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Abstract. We show that spectral data of transfer operators given by holomorphic data can be
approximated using an effective numerical scheme based on Lagrange interpolation. In particular,

we show that for one-dimensional systems satisfying certain complex contraction properties, spectral

data of the approximants converge exponentially to the spectral data of the transfer operator with the
exponential rate determined by the respective complex contraction ratios of the underlying systems.

We demonstrate the effectiveness of this scheme by numerically computing eigenvalues of transfer

operators arising from interval and circle maps, as well as Lyapunov exponents of (positive) random
matrix products and iterated function systems, based on examples taken from the literature.

1. Introduction

Transfer operators constitute powerful tools for analysing the behaviour of hyperbolic dynamical
systems, as their spectral data encode various dynamic and geometric quantities of interest, such
as invariant measures, exponential mixing rates, zeta functions counting periodic orbits, resonances
of hyperbolic surfaces, escape rates, stationary probability measures of iterated function systems, or
Lyapunov exponents of random matrix products (see [Rue, BoyG, Bal1, BahBF, Bor, Bal2] for some
pointers to the vast literature on this subject).

Unfortunately, spectral data of transfer operators, which typically act on infinite-dimensional
spaces, is rarely available explicitly (see, however, [BanJS, SBJ2, FGL] for examples with explicit
spectra). As a result, one needs to construct a suitable discretisation of the operator in the form
of a matrix and numerically compute the corresponding eigenvalues and eigenfunctions. A popular
approach is to use a projection-based method, also known as ‘finite section method’ or ‘Galerkin
method’ in various other contexts: given a bounded operator L : B → B on a Banach space B, one
considers an approximation scheme determined by a sequence of rank-n projections (Πn : B → B)n∈N
converging to the identity in a suitable sense, and then takes spectral data of ΠnLΠn, represented
by an n× n matrix, as an approximation to spectral data of L. However, unless extra conditions are
imposed on (Πn)n∈N and L, spectral data of (ΠnLΠn)n∈N need not converge to spectral data of L,
see, for example, [Ha].

The most widely studied projection-based method for the spectral approximation of transfer
operators is the Ulam method, originally proposed in [U] as a means to compute the fixed point of
the Perron-Frobenius operator for expanding interval maps, which yields the density of the unique
absolutely continuous invariant measure for the underlying map. The Ulam method is based on
partitioning the phase space of the underlying dynamical system into n disjoint sets and defining Πn

to be the conditional expectation with respect to this partition, that is, Πn is the projection onto the
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subspace spanned by functions which are piecewise constant on this partition. The convergence of the
Ulam method for piecewise monotonic and expanding interval maps was established in [Li]. The rate
of convergence was proven to be O(log(n)/n) in [Ke, BlK], which in turn was shown to be optimal in
[BosM], even for systems with higher regularity.

There exists by now a considerable body of literature concerned with the application of Ulam-type
methods to approximate the leading eigenvalue and eigenfunction as well as subleading eigenvalues of
transfer operators, including those arising from higher-dimensional expanding or hyperbolic maps, see
[F1, BlK, DJ, BlKL, F2, BahB, FG-TQ, GN, CrF1] to name but a few. For dynamical system with
higher regularity, the speed of convergence of projection-based methods can be improved by choosing
projections onto subspaces spanned by functions of higher smoothness, see [Liv] for a discussion of a
general strategy or [BalH] for an approach using wavelets. For practical applications, however, these
methods are often less suitable, as they typically involve numerical evaluation of integrals as well as
higher derivatives.

In this article, we shall study a spectral approximation scheme based on interpolating projections,
which, for transfer operators associated with holomorphic data, yields exponential convergence of
spectral data, while remaining practically efficient. In this scheme, the projection operator Πn maps
a function f to the unique (Laurent) polynomial of degree n that coincides with f on a set of n
predefined collocation points. The resulting approximation scheme, variously known in other contexts
as Lagrange interpolation, spectral Galerkin or collocation method, is easily implementable in practice,
as the n-th approximant ΠnLΠn of the transfer operator L can be obtained from an n×n matrix of the
form ((Lej)(xi))ij , where (ej)j is a suitable collection of (Laurent) polynomials and (xi)i a suitable

collection of collocation points (both of which may depend on n). This method has recently been
applied to transfer operators for expanding circle or interval maps by Wormell [W]; see also [BanPSW],
where this method has been used to effectively calculate resonances of Schottky surfaces using transfer
operator methods. The analysis in [W] is in fact based on a different projection scheme, in which the
rank-n projection is chosen to be the orthogonal projection (with respect to a suitably weighted L2-
scalar product) onto the first n elements of a Fourier basis (for circle maps) or a Chebyshev basis (for
interval maps), an idea that is already present in an earlier paper by MacKernan and Basios [MB]. The
main result of [W] shows that the leading eigenfunction of the transfer operator can be approximated
exponentially fast in bounded variation norm by the leading eigenfunctions of the transfer operators
truncated using the above orthogonal projection scheme. The paper also provides an algorithm in
which the L2-inner products arising in the matrices representing the truncated transfer operator are
evaluated using Chebyshev–Gauss quadrature, which effectively renders the described algorithm into a
Lagrange interpolation method, where the resulting errors are controlled using certain aliasing bounds.

By contrast, we directly investigate the (non-orthogonal) Lagrange interpolation projection, which
allows us to obtain uniform convergence of the approximation scheme on suitable Banach spaces of
holomorphic functions, which in turn yields strong convergence results for all spectral data, including
eigenvalues as well as the corresponding generalised eigenfunctions and eigendistributions. Moreover,
we obtain explicit bounds on the exponential convergence rate given by certain complex contraction
ratios of the underlying system. Whereas [MB, W] are chiefly concerned with Perron-Frobenius
operators for expanding (Markov) maps, our results apply to a more general class of transfer operators
associated to so-called holomorphic map-weight systems (see, for example, [BanJ1, BanJ2]).

We should also mention that there is a completely different approach for approximating statistical
properties of dynamical systems based on an intimate relation between certain Fredholm determinants
encoding eigenvalues of transfer operators and periodic orbits of the underlying systems. This method
became popular with the papers [ArAC1, ArAC2] and was investigated rigorously for approximating
invariant densities and metric entropy of analytic expanding Markov maps [PoJ], computing Lyapunov
exponents of random matrix products of positive matrices [Po, JM], as well as other dynamical quan-
tities and invariants [JP1, JP2, BanJP, JP4, JPV, CJ]. The convergence of these periodic orbit based
algorithms is super-exponential in the maximum period of periodic orbits used. However, the number
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of periodic orbits grows exponentially with the period, rendering their computation intractable for
large periods. Moreover, the expression involving periodic orbits used in these algorithms can become
numerically unstable for transfer operators with large weights, see the discussion in [BanPSW].

The structure of the paper is as follows. We begin with a brief introduction to the Lagrange
interpolation problem on the unit circle (Section 2.1). We then specialise to the case of equidistant in-
terpolation, and, in Section 2.2, prove a key lemma for the error of approximation of the interpolation
operator when considered on Hardy spaces of bounded holomorphic functions on certain annuli con-
taining the unit circle. In Section 2.3, we review the interpolation problem on the interval [−1, 1] with
the interpolation points chosen as zeros of Chebyshev polynomials, and show that the corresponding
Lagrange–Chebyshev interpolation operator considered on the Hardy space of bounded holomorphic
functions on Bernstein ellipses is isometrically isomorphic to the equidistant interpolation operator
from Section 2.2, yielding the same bounds for the error of approximation. In Section 2.4 the results
from the previous section are extended to Hardy spaces of bounded holomorphic functions on more
general (confocal) ellipses. In Section 3.1, we study transfer operators associated to holomorphic map-
weight systems, and show (Theorem 3.3) that these can be approximated exponentially fast in operator
norm by finite-rank Lagrange–Chebyshev approximants. An analogous result for generalised transfer
operators arising from analytic expanding circle maps (Theorem 3.7) is presented in Section 3.2. The
resulting exponential convergence of spectral data, obtained as a straightforward consequence of our
main results, Theorem 3.3 and Theorem 3.7, are collected as Corollaries 3.9 and 3.11 in Section 3.3.
Finally, in Section 4, we demonstrate that a practical algorithm based on Lagrange–Chebyshev approx-
imation can be used to effectively compute spectral data of suitable transfer operators, by applying
it to several examples from the literature and comparing it to other approximation methods. These
include eigenvalues of transfer operators arising from interval or circle maps, as well as Lyapunov
exponents for random matrix products and iterated functions systems.

2. Lagrange interpolation

2.1. Lagrange interpolation on the unit circle. We start by recalling basic facts concerning
the Lagrange interpolation problem on the unit circle (see, for example, [DG-V]). For a brief overview
over interpolation in general, see, for example, [Riv, Chapter 4].

Let T = {z ∈ C : |z| = 1} be the unit circle, and let f : T → C be a continuous function. For
n ∈ Z let en denote the Laurent monomial en(z) = zn. We are interested in approximating f by
Laurent polynomials, that is, finite linear combinations of Laurent monomials.

For N ∈ N, let Γ = {zk : k = 0, . . . , N − 1} ⊂ T be a set of N distinct complex numbers on the
unit circle, and let Nl and Nu be two non-negative integers with Nl + Nu = N − 1. We shall refer
to the points in Γ as interpolation nodes, or simply nodes. The Lagrange interpolation problem in
the space of Laurent polynomials Λ−Nl,Nu = span{en : −Nl ≤ n ≤ Nu} amounts to determining the
unique Laurent polynomial qN ∈ Λ−Nl,Nu with

qN (zk) = f(zk) for k = 0, . . . , N − 1.

It is not difficult to see that the interpolant qN can be written as a linear combination of Lagrange
Laurent polynomials as follows

qN (z) =

N−1∑
k=0

f(zk)lk(z). (1)

Here, lk is the unique Laurent polynomial in Λ−Nl,Nu satisfying lk(zj) = δjk, which is given by

lk(z) =
l(z)zNlk

l′(zk)(z − zk)zNl
,

where l(z) =
∏N−1
k=0 (z − zk). Note that (1) defines a projection operator on the space of continuous

functions, denoted by QN : C(T)→ C(T) with qN = QNf .
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As we are interested in applications to transfer operators arising from analytic maps, we shall
study the operator QN when acting on functions analytic on T, which have analytic extensions to
certain domains containing T. With slight abuse of notation we continue to write f for various
extensions as well. An important ingredient for the proofs presented in the following subsections is
the observation that the sum in (1) can be rewritten as a contour integral over such domains. More
precisely, assuming that f is holomorphic on the closure of an annulus A containing T, the Residue
Theorem implies that

f(z)−QNf(z) =
1

2πi

∫
∂A

f(ζ)l(z)ζNl

(ζ − z)l(ζ)zNl
dζ (z ∈ A), (2)

QNf(z) =
1

2πi

∫
∂A

f(ζ)
(
l(ζ)zNl − l(z)ζNl

)
(ζ − z)l(ζ)zNl

dζ (z ∈ A), (3)

where ∂A denotes the positively oriented boundary of A. In order to see this, first note that
z
Nl
k

l′(zk)(z−zk)

is the residue of ζ 7→ ζNl

l(ζ)(z−ζ) at the simple pole ζ = zk for any z ∈ A with z 6= zk. For any such z,

the Residue Theorem allows us to replace the sum in (1) by a contour integral

qN (z) =
1

2πi

∫
C

f(ζ)l(z)ζNl

(ζ − z)l(ζ)zNl
dζ,

where C is a simple closed positively oriented contour in A enclosing all zk, k = 0, . . . , N−1 but not z.
Enlarging the contour of integration and accounting for the residue at z, Equation (2) follows, which
in turn implies Equation (3). The expression in (3) is also known as the Hermite integral formula
(see, for example, [T, Theorem 11.1]).

2.2. Equidistant interpolation on the unit circle. We shall now specialise the Lagrange
interpolation problem to nodes equally spaced on T. For this, we set N = 2n, fix Nl = n, Nu = n− 1,
and choose the 2n equidistant nodes as roots of −1, that is,

zk = exp

(
2k + 1

2n
iπ

)
(k = 0, . . . , 2n− 1), (4)

so that l(z) = z2n + 1. We may now rewrite the Laurent polynomial lk in (1) as follows

lk(z) =
zn + z−n

2nzn−1k (z − zk)
=

1

2n

n−1∑
l=−n

(
z

zk

)l
.

Now, using the above expression for lk and rearranging the sum in (1) we obtain the following repre-
sentation of the equidistant interpolation projection QN = Q2n

(Q2nf)(z) =
1

2n

n−1∑
l=−n

cl,2n(f)el(z) (z ∈ T, f ∈ C(T)), (5)

where the coefficient functionals

cl,2n(f) =

2n−1∑
k=0

f(zk)z−lk (f ∈ C(T))

turn out to be the discrete Fourier transform of the sequence f(z0), f(z1), . . . , f(z2n−1). As a result,
the expression (5) is particularly useful for numerical implementation. In the case where f is not only
continuous but also holomorphic on the closure of an annulus A containing T, the representations (2)
and (3) take the following form

f(z)− (Q2nf)(z) =
1

2πi

∫
∂A

f(ζ)σ(zn)

(ζ − z)σ(ζn)
dζ (z ∈ A), (6)
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(Q2nf)(z) =
1

2πi

∫
∂A

f(ζ) (σ(ζn)− σ(zn))

(ζ − z)σ(ζn)
dζ (z ∈ A), (7)

where we have used l(z)/zn = (zn + z−n) = 2σ(zn) with σ denoting the Joukowski transform

σ(z) =
1

2
(z + z−1). (8)

We shall now prove a simple lemma that will turn out to be the key estimate allowing us to estab-
lish convergence of the Lagrange interpolation method for transfer operators arising from expanding
analytic circle maps. In order to formulate it we require some more notation.

For ρ > 1 let Aρ = {z ∈ C : ρ−1 < |z| < ρ} be an open annulus with radii ρ and ρ−1. We write
H∞(Aρ) for the Hardy space of bounded holomorphic functions on Aρ which, equipped with the norm
‖f‖H∞(Aρ)

= sup{|f(z)| : z ∈ Aρ}, is a Banach space.

Observe now that for 1 < r < R, we have Ar ⊂ AR, so H∞(AR) can be identified with a subspace
of H∞(Ar) via the canonical embedding J : H∞(AR)→ H∞(Ar) given by Jf = f |Ar . The following
lemma shows that J is approximated at exponential speed by the equidistant Lagrange interpolation
projections.

2.1. Lemma. For 1 < r < R let J : H∞(AR) → H∞(Ar) denote the canonical embedding and
consider Q2n as an operator from H∞(AR) to H∞(Ar). Then, for any n ∈ N,

‖J −Q2n‖H∞(AR)→H∞(Ar)
≤ cr,R

cosh(n log(r))

sinh(n log(R))
, (9)

‖Q2n‖H∞(AR)→H∞(Ar)
≤ cr,R

cosh(n log(R)) + cosh(n log(r))

sinh(n log(R))
, (10)

where

cr,R =
sinh(logR)

cosh(log(R))− cosh(log(r))
.

Proof. We start with the following simple inequalities:

(i) |σ(zn)| ≤ 1
2 (rn + r−n) for any z ∈ Ar and any n ∈ N;

(ii) |σ(ζn)| ≥ 1
2 (Rn −R−n) for any ζ ∈ ∂AR and any n ∈ N.

Next, fix f ∈ H∞(AR) with ‖f‖H∞(AR) ≤ 1 and let z ∈ Ar. By [Rud, Theorem 17.11], the (non-

tangential) limit f∗(ζ) for ζ ∈ ∂AR exists a.e. and f∗ is integrable on ∂AR. Moreover, the integral
representations (6) and (7) remain valid with ∂AR in place of ∂A. Using the inequalities (i) and (ii)
above, we thus obtain

|f(z)−Q2nf(z)| ≤ 1

2π

∫
|ζ|=R

|f∗(ζ)||σ(zn)|
|z − ζ||σ(ζn)|

|dζ|+ 1

2π

∫
|ζ|=R−1

|f∗(ζ)||σ(zn)|
|z − ζ||σ(ζn)|

|dζ|

≤
(

R

R− |z|
+

R−1

|z| −R−1

)(
rn + r−n

Rn −R−n

)
=

(
R−R−1

(R+R−1)− (|z|+ |z|−1)

)(
rn + r−n

Rn −R−n

)
,

which, after invoking inequality (i) once more, yields

|f(z)−Q2nf(z)| ≤ sinh(logR)

cosh(log(R))− cosh(log(r))

cosh(n log(r))

sinh(n log(R))
,

which in turn furnishes (9).
Similarly, for f ∈ H∞(AR) with ‖f‖H∞(AR) ≤ 1 and z ∈ Ar we obtain

|Q2nf(z)| ≤
(

R−R−1

(R+R−1)− (r + r−1)

)(
Rn +R−n + rn + r−n

Rn −R−n

)
,

from which (10) follows. �
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2.2. Remark. In particular, Lemma 2.1 implies that

‖J −Q2n‖H∞(AR)→H∞(Ar)
= O

(( r
R

)n)
as n→∞,

‖Q2n‖H∞(AR)→H∞(Ar)
= O (1) as n→∞,

that is, equidistant Lagrange interpolation is stable and converges exponentially to the canonical
embedding of H∞(AR) in H∞(Ar).

2.3. Lagrange–Chebyshev interpolation on the interval [−1, 1]. Lagrange interpolation
on the unit circle at equidistant nodes is closely related to Lagrange–Chebyshev interpolation on the
interval [−1, 1], as we shall see presently.

We write Tn for the Chebyshev polynomial of the first kind of degree n, which is given by
Tn(cos(θ)) = cos(nθ) for n ∈ N0. The zeros of Tn, referred to as Chebyshev nodes (of order n),
are the orthogonal projections of the 2n equidistant nodes in (4) onto the interval [−1, 1], and are
given by

xk = cos

(
(2k + 1)π

2n

)
(k = 0, . . . , n− 1). (11)

Suppose now that we are given a continuous function f : [−1, 1] → C. The Lagrange–Chebyshev
interpolation problem is to find the unique polynomial Pnf of degree n − 1 that coincides with f at
the Chebyshev nodes x0, . . . , xn−1 of order n. This polynomial can be written

(Pnf)(x) =

n−1∑
k=0

f(xk)lk(x),

where lk is the Lagrange polynomial associated with xk, given by

lk(x) =
Tn(x)

T ′n(x)(x− xk)
.

The resulting projection operator Pn : C([−1, 1]) → C([−1, 1]) will be referred to as Lagrange–
Chebyshev projection operator. Following the same arguments as in Section 2.1, for f extending
holomorphically to a complex neighborhood U ⊃ [−1, 1], it is easy to see that Pn has the representa-
tion

(Pnf)(z) =
1

2πi

∫
C

f(ζ)(Tn(ζ)− Tn(z))

(ζ − z)Tn(ζ)
dζ (z ∈ U), (12)

where C is a simple closed positively oriented contour in U containing z and the interval [−1, 1] in its
interior.

The operators Pn and Q2n are intimately related, and, as we shall see in Lemma 2.6, the conver-
gence properties of the former can be deduced from those of the latter. Before establishing this, we
require some more terminology.

2.3. Notation. For ρ ∈ R with ρ > 1 we write

Eρ :=

{
1

2
(w + w−1) : w ∈ Aρ

}
for the domain in C containing the origin, bounded by the ellipse with lengths of major and minor
semi-axis given by a = cosh(log ρ) and b = sinh(log ρ), respectively, and foci at −1 and 1. We shall
refer to Eρ as a standard elliptic domain, or, in slight abuse of terminology, simply as a standard
ellipse. Note also that we have

Eρ = σ(Aρ).

To each Eρ we associate the Hardy space H∞(Eρ), that is, the Banach space of bounded holo-
morphic functions on Eρ equipped with the norm ‖f‖H∞(Eρ)

= sup{|f(z)| : z ∈ Eρ}. We shall now

show that there is an isometric isomorphism between H∞(Eρ) and the Banach space

H∞e (Aρ) = {f ∈ H∞(Aρ) : f(z) = f(1/z), ∀z ∈ Aρ}.
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2.4. Lemma. Let Dσ be the composition operator given by

Dσ : f 7→ f ◦ σ.
Then, Dσ is an isometric isomorphism between H∞(Eρ) and H∞e (Aρ).

Proof. As σ is holomorphic on Aρ with σ(Aρ) ⊆ Eρ, it follows that Dσf is holomorphic on Aρ
for any f ∈ H∞(Eρ). Since σ(z) = σ(1/z) it follows that (Dσf)(z) = (Dσf)(1/z). Note that σ is
surjective (more precisely it is a two-to-one map from Aρ to Eρ), which implies that Dσ is an isometry,
since

||Dσf ||H∞e (Aρ) = sup
z∈Aρ

|(f ◦ σ)(z)| = sup
w∈σ(Aρ)

|f(w)| = sup
w∈Eρ

|f(w)| = ‖f‖H∞(Eρ).

Moreover, the surjectivity of σ implies that Dρ is injective.
In order to show that Dσ is surjective, we pick g ∈ H∞e (A) and write it as a Laurent series

g(z) =
∑∞
n=−∞ cnen(z). Since g(z) = g(1/z) it follows that cn(g) = c−n(g) for all n ∈ N, and so

g(z) = c0(g) + 2

∞∑
n=1

cn(g)(σ(en(z)) = c0(g) + 2

∞∑
n=1

cn(g)Tn(σ(z)).

Now, as this series converges uniformly on compact subsets of Aρ, the surjectivity of σ implies uniform
convergence of c0(g) + 2

∑∞
n=1 cn(g)Tn(w) on compact subsets of Eρ, implying that f(w) = c0(g) +

2
∑∞
n=1 cn(g)Tn(w) is holomorphic on Eρ. As supw∈Eρ |f(w)| = ‖g‖H∞e (Aρ) we have an f ∈ H∞(Eρ)

satisfying g = Dσf . �

Using the fact that σ(z) = σ(1/z) for any z ∈ Aρ, we can consider the operator Q2n given in (7)
as an operator from H∞e (AR) to H∞e (Ar) for some 1 < r < R.

2.5. Lemma. For 1 < r < R, consider Q2n in (7) as an operator from H∞e (AR) to H∞e (Ar), and
consider Pn in (12) as an operator from H∞(ER) to H∞(Er). Denote by Dσ,q : H∞(Eq)→ H∞e (Aq)
with q = r,R, the isomorphisms defined in Lemma 2.4. Then,

Q2nDσ,R = Dσ,rPn.

Proof. First observe that we have the following relation

ζ

ζ − z
− ζ−1

ζ−1 − z
=

1

1− zζ−1
+

z−1

ζ − z−1
=

ζ − ζ−1

(1− zζ−1)(ζ − z−1)
=

σ′(ζ)ζ

σ(ζ)− σ(z)
, (13)

where ζ and z are any non-zero complex numbers. For any such z we also have the relation Tn(σ(z)) =
1
2 (zn + z−n) = σ(en(z)) = σ(e−n(z)). Using the shorthand

K(ζ, z) =
σ(ζn)− σ(zn)

σ(ζn)
=
Tn(σ(ζ))− Tn(σ(z))

Tn(σ(ζ))
,

we obtain, for any f ∈ H∞(ER), any z ∈ Ar and any ρ with r < ρ < R

Q2n(Dσ,Rf)(z) =
1

2πi

∫
∂Aρ

f(σ(ζ))K(ζ, z)

ζ − z
dζ

=
1

2π

∫ 2π

0

f(σ(ρeit))K(ρeit, z)ρeit

ρeit − z
dt− 1

2π

∫ 2π

0

f(σ((ρeit)−1))K((ρeit)−1, z)

((ρeit)−1 − z)ρeit
dt

=
1

2π

∫ 2π

0

f(σ(ρeit))K(ρeit, z)σ′(ρeit)ρeit

σ(ρeit)− σ(z)
dt

=
1

2πi

∫
∂Eρ

f(ζ)(Tn(ζ)− Tn(σ(z)))

(ζ − σ(z))Tn(ζ)
dζ

= Dσ,r(Pnf)(z),

where the third equality uses relation (13), and the penultimate equality follows from a change of
variables with ζ = σ(ρeit). �
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The convergence properties of Pn now follow from the convergence properties of Q2n.

2.6. Lemma. Let 1 < r < R and let Ĵ : H∞(ER) → H∞(Er) denote the canonical embedding.
Then, for any n ∈ N,

‖Ĵ − Pn‖H∞(ER)→H∞(Er) ≤ cr,R
cosh(n log(r))

sinh(n log(R))
, (14)

‖Pn‖H∞(ER)→H∞(Er)
≤ cr,R

cosh(n log(R)) + cosh(n log(r))

sinh(n log(R))
, (15)

where

cr,R =
sinh(logR)

cosh(log(R))− cosh(log(r))
.

Proof. Let Dσ,r and Dσ,R denote the isometric isomorphisms given in Lemma 2.4 and observe

that Ĵ = D−1σ,rJDσ,R and Pn = D−1σ,rQ2nDσ,R. The bounds (14) and (15) now follow from Lemma 2.1.
�

2.7. Remark. For practical purposes (see the algorithm in Section 4), a more useful representation
of the Lagrange–Chebyshev interpolation operator Pn is given by (see, for example, [E])

(Pnf)(x) =
d0,n(f)

2
+

n−1∑
l=1

dl,n(f)Tl(x) (x ∈ [−1, 1], f ∈ C([−1, 1])), (16)

where

dl,n(f) =
2

n

n−1∑
k=0

f(xk)Tl(xk) (f ∈ C([−1, 1])),

which can be derived from expression (5) and the fact that Q2nDσ = DσPn.

2.4. Lagrange–Chebyshev approximation of holomorphic functions on general elliptic
domains. In the following, we generalise the results of the previous subsection to functions holomor-
phic on domains bounded by ellipses with arbitrary (distinct) foci γ+, γ− ∈ C.

For γ = (γ+, γ−), define a linear map αγ : C→ C as

αγ(z) =
γ+ − γ−

2
z +

γ+ + γ−
2

.

Then

Eγ,ρ = αγ(Eρ)

is a domain bounded by an ellipse with foci at γ+ and γ−. For γ = (1,−1) we recover the standard
elliptic domain Eρ.

Let H∞(Eγ,ρ) denote the Banach space of bounded holomorphic functions on Eγ,ρ equipped with
the supremum norm. We have the following simple lemma.

2.8. Lemma. Let Cαγ be the composition operator given by

Cαγ : f 7→ f ◦ αγ .

Then, Cαγ is an isometric isomorphism between H∞(Eγ,ρ) and H∞(Eρ).

Proof. As aγ is invertible, it follows that Cαγ is invertible with inverse C−1αγ = Cα−1
γ

. Also, for

any f ∈ H∞(Eγ,ρ) we have∥∥Cαγf∥∥H∞(Eρ)
= sup
z∈Eρ

|(f ◦ αγ)(z)| = sup
w∈αγ(Eρ)

|f(w)| = ‖f‖H∞(Eγ,ρ)
,

so Cαγ is indeed an isometric isomorphism. �
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Using the previous lemma we can now define generalised Lagrange–Chebyshev projections Pγ,n
on H∞(Eγ,R) by

Pγ,n = C−1αγ PnCαγ . (17)

For f a continuous function on the line segment αγ([−1, 1]), Pγ,nf is the polynomial of degree n− 1
that coincides with f at the images of the Chebyshev points of order n under αγ . The following is a
straightforward consequence of Lemma 2.6 and the previous lemma.

2.9. Lemma. Let Ĵγ : H∞(Eγ,R) → H∞(Eγ,r) denote the canonical embedding with 1 < r < R.
Then, for any n ∈ N,

‖Ĵγ − Pγ,n‖H∞(Eγ,R)→H∞(Eγ,r) ≤ cr,R
cosh(n log(r))

sinh(n log(R))
, (18)

‖Pγ,n‖H∞(Eγ,R)→H∞(Eγ,r)
≤ cr,R

cosh(n log(R)) + cosh(n log(r))

sinh(n log(R))
, (19)

where

cr,R =
sinh(logR)

cosh(log(R))− cosh(log(r))
.

3. Approximation of transfer operators with holomophic data

In this section we consider general transfer operators associated with holomorphic data on elliptic
and annular domains. We show that Lagrange–Chebyshev and equidistant Lagrange approximants
converge to the respective original operators at exponential speed in operator norm. These results
are obtained using a factorisation argument already presented in various papers (see, for example,
[BanJ1, BanJ2, SBJ1, BanJS]), together with Lemmas 2.1 and 2.9.

3.1. Transfer operators with holomorphic data on elliptic domains. For the remainder
of this section we shall fix 1 < r < R and a pair of foci γ = (γ+, γ−) ∈ C2 with γ+ 6= γ−.

3.1. Definition. Let 1 < r < R and let I be a finite or countable index set. A holomorphic
map-weight system is given by a family (Φi)i∈I of holomorphic maps in H∞(Eγ,R) satisfying⋃

i∈I
Φi(Eγ,R) ⊆ Eγ,r, (20)

and a family of weights (Wi)i∈I in H∞(Eγ,R) satisfying

Sγ,R = sup

{∑
i∈I
|Wi(z)| : z ∈ Eγ,R

}
<∞, (21)

With each such holomorphic map-weight system we associate a transfer operator given by

Lf =
∑
i∈I

Wi · f ◦ Φi. (22)

In the following, we shall see that the transfer operator maps H∞(Eγ,r) compactly into itself;
moreover, the transfer operator also maps H∞(Eγ,R) compactly into itself, and we will use the same
symbol L for the operator on H∞(Eγ,r) as well as for its restriction to H∞(Eγ,R). We shall also see
that the transfer operator on either H∞(Eγ,r) or H∞(Eγ,R) can be effectively approximated using
Lagrange–Chebyshev interpolation, in a sense to be made precise below.

We start by proving that the transfer operator can be lifted to a bounded operator from H∞(Eγ,r)
to H∞(Eγ,R).

3.2. Lemma. The transfer operator arising from a holomorphic map-weight system maps H∞(Eγ,r)
continuously to H∞(Eγ,R) with

‖L‖H∞(Eγ,r)→H∞(Eγ,R) ≤ Sγ,R.
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Proof. Without loss of generality we shall assume that I = N. Fix f ∈ H∞(Eγ,r) and, for

k ∈ N, write gk(z) :=
∑k
i=1Wi(z)f(Φi(z)). We clearly have gk ∈ H∞(Eγ,R). Since

|gk(z)| ≤
k∑
i=1

|Wi(z)||f(Φi(z))| ≤ Sγ,R ‖f‖H∞(Eγ,r)
(23)

for all z ∈ Eγ,R, it follows that the sequence (gk)k∈N is uniformly bounded on Eγ,R. Moreover, the
limit limk→∞ gk(z) =: g(z) exists for every z ∈ Eγ,R. By Vitali’s convergence theorem (see, for
example, [N, Proposition 7]) the sequence (gk)k∈N thus converges uniformly on compact subsets of
Eγ,R. Hence g is analytic on Eγ,R. Moreover, using (23) it follows that |g(z)| ≤ Sγ,R‖f‖H∞(Eγ,r) for
any z ∈ Eγ,R. Thus Lf = g ∈ H∞(Eγ,R) and ‖Lf‖H∞(Eγ,R) ≤ Sγ,R ‖f‖H∞(Eγ,r)

, as required. �

The lemma above implies that the transfer operator of a holomorphic map-weight system is com-
pact, when viewed as an operator from H∞(Eγ,r) into itself. In order to see this, let L̃ : H∞(Eγ,r)→
H∞(Eγ,R) denote the lifted transfer operator which is bounded by Lemma 3.2 and recall that the

canonical embedding Ĵγ : H∞(Eγ,R) → H∞(Eγ,r) is compact by Lemma 2.9. Thus L = ĴγL̃ is a

compact endomorphism of H∞(Eγ,r). The same argument shows that L = L̃Ĵγ is a compact endo-
morphism of H∞(Eγ,R). This factorisation argument is also at the heart of the following theorem, our
main result, which shows that L can be approximated at exponential speed using Lagrange–Chebyshev
projections.

3.3. Theorem. Let L be the transfer operator associated with a holomorphic map-weight system
and (Pγ,n)n∈N the sequence of Lagrange–Chebyshev projections given in (17). Then the following
holds.

(i) L : H∞(Eγ,r)→ H∞(Eγ,r) is compact and

‖L − Pγ,nL‖H∞(Eγ,r)→H∞(Eγ,r)
= O

(( r
R

)n)
as n→∞ .

(ii) L : H∞(Eγ,R)→ H∞(Eγ,R) is compact and

‖L − LPγ,n‖H∞(Eγ,R)→H∞(Eγ,R) = O
(( r

R

)n)
as n→∞ .

Proof. Let L̃ : H∞(Eγ,r) → H∞(Eγ,R) denote the lifted transfer operator from Lemma 3.2

and Ĵγ the canonical embedding operator from H∞(Eγ,R) to H∞(Eγ,r). For part (i) we use the

factorisation L = ĴγL̃. Lemmas 3.2 and 2.9 imply that L : H∞(Eγ,r) → H∞(Eγ,r) is compact;
moreover

‖L − Pγ,nL‖H∞(Eγ,r)→H∞(Eγ,r)
=
∥∥∥ĴγL̃ − Pγ,nL̃∥∥∥

H∞(Eγ,r)→H∞(Eγ,r)

≤
∥∥∥Ĵγ − Pγ,n∥∥∥

H∞(Eγ,R)→H∞(Eγ,r)

∥∥∥L̃∥∥∥
H∞(Eγ,r)→H∞(Eγ,R)

and the remaining assertion follows. For the proof of part (ii) write L = L̃Ĵγ and proceed as in
part (i). �

3.4. Remark. A quick glance at the proof shows that the implied constants in the theorem above
can be made explicit.

3.2. Transfer operators with holomorphic data on annular domains. In this subsection
we shall state results analogous to those in the previous subsection, but now for transfer operators
considered on the space of bounded holomorphic functions on annular domains containing the unit
circle. The main application we have in mind is to generalised transfer operators associated with
analytic expanding circle maps, that is, maps τ : T → T with infz∈T |τ ′(z)| > 1. Note that any such
map admits analytic extensions to annuli AR for suitable R > 1.
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3.5. Definition. Let τ : T → T be an analytic expanding circle map. Suppose that there are
positive real numbers r and R with 1 < r < R such that both τ and 1/τ are holomorphic on AR, and
such that

τ(Ar) ⊃ cl(AR),

where cl(·) denotes the closure of a set of C. To any such map τ and a weight function w ∈ H∞(AR)
we associate the transfer operator LT : L1(T)→ L1(T) defined by

(LTf)(z) =
∑

ζ: τ(ζ)=z

w(ζ)

|τ ′(ζ)|
f(ζ), (24)

where the summation extends over the (finitely many) pre-images of the point z under τ .

We shall now show that restricted to H∞(AR), this operator is compact and can be approximated
at exponential speed using equidistant interpolation. In analogy with Lemma 3.2, we first show that
LT lifts to a bounded operator from H∞(Ar) to H∞(AR).

3.6. Lemma. The operator LT given in Definition 3.5 maps H∞(Ar) continuously to H∞(AR).
In particular, we have

‖LT‖H∞(Ar)→H∞(AR) ≤ ‖w‖H∞(Ar)

(
rωτ

δ+(rωτ )
+

r−ωτ

δ−(r−ωτ )

)
,

where δ+(r) = min|z|=r |τ(z)| − R and δ−(r) = 1/R − max|z|=r |τ(z)|, with ωτ = 1 for orientation
preseving and ωτ = −1 for orientation reversing τ .

Proof. As τ is expanding, it is a K-fold covering for some K > 1, and |τ ′| = ωττ
′. Let φi denote

the i-th local inverse branch of τ , then LT can be written as

LTf = ωτ

K∑
i=1

(w ◦ φi) · φ′i · (f ◦ φi).

Given f ∈ H∞(Ar) with ‖f‖H∞(Ar)
≤ 1, we want to show that LTf ∈ H∞(AR). We follow the proof

of [SBJ1, Lemma 2.3] by estimating the asymptotic behaviour of Fourier coefficients of LTf . Using
change of variables we can express the n-th Fourier coefficient of LTf as

cn(LTf) =
ωτ
2πi

∫
T

w(z)f(z)

τ(z)n+1
dz.

Fix n ≥ 0. By [Rud, Theorem 17.11], the (nontangential) limit f∗(z) for z ∈ ∂Ar exists a.e. and f∗

is integrable on ∂Ar. Moreover, as z 7→ w(z)
τ(z)n+1 is holomorphic on cl(Ar) we may deform the contour

to obtain

|cn(LTf)| =

∣∣∣∣∣ ωτ2πi

∫
|z|=rωτ

w(z)f∗(z)

τ(z)n+1
dz

∣∣∣∣∣ ≤ Sr rωτ(
inf |z|=rωτ |τ(z)|

)n+1 = Sr
rωτ

(R+ δ+(rωτ ))
n+1 ,

where Sr = ‖w‖H∞(Ar)
. Similarly, for n ≥ 1, we have

|c−n(LTf)| ≤ Srr−ωτ
(
R−1 − δ−(r−ωτ )

)n−1
.

As τ is holomorphic on AR, it follows by the Open Mapping Theorem that τ(Ar) is open. Thus the
condition τ(Ar) ⊃ cl(AR) implies δ+(rωτ ) > 0 and δ−(r−ωτ ) > 0. The same arguments as in the
proof of [SBJ1, Lemma 2.3] now yield LTf ∈ H∞(AR) as well as the claimed upper bound for the
norm. �

Using the same factorisation argument already employed in Section 3.1, we obtain the following
analogue of Theorem 3.3 for transfer operators on annular domains.



12 O.F. BANDTLOW AND J. SLIPANTSCHUK

3.7. Theorem. Let LT be the transfer operator given in Definition 3.5 and let (Q2n)n∈N be the
sequence of equidistant Lagrange interpolation projections given in (7). Then the following holds.

(i) LT : H∞(Ar)→ H∞(Ar) is compact and

‖LT −Q2nLT‖H∞(Ar)→H∞(Ar)
= O

(( r
R

)n)
as n→∞.

(ii) LT : H∞(AR)→ H∞(AR) is compact and

‖LT − LTQ2n‖H∞(AR)→H∞(AR) = O
(( r

R

)n)
as n→∞.

3.8. Remark. As before, the implied constants in the theorem above can be made explicit.

3.3. Convergence of spectral data. Theorems 3.3 and 3.7 together with standard results
from spectral perturbation theory now imply the desired convergence of spectral data of Pγ,nL to
spectral data of L, and similarly, the convergence of spectral data of Q2nLT to spectral data of LT.
In order to avoid repetition, we shall state all results simultaneously for both Lagrangre–Chebyshev
and equidistant Lagrange interpolation. For the remainder of this subsection, we write Uρ, Pn, L for
either Eγ,ρ, Pγ,n, L (as in Theorem 3.3) or Aρ, Q2n, LT (as in Theorem 3.7), respectively, where in
both cases ρ may be either r or R.

3.9. Corollary. Let L : H∞(Ur)→ H∞(Ur) denote the transfer operator as in Theorem 3.3 or
Theorem 3.7 and let Ln = PnL. Then the following holds.

(i) Any convergent sequence (µn)n∈N with µn ∈ spec(Ln) converges to a spectral point of L.
(ii) Conversely, for any µ ∈ spec(L), there exists a sequence (µn)n∈N with µn ∈ spec(Ln), such that

µn → µ as n→∞. More precisely, if µ is an eigenvalue with ascent1 `, we have

|µ− µn| = O

(( r
R

)n/`)
as n→∞.

(iii) Let µ ∈ spec(L) \ {0} and let (µn)n∈N be a sequence with µn ∈ spec(Ln) such that µn → µ as
n→∞. Writing P for the spectral projection associated with the eigenvalue µ of L and (hn)n∈N
for a sequence of generalised eigenvectors associated with the eigenvalue µn of Ln, normalised
so that ‖hn‖H∞(Ur)

= 1, we have

‖Phn − hn‖H∞(Ur) = O
(( r

R

)n)
as n→∞.

Proof. Statements (i) and (ii) are known as Properties U and L, respectively, and follow from
[ALL, Corollaries 2.7, 2.13], with the bound on the convergence rate following by combining our Theo-
rem 3.3 (or Theorem 3.7, respectively) with Theorems 2.17, 2.18, and ensuing remarks in [ALL]. Part
(i) of Theorem 3.3 (or Theorem 3.7, respectively) and [ALL, Proposition 2.9] finally yield statement
(iii). �

3.10. Remark. Analogous spectral approximation results hold for L : H∞(UR) → H∞(UR) and
Ln = LPn. However, these are less important from a practical perspective. The reason for this is that,
while the non-zero eigenvalues of PnL and LPn coincide, this is not the case for the corresponding
generalised eigenspaces, and, as we shall see in Section 4, the generalised eigenvectors of PnL are
easier to calculate than those of LPn.

The corollary above provides estimates for the speed of convergence of the generalised eigenvectors
of PnL to the corresponding generalised eigenspace of L. Similar results can be obtained for the
corresponding eigenfunctionals. In order to see this, let H∞(UR)∗ denote the dual space of H∞(UR)
equipped with the usual strong dual topology turning H∞(UR)∗ into a Banach space.

1An eigenvalue µ of an operator T is said to have ascent `, if ` is the smallest integer such that the kernel of

(µI − T )` equals that of (µI − T )`+1. In particular, if µ is algebraically simple, then ` = 1.
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Part (ii) of Theorem 3.3 (or Theorem 3.7, respectively) implies that

‖L∗ − P ∗nL∗‖H∞(UR)∗→H∞(UR)∗ = O
(( r

R

)n)
as n→∞,

that is, the adjoint approximant P ∗nL∗ converges to the adjoint L∗ of L in the operator norm on
H∞(UR)∗, which in turn implies convergence of the corresponding generalised eigenspaces. More
precisely, we have the following dual analogue of part (iii) of Corollary 3.9.

3.11. Corollary. Let L∗ : H∞(UR)∗ → H∞(UR)∗ denote the adjoint transfer operator as in
Theorem 3.3 or Theorem 3.7, and let L∗n = P ∗nL∗. Suppose that µ ∈ spec(L∗) \ {0} and that (µn)n∈N
is a sequence with µn ∈ spec(L∗n) such that µn → µ as n→∞. Writing P∗ for the spectral projection
associated with the eigenvalue µ of L∗ and (h∗n)n∈N for a sequence of generalised eigenvectors associated
with the eigenvalue µn of L∗n, normalised so that ‖h∗n‖H∞(UR)∗ = 1, we have

‖P∗h∗n − h∗n‖H∞(UR)∗ = O
(( r

R

)n)
as n→∞.

4. Applications

In this section we apply the Lagrange approximation algorithm to several approximation problems
involving transfer operators and compare its performance with algorithms available in the literature.

4.1. Spectral data of Lagrange approximants. Before going into details we briefly review
how to calculate eigendata of finite-rank approximants obtained by applying Lagrange projections to
the transfer operator of a holomorphic map-weight system. In order to avoid cluttered notation, we
write X for any of the underlying Banach spaces discussed in the previous section, L : X → X for the
transfer operator arising from a holomorphic map-weight system, which we merely need to assume
bounded for the purpose of this discussion, and P : X → X for a bounded projection of rank n, given
by

Pf =

n∑
l=1

e∗l (f)el (f ∈ X),

where el ∈ X and e∗l ∈ X∗ for l = 1, . . . , n. Here P may be thought of as any of the Lagrange
projections given in Equations (5), (16) or (17). Given L and P as above, define an n× n matrix M
by

Mkl = e∗k(Lel) (k, l ∈ {1, . . . , n}). (25)

It is not difficult to see, for example, by appealing to the Principle of Related Operators (see [P,
Section 3.3]) that the operators PL, LP , PLP and M have the same non-zero eigenvalues with the
same algebraic multiplicities; in particular,

spec(PL) \ {0} = spec(LP ) \ {0} = spec(PLP ) \ {0} = spec(M) \ {0}.
As for the corresponding generalised eigenvectors and eigenfunctionals, a short calculation shows that
for any non-zero µ ∈ C and any k ∈ N we have

h ∈ ker((µI − PLP )k) iff h =

n∑
l=1

xlel with x ∈ ker((µI −M)k), (26)

h∗ ∈ ker((µI − P ∗L∗P ∗)k) iff h∗ =

n∑
l=1

xle
∗
l with x ∈ ker((µI −MT )k). (27)

Thus the generalised eigenvectors and eigenfunctionals of PLP can be obtained from the generalised
right and left eigenvectors of M . Finally, we note that for any non-zero µ ∈ C and any k ∈ N we have

ker((µI − PLP )k) = ker((µI − PL)k), (28)

so that the spectral convergence results contained in Corollaries 3.9 and 3.11 can be applied to the
approximate eigendata obtained through (26) and (27).
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The proof of (28) is straightforward: given h ∈ ker(µI−PLP ) we have µh = PLPh, so h must be
in the range of P , hence Ph = h, from which µh = PLh, that is, h ∈ ker(µI −PL). For the converse,
suppose that h ∈ ker(µI − PL), so h must again be in the range of P , from which Ph = h, and so
h ∈ ker(µI − PLP ). The proof of the general case with k > 1 is similar.

For the sake of completeness, we present a simple algorithm for the computation of matrix elements
Mkl in (25) for L a transfer operator associated with a map-weight system holomorphic on standard
ellipses, that is γ = (−1, 1), and P the Lagrange–Chebyshev interpolation operator in (16).

Algorithm 1 Lagrange–Chebyshev approximation of a transfer operator

Require: n, {Wj}j=0,...,d−1, {Φj}j=0,...,d−1
{Evaluation of data at interpolation points}
for m = 0 to n− 1 do
xm ← cos π(2m+1)

2n
for j = 0 to d− 1 do
wjm ←Wj(xm)
φjm ← Φj(xm)

end for
end for
{Computation of matrix entries}
for k = 0 to n− 1 do
for l = 0 to n− 1 do
Mkl ← 2−δ0,k

n

∑n−1
m=0 Tk(xm)

∑d−1
j=0 wjmTl(φjm)

end for
end for
return M

4.1. Remark. It it not difficult to see that M = AB with Akl =
2−δ0,k
n Tk(xl) and Bkl = (LTl)(xk)

for k, l = 0, . . . , n− 1, which yields a more efficient way to compute M in the algorithm above.

4.2. Decay of correlations. In [BahB], Bahsoun and Bose consider discretisation schemes based
on piecewise linear approximations to given functions and apply them to transfer operators arising
from interval maps with the transfer operator acting on the Banach space of Lipschitz continuous
functions. The resulting scheme is shown to provide convergent approximations to the invariant
densities together with rigorous error bounds in a topology stronger than pointwise convergence (that
is, stronger than the usual L1-convergence obtained through the standard Ulam method).

As an example, the authors establish rigorous error bounds for their approximation scheme when
applied to the full-branch map T : [0, 1]→ [0, 1] given by

T (x) =

{
11x
1−x 0 ≤ x < 1

12 ,

12x− i i
12 < x ≤ i+1

12 ,

where i = 1, . . . , 11. Using the notation from Section 3.1 we obtain a holomorphic map-weight system
on an ellipse Eγ,R ⊃ [0, 1] with γ = (0, 1) and suitable R > 1 (in fact, any R ∈ (10, 20) is suitable)
given by a family {Φi}11i=0 with Φ0(x) = x

11+x and Φi(x) = x+i
12 for i = 1, . . . , 11, and a family of

weights {Wi}11i=0 given by Wi(x) = Φ′i(x). The associated transfer operator given by (22) is well-
defined and compact on H∞(Eγ,R) with a simple leading eigenvalue at 1. As is known, the rate of
correlation decay is determined by the subleading eigenvalue of L, which can easily be approximated
using the Lagrange–Chebyshev approximation algorithm.

In [BahB], the subleading eigenvalue of λ2 of L was numerically observed to be simple, which by
Corollary 3.9(ii) implies

|λ2 − λ2,n| = O
(( r

R

)n)
as n→∞,
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where λ2,n is the simple subleading eigenvalue of Ln (for sufficiently large n). Below we compute λ2,n
for different values of n illustrating the rapid exponential convergence of the scheme.

2 0.0899609091606775605271181343464894043253988825186233560706

12 0.0900761270052955777611934889786172935065120132357444867624

22 0.0900761270052955778472464929999485481037667345626173002032
32 0.0900761270052955778472464929999485626943805990355232965894

42 0.0900761270052955778472464929999485626943805990355246068579

In order to obtain a good contraction ratio, we performed a numerical search in the collection of
ellipses Eγ,R with γ = (0, 1) and R ∈ (1.01, 40). For each such ellipse, we numerically determined the
smallest ellipse Eγ,r containing

⋃
i Φi(Eγ,R). The best contraction ratio found in this way turned out

to be (r/R) ≈ 0.225, which occurred for R ≈ 16.99. Comparing the resulting upper bound with the
empirically observed convergence rate |λ2,n − λ2,n−1|, see Figure 1, shows that the theoretical bound
is rather conservative in this case.

Figure 1. Absolute difference of subsequent approximations λ2,n as a function of n,
computed using the Lagrange–Chebyshev algorithm (Algorithm 1), compared to the
upper bound given by the optimal contraction ratio in a family of confocal ellipses
with foci γ = (0, 1). The scaling constant 5 for the theoretical bound is chosen for
visual reasons for both curves to intersect at n = 2.

4.3. Eigenvalues of transfer operators for circle maps. In this subsection we shall approx-
imate the spectrum of transfer operators associated with expanding circle maps. We shall choose
Blaschke products as benchmark maps, as the corresponding spectrum is available explicitly (see
[SBJ1, BanJS]). Using the same notation as in Section 3.2, let τ be a Blaschke product of degree two
given by

τ(z) =

(
z − µ
1− µ̄z

)2

, |µ| < 1.

For |µ| < 1/3, the map τ yields an expanding circle map. We shall approximate the spectrum of
the transfer operator LT in (24) with weight function given by2 w(z) = 1/τ ′(z). Using results from

2The leading eigenfunctional of this transfer operator yields the measure of maximal entropy for τ .
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[BanJS], it is not difficult to see that the spectrum of LT on H∞(AR) for a suitable annulus AR is
given by

spec(LT) = {0, 2} ∪ {(τ ′(z0))
j
, (τ ′(z0))

j}j∈N,
where z0 is the unique attracting fixed point of τ in the open unit disk D.

For our numerical experiments we use µ = 0.33 exp(iπ/2) and seek to approximate one of the
subleading eigenvalues. Ordering the eigenvalues by decreasing modulus

λ1 = 2, λ2 = τ ′(z0), λ3 = τ ′(z0), λ4 = (τ ′(z0))
2
, λ5 = (τ ′(z0))

2
, . . . ,

we shall focus on the 7-th eigenvalue in this sequence. The fixed point z0 of τ as well as τ ′(z0) are
available explicitly, however, as the expression is rather cumbersome, we shall only give the numerical
value of λ7 using the first 60 digits

<(λ7) = 0.092670812973910200449109943460780953297549127162781618050227 . . .

=(λ7) = −0.142165954484616119517212417389833629637614779964273017031665 . . . .

Employing the equidistant Lagrange interpolation algorithm to calculate matrix representations
of Q2nLTQ2n we obtain the following approximations of the 7-th eigenvalue of LT for increasing values
of n.

n <(λ7,n) −=(λ7,n)

23 0.09267081297390991542848291151579381223686693 0.1421659544846163819762201567962912837491514

33 0.09267081297391020044911051451873625154427548 0.1421659544846161195172136940142097007716003
43 0.09267081297391020044910994346078093977781410 0.1421659544846161195172124173898336025839907

53 0.09267081297391020044910994346078095329754910 0.1421659544846161195172124173898336296376148

Inspection of the table above shows that, for n = 53, the first 42 decimal places of the approx-
imate eigenvalue λ7,n coincide with the theoretical value λ7. As a result, we see that subleading
complex eigenvalues close to 0 of general transfer operators can be approximated effectively using the
equidistant Lagrange interpolation algorithm.

4.4. Lyapunov exponents of random matrix products. In this subsection we shall illustrate
the use of the Lagrange–Chebyshev algorithm to approximate Lyapunov exponents of random products
of matrices. This is a rather challenging task, in general. However, if all matrices are positive, it is
possible to use thermodynamic formalism to obtain the top Lyapunov exponent from a certain family of
transfer operators through periodic orbit expansions. This approach is originally due to Pollicott [Po];
more recently, an effective version has been proposed by Jurga and Morris [JM]. In the following we
shall show how, instead of periodic orbit expansions, the Lagrange–Chebyshev algorithm can be used
effectively in this setup.

Let A = {A1, . . . , AK} be a finite set of positive invertible 2 × 2 matrices, let (p1, . . . , pK) be
a probability vector and denote by Pp the associated Bernoulli measure on the space of sequences
Ω = {1, . . . ,K}N. The (top) Lyapunov exponent of Pp is given by

Λ = Λ(A, p) = lim
n→∞

1

n

∫
log ‖Aω1

· · ·Aωn‖ dPp(ω),

where ω ∈ Ω, and ‖ · ‖ denotes any matrix norm. Moreover, by [FK] for Pp-a.e. ω = (ωn)n∈N we have

Λ = lim
n→∞

1

n
log ‖Aω1

· · ·Aωn‖.

As was shown in [Po] and [JM], the Lyapunov exponent Λ can be expressed as the derivative of
the top eigenvalue of Lt with respect to t at t = 0, where {Lt}t∈C is a certain one-parameter family
of transfer operators obtained as follows. To each matrix

A =

(
a b
c d

)
∈ A
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we associate a Moebius map φA given by

φA(z) =
(a− b)z + b

wA(z)

with wA(z) = (a+ c− b− d)z+ b+ d. Writing Dρ(z0) for a disk in C with radius ρ and centre z0, it is
not difficult to see that φA is a holomorphic self map of D 1

2
( 1
2 ) with φA(D 1

2
( 1
2 )) ⊂ Dρ(

1
2 ) for suitable

ρ < 1/2. Moreover, one can show that φA(Eγ,R) ⊂ Eγ,r for a suitable 1 < r < R and γ = (γ+, γ−),
with γ+, γ− small (distinct) perturbations of 1/2. We can now define a (so-called annealed) transfer
operator L on H∞(Eγ,R) associated to A and p by

L0f =

K∑
i=1

pif ◦ φAi .

This operator is compact with leading eigenvalue λ0 = 1, which turns out to be simple [JM, Proposition
2.3] and the corresponding eigenfunction is the constant function h0 = 1. We now define a family of
perturbed transfer operators

Ltf =

K∑
i=1

pi(wAi)
tf ◦ φAi (t ∈ C),

which are easily seen to be well-defined operators on H∞(Eγ,R). This follows by observing that
each weight function (wAi)

t = exp(t logwAi), where log denotes the principal branch of the complex
logarithm, is a bounded holomorphic function on Eγ,R as <(wAi(z)) > 0 for z ∈ Eγ,R. Since t 7→ Lt
is a holomorphic family in t and λ0 is an algebraically simple isolated eigenvalue of L0, it follows
by standard analytic perturbation theory (see, for example, [K, Chapter II, § 1.8]) that the largest
(in modulus) eigenvalue λt of Lt as well as the corresponding spectral projection Pt are holomorphic
in t on an open neighbourhood around t = 0. We write Ptf = h∗t (f)ht, where ht ∈ H∞(Eγ,R) is
the eigenvector of Lt corresponding to λt and h∗t ∈ H∞(Eγ,R)∗ the corresponding eigenfunctional,
normalised so that h∗t (1) = 1. By [JM, Proposition 3.1], it follows that the Lyapunov exponent can
be expressed as the derivative of the top eigenvalue λt at t = 0, that is,

Λ =
∂λt
∂t

∣∣∣
t=0

.

As Lt, ht and h∗t are holomorphic families in t on a neighbourhood around t = 0, a standard compu-
tation (see, for example, [K, Chapter II, § 2.2, Remark 2.2]), shows that

Λ = h∗0(M0h0),

where M0 denotes the derivative of Lt at t = 0, which is given by

M0f =

K∑
i=1

pi log(wAi)f ◦ φAi .

The operator M0 is again a well-defined operator on H∞(Eγ,R), by the same arguments as before.
We shall now approximate the Lyapunov exponent Λ = h∗0(M0h0) using Lagrange–Chebyshev

approximation. For n ∈ N let λ0,n denote the leading eigenvalue of L0,n = L0Pγ,n and h0,n the corre-
sponding leading eigenfunction. Using (discrete) orthogonality properties of Chebyshev polynomials
it is not difficult to see that λ0,n = λ0 = 1 with h0,n = h0 = 1. The eigenfunctional h∗0,n of L0,n

corresponding to λ0,n = 1, normalised so that h∗0,n(1) = 1, can be obtained numerically, as described
in the opening paragraphs of this section, and yields an approximation

Λn = h∗0,n(M01)

for the Lyapunov exponent Λ. In order to estimate the speed of convergence, we note that

P∗0h∗0,n = h∗0,
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where P0 denotes the adjoint of the spectral projection P0 of L0 associated with λ0 = 1. In order to
see this observe that for any f ∈ H∞(Eγ,R) we have

P∗0h∗0,n(f) = h∗0,n(P0f) = h∗0(f)h∗0,n(1) = h∗0(f).

Thus, we have

|Λ− Λn| = |h∗0(M01)− h∗0,n(M01)| = |(P∗0h∗0,n − h∗0,n)(M01)|
≤ ‖P∗0h∗0,n − h∗0,n‖H∞(Eγ,R)∗‖M01‖H∞(Eγ,R),

and so, by Corollary 3.11,

|Λ− Λn| = O
(( r

R

)n)
.

Thus, the approximations converge exponentially in n, the size of the matrix representing the Lagrange–
Chebyshev approximant, with the speed determined by the parameters of the ellipses Eγ,R and Eγ,r
satisfying ⋃

i

φAi(Eγ,R) ⊂ Eγ,r,

that is, complex contraction properties of the maps φAi .
We shall now test the performance of our algorithm using examples from [JM].

(1) In Example 5.1 of [JM], the matrices and probability vector are chosen to be

A =

{(
2 1
1 1

)
,

(
3 1
2 1

)}
and p = (

1

2
,

1

2
).

In this setting, the matrices in A strongly contract the positive quadrant, resulting in a
highly effective approximation involving periodic orbits up to order 9 justifiably accurate to
31 decimal places. Using our Lagrange–Chebyshev algorithm with n = 65, we obtain the
same reported value of

Λn = 1.1433110351029492458432518536555882994025.

(2) In Example 5.2 of [JM], the following choices are made

A =

{(
3 1
1 3

)
,

(
5 2
2 5

)}
and p = (

1

2
,

1

2
).

Note that in this case, we have ai+ ci = bi+di so the weights wAi are constant functions for

i = 1, 2 hence M01 = 1, and therefore Λ =
∑K
i=1 pi log (bi + di), which is the first entry of

the matrix representation of Ln for any n. In this case, the Lagrange–Chebyshev algorithm
immediately yields the correct value, whereas the periodic orbit method from [JM] only
converges moderately fast.

(3) Perturbing the matrix entries of the previous trivial example, we now choose

A =

{(
3.1 1
1 3

)
,

(
5.1 2
2 5

)}
and p = (

1

2
,

1

2
).

Applying the Lagrange–Chebyshev algorithm, we obtain very fast convergence in n, as seen
below

1 1.6758722489713125213476722319655891806832879458231178998798

10 1.6760501876590183305267823917604529846088532886001861874342
20 1.6760501876590183305298001875390234510473825204275981348467

30 1.6760501876590183305298001875390234510473137713601065642298
40 1.6760501876590183305298001875390234510473137713601065642298

In this case, the assumption <(wAi(z)) > 0 for i = 1, 2 is satisfied for z with <(z) ≥ −40,
which in particular guarantees that the weights (wAi)

t are holomorphic on Eγ,R for γ = (0, 1)
and 1 < R < exp (arccosh(40)) ≈ 80. Numerically, we may also verify that this choice of
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ellipses satisfies
⋃
i φAi(Eγ,R) ⊂ Eγ,r with r < R, yielding an optimal contraction ratio of

(r/R) ≈ 0.53 for R ≈ 9.53.

4.5. Approximation of stationary probability measures for iterated function systems.
In [CJ], Cipriano and Jurga study approximations of integrals with respect to stationary probability
measures associated to iterated function systems on the interval, using an idea going back to Jenkinson
and Pollicott [JP3]. Their setting is an iterated function system {Φi}Ki=1 consisting of Lipschitz
contractions Φi : [0, 1] → [0, 1]. Given a probability vector p = (p1, . . . , pK), there exists a unique
probability measure ν such that ∫

f dν =

K∑
i=1

pi

∫
[0,1]

f ◦ Φi dν

for every continuous function f : [0, 1] → R, see [Hu]. Assuming additionally that each Φi extends
holomorphically to a neighbourhood of [0, 1] and satisfies assumption (20) for a suitable ellipse Eγ,R ⊃
[0, 1], we shall again consider the (annealed) transfer operator

Lf =

K∑
i=1

pi(f ◦ Φi),

which is a well-defined and compact operator on H∞(Eγ,R). It has a simple eigenvalue 1 with
eigenfunction 1, and the stationary measure ν turns out to be the eigenfunctional h∗ of L corresponding
to the eigenvalue 1, normalised so that h∗(1) = 1, that is

h∗(f) =

∫
[0,1]

f dν.

Using the Lagrange–Chebyshev algorithm, we can obtain effective approximations of the stationary
measure through eigenfunctionals of the approximants Ln = LPγ,n. In order to see this, note that 1
is a simple eigenvalue of Ln and hn = 1 is the corresponding eigenfunction of Ln. The correspond-
ing eigenfunctional h∗n can be obtained from the matrix representation of Ln, as explained in the
introduction to this section.

In [CJ], the authors consider various integrals with respect to the stationary measure arising from
different iterated function systems, including an application to the calculation of Lyapunov exponents.
Here, the Lyapunov exponent of the iterated function system (Φ, p) with respect to the stationary
measure ν is given by

Λ = −
∫
[0,1]

K∑
i=1

pi log |Φ′i(x)| dν(x).

Suppose now that there is an r with 1 < r < R such that⋃
i

Φi(Eγ,R) ⊂ Eγ,r.

Suppose also that the function x 7→
∑
i pi log |Φ′i(x)| has a holomorphic extension g, which is bounded

and holomorphic on the elliptic domain Eγ,R. Using the approximate eigenfunctional h∗n given above,
we obtain an approximation Λn to the Lyapunov exponent Λ by setting

Λn = h∗n(g).

In order to estimate the speed of convergence of this approximation we proceed as in the previous
subsection. Let P denote the spectral projection of L associated with the leading simple eigenvalue 1,
that is

Pf = h∗(f)1.

As before, we have P∗h∗n = h∗, hence

|Λ− Λn| = |h∗(g)− h∗n(g)| = |P∗h∗n(g)− h∗n(g)| ≤ ‖P∗h∗n − h∗n‖H∞(Eγ,R)∗‖g‖H∞(Eγ,R),
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and Corollary 3.11 now yields

|Λ− Λn| = O
(( r

R

)n)
.

We shall now compare our results to Example 6.8 in [CJ]. Let

Φ1(x) =
1

6
sin (πx/4) +

1

4
, Φ2(x) =

1

3
sin (πx/4) +

2

3
, p = (

1

3
,

2

3
).

We may now approximate the corresponding Lyapunov exponent by Λn for sufficiently large n, for
example by

Λ100 = 1.736720814737319877193356690960513773360205906006376079918873624791932498455557168841091,

where the first 89 digits coincide with the value reported in [CJ], which was computed using multipliers
of periodic orbits up to period 18. The optimal contraction ratio of ellipses was numerically found to
be (r/R) ≈ 0.4138 in this case.
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[DG-V] L. Daruis and P. González-Vera. Some results about interpolation with nodes on the unit circle. Indian J.
Pure Appl. Math. 31(10), 1273–1296 (2000).

[DJ] M. Dellnitz and O. Junge. On the approximation of complicated dynamical behavior. SIAM J. Numer.
Anal. 36(2), 491-515 (1999).

[E] D. Elliott. Truncation errors in two Chebyshev series approximations. Math. Comp. 19, 234–248 (1965).
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