1/α dt = a−1/αr

∫ ∞

log r

e−uu1/α du ; (9)

putting r = es it thus suffices to show that

es

∫ ∞

s

e−uu1/α du = O(s1/α) as s →∞.

This, however, is the case since

s−1/αes

∫ ∞

s

e−uu1/α du =

∫ ∞

s

e−(u−s)(u/s)1/α du =

∫ ∞

0

e−t(1 + t/s)1/α dt → 1

as s →∞. Combining (8), (7) and (6) the growth estimate (4) follows.
(ii) Since H is infinite-dimensional, we may choose an orthonormal basis {hn}n∈N.

Define the operator B ∈ L(H, H) by

Bhn := exp(−anα)hn+1 (n ∈ N).

It is not difficult to see that sn(B) = exp(−anα) for n ∈ N, so that B ∈
E(a, α; H, H). Before we proceed let

cn :=
n∑

k=1

kα (n ∈ N0),

and note that since
∫ n

0
xα dx ≤

∑n
k=1 kα ≤

∫ n+1

1
xα dx, we have

1

α + 1
nα+1 ≤ cn ≤

1

α + 1
(n + 1)α+1 (n ∈ N0).

The operator B is quasi-nilpotent, since

‖Bn‖ = exp(−acn) ≤ exp(− a

α + 1
nα+1) ,

which implies ‖Bn‖1/n → 0 as n →∞.



RESOLVENT ESTIMATES 11

It order to determine the asymptotics of log ‖(I − zB)−1‖ we start by noting
that∥∥(I − zB)−1

∥∥2 ≥
∥∥(I − zB)−1h1

∥∥2
= ‖

∞∑
n=0

(zB)nh1‖2

=
∞∑

n=0

|z|2n exp(−2acn) ≥
∞∑

n=0

|z|2n exp(−2
a

α + 1
(n + 1)α+1) ≥ |z|−2g(|z|), (10)

where

g(r) :=
∞∑

n=1

r2n exp(−2
a

α + 1
nα+1) (r ∈ R+

0 ).

Thus

2 log fa,α(|zB|a,α) ≥ 2 log
∥∥(I − zB)−1

∥∥ ≥ −2 log |z|+ log g(|z|) , (11)

which shows that in order to obtain the desired asymptotics (5) it suffices to prove
that

log g(r) ∼ 2a−1/α α

α + 1
(log r)1+1/α as r →∞. (12)

In order to establish the asymptotics above we introduce the maximum term

µ(r) := max
1≤n<∞

r2n exp(−2
a

α + 1
nα+1) (r ∈ R+

0 ) . (13)

Since g extends to an entire function of finite order we have (see, for example, [PS,
Problem 54])

log µ(r) ∼ log g(r) as r →∞ ,

which implies that it now suffices to show that µ has the desired asymptotics

log µ(r) ∼ 2a−1/α α

α + 1
(log r)1+1/α as r →∞. (14)

We now estimate µ(r) for fixed r. Define the function mr : R+
0 → R+

0 by

mr(x) = exp(−2
a

α + 1
xα+1 + 2x log r).

It turns out that mr has a maximum at xr = a−1/α(log r)1/α and that mr is
monotonically increasing on (0, xr) and monotonically decreasing on (xr,∞). Thus

log mr(xr − 1) ≤ log µ(r) ≤ log mr(xr) . (15)

Write xr − 1 = δrxr and note that δr → 1 as r →∞. Observing that

log mr(xr)

(log r)1+1/α
= 2a−1/α α

α + 1

while

log mr(xr − 1)

(log r)1+1/α
=

log mr(δrxr)

(log r)1+1/α
= 2a−1/α

(
− δα+1

r

α + 1
+ δr

)
→ 2a−1/α α

α + 1

as r →∞ we conclude, using (15), that (14) holds. This implies (12), which yields
(5), as required. �



12 O.F. BANDTLOW

Remark 3.2.
(i) The bound for the growth of the resolvent of a quasi-nilpotent A ∈ E(a, α)

given in the above proposition is an improvement compared to those obtainable
from the usual estimates for operators in the Schatten classes. Indeed, if A belongs
to the Schatten p-class (i.e. s(A) is p-summable) for some p > 0, then∥∥(I − A)−1

∥∥ ≤ fp(‖A‖p)

where ‖A‖p denotes the Schatten p-(quasi) norm of A. Here, fp : R+
0 → R+

0 is
given by

fp(r) = exp(apr
p + bp) ,

where ap and bp are positive numbers depending on p, but not on A (see, for
example, [Sim1] or [Ban, Theorem 2.1], where a discussion of the constants ap and
bp can be found).

(ii) Closer inspection of the proof yields the following explicit upper bound for
fa,α

log fa,α(r) ≤ a−1/α

(
α

1 + α
(log+ r)1+1/α + rΓ(1 + 1/α, log+ r)

)
,

where Γ(β, s) denotes the incomplete gamma function

Γ(β, s) =

∫ ∞

s

exp(−t) tβ−1 dt .

This follows from (6) together with the estimate n(r) ≤ a−1/α(log+ r)1/α.

A simple consequence of the proposition is the following estimate for the growth
of the resolvent of a quasi-nilpotent A ∈ E(a, α).

Corollary 3.3. If A ∈ E(a, α) is quasi-nilpotent, then∥∥(zI − A)−1
∥∥ ≤ |z|−1fa,α(|z|−1|A|a,α) for z 6= 0.

The proposition above can be used to obtain growth estimates for the resolvents
of any A ∈ E(a, α) by means of the following device.

Theorem 3.4. Let A ∈ S∞. Then A can be written as a sum

A = D + N,

such that

(i) D ∈ S∞, N ∈ S∞;
(ii) D is normal and λ(D) = λ(A);
(iii) N and (zI −D)−1N are quasi-nilpotent for every z ∈ %(D) = %(A).

Proof. See [Ban, Theorem 3.2]. �

This result motivates the following definition.

Definition 3.5. Let A ∈ S∞. A decomposition

A = D + N

with D and N enjoying properties (i–iii) of the previous theorem is called a Schur
decomposition of A. The operators D and N will be referred to as the normal and
the quasi-nilpotent part of the Schur decomposition of A, respectively.
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Remark 3.6.
(i) The terminology stems from the fact that in the finite dimensional setting

the decomposition in Theorem 3.4 can be obtained as follows: since any matrix
is unitarily equivalent to an upper-triangular matrix by a classical result due to
Schur, it suffices to establish the result for matrices of this form. In this case,
simply choose D to be the diagonal part, and N the off-diagonal part of the
matrix.

(ii) The decomposition is not unique, not even modulo unitary equivalence:
there is a matrix A with two Schur decompositions A = D1 +N1 and A = D2 +N2

such that N1 is not unitarily equivalent to N2 (see [Ban, Remark 3.5 (i)]). Note,
however, that the normal parts of any two Schur decompositions of a given compact
operator are always unitarily equivalent.

Using the results in the previous section we are able to locate the position of
the normal part and the quasi-nilpotent part of an operator A ∈ E(a, α) in the
scale of exponential classes.

Proposition 3.7. Let A ∈ E(a, α). If A = D + N is a Schur decomposition of A
with normal part D and quasi-nilpotent part N , then

(i) D ∈ E(a/(1 + α), α) with |D|a/(1+α),α ≤ |A|a,α;

(ii) N ∈ E(a′, α) with |N |a′,α ≤ 2|A|a,α, where a′ = a(1 + (1 + α)1/α)−α.

Proof. Since D is normal, its singular numbers coincide with its eigenvalues, which
in turn coincide with the eigenvalues of A. Assertion (i) is thus a consequence of
Proposition 2.10, while assertion (ii) follows from (i) and Proposition 2.8 by taking
N = A−D. �

Remark 3.8. Assertion (i) above is sharp in the following sense: there is A ∈
E(a, α) such that for any normal part D of A we have D 6∈ E(b, α) whenever
b > a/(1 + α). This follows from the corresponding statement in Proposition 2.10
and the fact that all normal parts of A are unitarily equivalent.

For later use we define the following quantities, originally introduced by Henrici
[Hen].

Definition 3.9. Let a, α > 0 and define νa,α : S∞ → R+
0 ∪ {∞} by

νa,α(A) := inf { |N |a,α : N is a quasi-nilpotent part of A } .

We call νa,α(A) the (a, α)-departure from normality of A.

Remark 3.10. Henrici originally introduced this quantity for matrices and with
the (a, α)-gauge of N replaced by the Hilbert-Schmidt norm. For a discussion of
the case where the (a, α)-gauge is replaced by a Schatten norm and its uses to
obtain resolvent estimates for Schatten class operators see [Ban].

The term ‘departure from normality’ is justified in view of the following char-
acterisation.

Proposition 3.11. Let A ∈ E(a, α). Then

νa,α(A) = 0 ⇔ A is normal.
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Proof. Let νa,α(A) = 0. Then there exists a sequence of Schur decompositions
with quasi-nilpotent parts Nn such that |Nn|a,α → 0. Thus

‖A−Dn‖ = ‖Nn‖ = s1(Nn) ≤ exp(−a)|N |a,α → 0,

where Dn are the corresponding normal parts. Thus A is a limit of normal oper-
ators converging in the uniform operator topology and is therefore normal. The
converse is trivial. �

For a given A ∈ E(a, α) the departure from normality is difficult to calculate.
The following simple but somewhat crude bound is useful in practice.

Proposition 3.12. Let A ∈ E(a, α). Then

νb,α(A) ≤ 2|A|a,α

whenever b ≤ a(1 + (1 + α)1/α)−α.

Proof. Follows from Proposition 3.7 together with the fact that |N |b,α ≤ |N |a′,α
whenever b ≤ a′. �

We are now ready to deduce resolvent estimates for arbitrary A ∈ E(a, α).
Using a Schur decomposition A = D + N with D normal and N quasi-nilpotent
we consider A as a perturbation of D by N . Since D is normal we have∥∥(zI −D)−1

∥∥ =
1

d(z, σ(D))
(z ∈ %(D)), (16)

where for z ∈ C and σ ⊂ C closed,

d(z, σ) := inf
λ∈σ

|z − λ|

denotes the distance of z to σ. The influence of the perturbation N on the other
hand, is controlled by Proposition 3.1. All in all, we have the following.

Theorem 3.13. Let A ∈ E(a, α). If b ≤ a(1 + (1 + α)1/α)−α, then∥∥(zI − A)−1
∥∥ ≤ 1

d(z, σ(A))
fb,α

(
νb,α(A)

d(z, σ(A))

)
. (17)

Proof. Fix b ≤ a(1+(1+α)1/α)−α. Then there is a Schur decomposition of A with
normal part D and quasi-nilpotent part N ∈ E(b, α) by Proposition 3.7. Since
the bound above is trivial for z ∈ σ(A) we may assume z ∈ %(A). As D and N
stem from a Schur decomposition of A we see that (zI − D)−1 exists (because
σ(A) = σ(D)) and that (zI −D)−1N is quasi-nilpotent. Moreover

|(zI −D)−1N |b,α ≤
∥∥(zI −D)−1

∥∥ |N |b,α =
|N |b,α

d(z, σ(D))
,

by (16) and Proposition 2.5. Thus (I − (zI −D)−1N) is invertible in L and∥∥(I − (zI −D)−1N)−1
∥∥ ≤ fb,α

(
|N |b,α

d(z, σ(D))

)
,
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by Proposition 3.1. Now, since (zI−A) = (zI−D)(I−(zI−D)−1N), we conclude
that (zI − A) is invertible in L and∥∥(z − A)−1

∥∥ ≤
∥∥(I − (zI −D)−1N)−1

∥∥ ∥∥(zI −D)−1
∥∥

≤ 1

d(z, σ(D))
fb,α

(
|N |b,α

d(z, σ(D))

)
.

Taking the infimum over all Schur decompositions while using σ(A) = σ(D) once
again the result follows. �

Remark 3.14.
(i) The estimate remains valid if νb,α(A) is replaced by something larger, for

example by the upper bound given in Proposition 3.12.
(ii) The estimate is sharp in the sense that if A is normal then (17) reduces to

the sharp estimate (16).

4. Bounds for the spectral distance

Using the resolvent estimates obtained in the previous section it is possible to
give upper bounds for the Hausdorff distance of the spectra of operators in E(a, α).
Recall that the Hausdorff distance Hdist (., .) is the following metric defined on the
space of compact subsets of C

Hdist (σ1, σ2) := max {d̂(σ1, σ2), d̂(σ2, σ1)},
where

d̂(σ1, σ2) := sup
λ∈σ1

d(λ, σ2)

and σ1 and σ2 are two compact subsets of C.
For A, B ∈ L we borrow terminology from matrix perturbation theory and call

d̂(σ(A), σ(B)) the spectral variation of A with respect to B and Hdist (σ(A), σ(B))
the spectral distance of A and B.

The main tool to bound the spectral variation is the following result, which is
based on a simple but powerful argument usually credited to Bauer and Fike [BauF]
who first employed it in a finite-dimensional context.

Proposition 4.1. Let A ∈ S∞. Suppose that there is a strictly monotonically
increasing surjection g : R+

0 → R+
0 such that∥∥(zI − A)−1

∥∥ ≤ g(d(z, σ(A))−1) (∀z ∈ %(A)).

Then for any B ∈ L, the spectral variation of B with respect to A satisfies

d̂(σ(B), σ(A)) ≤ h(‖A−B‖),

where h : R+
0 → R+

0 is the function defined by

h(r) = (g̃(r−1))−1

and g̃ : R+
0 → R+

0 is the inverse of the function g.

Proof. Let B ∈ L. In what follows we shall use the abbreviations

d := d(z, σ(A)), E := B − A.
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Without loss of generality we may assume that E 6= 0. We shall first establish the
following implication:

z ∈ σ(B) ∩ %(A) ⇒ ‖E‖−1 ≤
∥∥(zI − A)−1

∥∥ . (18)

To see this let z ∈ σ(B) ∩ %(A) and suppose to the contrary that∥∥(zI − A)−1
∥∥ ‖E‖ < 1.

Then
(
I − (zI − A)−1E

)
is invertible in L, which implies that (zI − B) = (zI −

A)
(
I−(zI−A)−1E

)
is invertible in L. Thus z ∈ %(B) which contradicts z ∈ σ(B).

Thus the implication (18) holds.
In order to prove the proposition it suffices to show that

z ∈ σ(B) ⇒ d(z, σ(A)) ≤ h(‖E‖) , (19)

which is proved as follows. Let z ∈ σ(B). If z ∈ σ(A) there is nothing to prove.
We may thus assume that z ∈ %(A). Hence, by (18),

‖E‖−1 ≤
∥∥(zI − A)−1

∥∥ ≤ g(d−1).

Since g is strictly monotonically increasing, so is g̃. Thus

g̃(‖E‖−1) ≤ d−1,

and hence

d(z, σ(A)) = d ≤ (g̃(‖E‖−1))−1 = h(‖E‖) = h(‖A−B‖).

�

Using the proposition above together with the resolvent estimates in Theo-
rem 3.13 we now obtain the following spectral variation and spectral distance
formulae.

Theorem 4.2. Let A ∈ E(a, α) and define a′ := a(1 + (1 + α)1/α)−α.

(i) If B ∈ L and b > a′ then

d̂(σ(B), σ(A)) ≤ ν(A)b,αhb,α

(
‖A−B‖
νb,α(A)

)
. (20)

(ii) If B ∈ E(a, α) and b > a′ then

Hdist (σ(A), σ(B)) ≤ mhb,α

(
‖A−B‖

m

)
, (21)

where m := max {ν(A)b,α, ν(B)b,α}.
Here, the function hb,α : R+

0 → R+
0 is given by

hb,α(r) := (g̃b,α(r−1))−1,

where g̃ : R+
0 → R+

0 is the inverse of the function gb,α : R+
0 → R+

0 defined by

gb,α(r) := rfb,α(r) ,

and fa,α is the function defined in Proposition 3.1.
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Proof. To prove (i) fix b ≥ a′. The assertion now follows from the previous propo-
sition by noting that∥∥(zI − A)−1

∥∥ ≤ 1

νb,α(A)
gb,α

(
νb,α(A)

d(z, σ(A))

)
by Theorem 3.13. To prove (ii) fix b ≥ a′. Then it is not difficult see that∥∥(zI − A)−1

∥∥ ≤ 1

m
gb,α

(
m

d(z, σ(A))

)
,

and ∥∥(zI −B)−1
∥∥ ≤ 1

m
gb,α

(
m

d(z, σ(B))

)
,

and the assertion follows as in the proof of (i). �

Remark 4.3.
(i) Note that limr↓0 hb,α(r) = 0, so the estimate for the spectral distance becomes

small when ‖A−B‖ is small. In fact, it can be shown that

log hb,α(r) ∼ −b1/(1+α)

(
1 + α

α

)α/(1+α)

| log r|α/(1+α) as r ↓ 0.

This follows from the asymptotics in Proposition 3.1 together with the fact that
if log f(r) ∼ a(log r)β, then log f̃(r) ∼ a−1/β(log r)1/β where f̃ is the inverse of f .

(ii) It is not difficult to see, for example by arguing as in the proof of part (ii)
of the theorem, that the inequalities (20) and (21) above remain valid if νb,α(A)
or νb,α(B) is replaced by something larger — for example, by the upper bounds
given in Proposition 3.12.

(iii) Assertion (ii) of the theorem is sharp in the sense that if both operators are
normal, then (ii) reduces to

Hdist (σ(A), σ(B)) ≤ ‖A−B‖ .

5. Appendix: Monotone arrangements

In this appendix we present a number of results concerning sequences and their
arrangements used in Section 2.

Let a : N → R be a sequence. Define

‖a‖+ := sup
n∈N

an,

‖a‖− := inf
n∈N

an.

For u : N → R call

rank (u) := card {n ∈ N : un 6= 0 } .

Definition 5.1. Let a : N → R be a sequence. Let extended real-valued sequences
a(+) and a(−) be defined by

a(+) : N → R ∪ {−∞,∞}, a(+)
n := inf

{
‖a− u‖+ : rank u < n

}
,

a(−) : N → R ∪ {−∞,∞}, a(−)
n := sup

{
‖a− u‖− : rank u < n

}
.
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We call a(+) the decreasing arrangement of a, and a(−) the increasing arrangement
of a.

This terminology is justified in view of the fact that a(+) (respectively a(−)) is
a decreasing (respectively increasing) sequence. Moreover, if a is monotonically
decreasing, then a(+) = a, and similarly for monotonically increasing sequences.

More generally, we will consider monotone arrangements of collections of se-
quences by first amalgamating them into one sequence and then regarding the
resulting monotone arrangement. A more precise definition is the following.

Definition 5.2. Given K real-valued sequences {a(1)
n }n∈N, . . . , {a(K)

n }n∈N, define a
new sequence a : N → R by

a(k−1)K+i = a
(i)
k for k ∈ N and 1 ≤ i ≤ K .

We then call a(+) (a(−)) the decreasing (increasing) arrangement of the K sequences
a(1), · · · , a(K).

Our application of decreasing arrangements will typically be to singular num-
ber sequences, all of which converge to zero at some stretched exponential rate.
Technically and notationally it is preferable to work with the logarithms of recip-
rocals of such sequences, that is, increasing sequences converging to +∞ at some
polynomial rate.

The following is the main result of this appendix.

Proposition 5.3. Let α > 0 and K ∈ N. Suppose that for each k ∈ {1, . . . , K}
we are given a real sequence a(k), a positive constant ak > 0, and a real number
Ak. Let a(−) denote the increasing arrangement of the K sequences a(1), . . . , a(K),
and define

c =

(
K∑

k=1

a
−1/α
k

)−α

.

(i) If

a(k)
n ≥ akn

α + Ak (∀n ∈ N, k ∈ {1, . . . , K}) ,

then

a(−)
n ≥ cnα + min {A1, . . . , AK} (∀n ∈ N) .

(ii) If

a(k)
n ≤ akn

α + Ak (∀n ∈ N, k ∈ {1, . . . , K}) ,

then

a(−)
n ≤ c(n + K)α + max {A1, . . . , AK} (∀n ∈ N) .

Proof. For k ∈ {1, . . . , K} set a
(k)
0 = −∞ and, for r ∈ R, define the counting

functions

µk(r) := card
{

n ∈ N : a(k)
n ≤ r

}
µ(r) := card

{
n ∈ N : a(−)

n ≤ r
}

.
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The following relations are easily verified. We have

µ(r) =
K∑

k=1

µk(r) , (22)

and

a
(−)
µ(r) ≤ r (∀r ∈ R) , (23)

µ(a(−)
n ) ≥ n (∀n ∈ N0) . (24)

(i) Set C = min {A1, . . . , AK}. Since for each k ∈ {1, . . . , K},{
n ∈ N : a(k)

n ≤ r
}
⊂ {n ∈ N : akn

α + C ≤ r } ,

we have, for r ≥ C,

µk(r) ≤ card {n ∈ N : akn
α + C ≤ r } =

⌊(
r − C

ak

)1/α
⌋

,

where b·c denotes the floor function. Thus, using (22), we have

µ(r) =
K∑

k=1

µk(r) ≤ (r − C)1/α

K∑
k=1

a
−1/α
k . (25)

If n ∈ N then a
(−)
n ≥ C, so combining (25) with (24) gives

(a(−)
n − C)1/α

K∑
k=1

a
−1/α
k ≥ µ(a(−)

n ) ≥ n ,

from which (i) follows.
(ii) Set C = max {A1, . . . , AK}. Since for each k ∈ {1, . . . , K},

{n ∈ N : akn
α + C ≤ r } ⊂

{
n ∈ N : a(k)

n ≤ r
}

,

we have, for r ≥ C,⌊(
r − C

ak

)1/α
⌋

= card {n ∈ N : akn
α + C ≤ r } ≤ µk(r) .

Thus, using (22), we have

µ(r) =
K∑

k=1

µk(r) ≥

(
(r − C)1/α

K∑
k=1

a
−1/α
k

)
−K . (26)

Now fix n0 ∈ N. Choose r0 ≥ C such that

n0 =

(
(r0 − C)1/α

K∑
k=1

a
−1/α
k

)
−K . (27)

From (26) and (27) we see that n0 ≤ µ(r0). Using (23), together with the fact

that n 7→ a
(−)
n is monotonically increasing, now yields

a(−)
n0

≤ a
(−)
µ(r0) ≤ r0 = c(n0 + K)α + C .

Since n0 was arbitrary, (ii) follows. �
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Corollary 5.4. Let α > 0 and K ∈ N. Suppose that for each k ∈ {1, . . . , K} we
are given a real sequence b(k), a positive constant ak > 0, and a real number Bk.
Let b(+) denote the decreasing arrangement of the K sequences b(1), . . . , b(K) and
define

c :=

(
K∑

k=1

a
−1/α
k

)−α

.

(i) If

b(k)
n ≤ Bk exp(−akn

α) (∀n ∈ N, k ∈ {1, . . . , K}) ,

then
b(+)
n ≤ B exp(−cnα) (∀n ∈ N) ,

where B = max {B1, . . . , BK}.
(ii) If

b(k)
n ≥ Bk exp(−akn

α) (∀n ∈ N, k ∈ {1, . . . , K}) ,

then
b(+)
n ≥ B exp(−c(n + K)α) (∀n ∈ N) ,

where B = min {B1, . . . , BK}.
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