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1. Introduction

Chaotic motion accounts on the one hand for the well-known phenomenon of sensitive

dependence on initial conditions, that is, exponentially fast divergence of nearby orbits,

and on the other hand for the phenomenon of decay of correlations or mixing. Both

properties are intimately related with the observation that even low-dimensional chaotic

systems share common features with random processes.

This intuitive picture has been used as a basis to address some of the fundamental

questions arising in nonequilibrium statistical mechanics [1, 2, 3]. In fact, it is a

simple exercise to show that topological mixing implies sensitive dependence on initial

conditions. At the measure-theoretical level, however, relating Lyapunov exponents, the

quantitative measures for sensitive dependence on initial conditions, to decay rates of

correlation functions is a more involved task. For instance, it is easy to construct simple

maps with finite Lyapunov exponent and arbitrarily small correlation decay (see, for

example, a Markov model described in [4]).

Thus, at a quantitative level it is tempting to explore in some detail in which way

the rate of correlation decay is linked with Lyapunov exponents, as both quantities are
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supposed to have a common origin. In more general terms and from a wider perspective

this topic can be viewed as belonging to the realm of fluctuation dissipation relations

for nonequilibrium dynamics, where one cause, the underlying detailed dynamical

structure, is responsible for the approach to the stationary state, that is, for the decay

of correlations, but, at the same time, is responsible for fluctuation properties at a

microscopic level, or in our context for the sensitive dependence of initial conditions and

a positive Lyapunov exponent. Furthermore, any relation between decay of correlations

and Lyapunov exponents is of great practical interest, as the measurement of Lyapunov

exponents, unlike the rate of correlation decay, is notoriously difficult to determine in

real world experiments [5, 6]. In [7] it was even suggested to take correlation decay rates

as a meaningful approximation for Lyapunov exponents.

The problem we want to address can be illustrated by a very basic textbook

example, probably considered for the first time more than two decades ago [8]. Consider

a linear full branch map (see Figure 1) on the unit interval I = [0, 1], that is, a map

f : I → I having a finite partition of I by closed intervals Ik with pairwise disjount

interior such that (i) for each k, we have f(Ik) = I, and (ii) f has constant slope γk
on each Ik. The physical invariant measure is given by the Lebesgue measure and the

Lyapunov exponent with respect to this measure can be expressed in terms of the slopes

Λ =
∑

k

|Ik| ln |γk| (1)

with |Ik| = 1/|γk| denoting the size of the interval Ik.

The exponential rate of decay for correlation functions is determined by the negative

logarithm of the second largest eigenvalue in modulus of the associated Perron-Frobenius

operator. In this setting it is well known (see, for example, [9]) that eigenfunctions of

the Perron-Frobenius operator are given by polynomials and that the corresponding

eigenvalues νm can be expressed as

νm =
∑

k

1

|γk|

1

γmk
=

∑

k

|Ik|
1

γmk
(m ≥ 0)

with largest eigenvalue λ0 = ν0 = 1 and the subleading eigenvalue λ1 being the second

largest in modulus, |λ1| = max{|ν1|, ν2}. Thus, correlation functions of sufficiently

smooth observables decay typically at an exponential rate α = − ln |λ1|. Since

|λ1| ≥ ν2 > 0 we obtain an upper bound for the decay rate α ≤ − ln ν2 which can

now be related to the Lyapunov exponent (1). If we apply Jensen’s inequality to the

convex function ϕ(x) = − ln(x) we end up with

α ≤ − ln
∑

k

|Ik|
1

γ2
k

≤
∑

k

|Ik|(− ln
1

γ2
k

) = 2Λ . (2)

The estimate of the decay rate in Equation (2) has been based on ν2 which contains

positive terms only, even if the slopes have different signs. As a result the upper bound

is given by twice the Lyapunov exponent. If all slopes have the same sign, say γk > 1,
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Figure 1. Diagrammatic view of a linear full branch map.

then ν1 determines the subleading eigenvalue and the Lyapunov exponent itself yields

an upper bound for the decay rate, that is, α ≤ Λ.

In this article we will address the question to which extent this simple reasoning

can be generalised to a larger class of systems. From a mathematical perspective there

is a considerable amount of literature on the existence of invariant measures of one-

dimensional maps, the corresponding Lyapunov exponent, estimates for the spectra of

the associated Perron-Frobenius operator, and a possible relation between Lyapunov

exponents and the decay of correlation functions [10]. Expansiveness of the underlying

map f : I → I is to some extent the key ingredient to establish a physical measure µ,

that is, an invariant measure which asymptotically characterizes a large set of orbits, or

in formal terms an invariant ergodic probability measure which is absolutely continuous

with respect to Lebesque measure (see, for example, [11, 12, 13, 14]).

The Lyapunov exponent for a Lebesque typical point x ∈ I is given by

Λ =

∫

I

ln |f ′(x)|dµ = lim
n→∞

1

n
ln |(fn)′(x)|. (3)

Regarding decay rates for correlation functions, a substantial part of the problem

consists in giving the notion of the rate of correlation decay a proper meaning (see, for

example, [10]). With the standard definition of a correlation function for two observables

ϕ and ψ

Cϕ,ψ(n) =

∫

I

ϕ(fn(x))ψ(x)dµ−

∫

I

ϕ(x)dµ

∫

I

ψ(x)dµ, (4)

the exponential decay rate αϕ,ψ governing the asymptotic behaviour of the correlation

function may be formally introduced by

αϕ,ψ = sup{s : lim sup
n→∞

| exp(sn)Cϕ,ψ(n)| <∞} .

The rate αϕ,ψ is sensitive to the choice of ϕ and ψ and can be made arbitrarily small or

large by special choices for the observables [15]. However, it is possible to define a rate

of decay with respect to “typical” observables from some linear space H

αH = inf{αϕ,ψ : ϕ, ψ ∈ H} .
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We will call this quantity the mixing rate. Note that this rate still depends, for instance,

on the degree of smoothness shared by the observables in H.

One approach for determining bounds on the mixing rate αH relies on reformulating

(4) in terms of the Perron-Frobenius operator. The rate αH is then determined by

the subleading eigenvalue or by the essential spectral radius of the Perron-Frobenius

operator. The desired relation between the Lyapunov exponent and the mixing rate

expressed in Equation (2) then becomes a lower bound for the subleading eigenvalue.

There is a considerable body of literature on upper bounds for spectral values (see, for

example, [11, 12, 14]) providing useful tools to establish ergodic properties of dynamical

systems. However, to the best of our knowledge hardly any nontrivial lower bounds

exist (see, however, [16], where an exponential lower bound for correlation functions of

suspension semiflows is given).

The main tool to establish the desired inequality consists in studying the properties

of the generalised Perron-Frobenius operator Lβ with potential −β ln |f ′|,

(Lβh)(x) =
∑

y∈f−1(x)

h(y)

|f ′(y)|β
. (5)

For β = 1 this expression reduces to the Perron-Frobenius operator which has leading

eigenvalue one. The subleading eigenvalue λ1 (or the essential spectral radius, if no

subleading eigenvalue exists) determines the mixing rate αH = − ln |λ1|. In addition,

the derivative of the largest eigenvalue ν0(β) of Equation (5) with respect to β, that

is, the derivative of the topological pressure, determines the Lyapunov exponent (see,

for example, [17] for a basic exposition). Finally, the required estimate follows from

the convexity of the topological pressure and gives a lower bound for the subleading

eigenvalue of the Perron-Frobenius operator.

The main challenge is, of course, to put these ideas into practice. Restricting

to piecewise linear Markov maps considerably reduces the need to worry about

mathematical subtleties, as the operator Lβ admits finite-dimensional matrix

representations when considering observables consisting of piecewise analytic functions.

Thus, at a computational level all technical details reduce to straightforward matrix

manipulations (see Section 2), allowing us to keep the presentation elementary and,

at the same time, making the underlying ideas transparent. To keep the presentation

self-contained basic properties of piecewise linear Markov maps together with properties

of Lβ are summarised in the Appendix. In Section 3 we are addressing the question

whether the bounds presented in Section 2 hold for general (non-linear) expanding

Markov maps. We have compelling evidence that the estimate breaks down if analytic

observables are considered (see also [18]), but the validity of our proposition can be

restored if observables of bounded variation are considered.
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2. Piecewise linear Markov maps

Let us consider a topologically mixing piecewise linear expanding Markov map f : I → I

with respect to the partition P = {I1, . . . IN} of the interval I (see Definition A.1 for

a formal account). Denote by fk := fIk the k-th branch of f . A nice property of such

maps is that the corresponding transfer operators have finite matrix representations.

In fact, the space of piecewise polynomial functions of degree less than M , that is,

the space of functions of the form x 7→
∑N

k=1

∑M
m=0 akmx

mχk(x), where χk is the

characteristic function of the interval Ik, is a Lβ-invariant subspace. While it appears

to be difficult to trace the earliest reference for this result, to the best of our knowledge

the first experimentally relevant application appeared in the context of power spectra

for intermittent dynamics (see [9, 19]).

Now, in the natural basis of piecewise monomials, the operator Lβ restricted to the

invariant subspace mentioned above is represented by the (M + 1)N × (M + 1)N block

upper triangular matrix













T (00)(β) T (01)(β) . . . T (0M)(β)

0 T (11)(β)
. . .

...
...

. . .
. . . T (M−1M)(β)

0 · · · 0 T (MM)(β)













. (6)

A calculation similar to the one used to obtain the matrix representation T (00)(1)

of L1 on the space of piecewise constant functions (see, for example, [20, p. 176]), shows

that the matrix elements of the block matrices T (mn)(β) are given in terms of the slopes

γk, the intercepts dk of the branches fk of the map f , and the topological transition

matrix (Akl)1≤k,l≤N induced by f and P (see Equation (A.1)) as follows

T
(mn)
kl (β) =

Alk
|γl|βγnl

· (−dl)
n−m

(

n

n−m

)

. (7)

The eigenvalues are determined by the diagonal blocks T (mm)(β) with matrix elements

given by the first factor in Equation (7).

Note that since the underlying map is assumed to be topologically mixing, the

matrices T (mm)(β) are irreducible and aperiodic for even m. The Perron-Frobenius

Theorem (see, for example, [21, p.53] or [22, p.536]), now guarantees that T (mm)(β)

has a simple, positive eigenvalue, larger (in modulus) than all other eigenvalues,

which we denote by νm(β). Now, ν0(β) determines the topological pressure, given by

P (β) = ln ν0(β), which has the following well-known properties.

Lemma 2.1. (i) P (1) = 0;

(ii) P (β) is a convex function of β;

(iii) P (β) is analytic in β;

(iv) P ′(1) = −Λ.
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These properties have been established for a rather large class of dynamical systems

(see, for example, [23]). In our context, however, they follow easily from the matrix

representation above using elementary methods. As an example, we shall derive property

(ii). To simplify notation, we shall denote the first block matrix T (00)(β) by T (β)

for the remainder of the argument. Observing that P (β) = ln ν0(β) is obtained from

ln Tr ((T (β))n) /n as n tends to infinity, convexity of the topological pressure, that is,

P (β1(1 − t) + β2t) ≤ (1 − t)P (β1) + tP (β2) (0 ≤ t ≤ 1)

follows from a simple estimate using the Hölder inequality
1

n
lnTr ((T (β1(1 − t) + β2t))

n)

=
1

n
ln

∑

l0,l1,...,ln−1

Tl0l1(β1(1 − t) + β2t)Tl1l2(β1(1 − t) + β2t) · · ·Tln−1l0(β1(1 − t) + β2t)

=
1

n
ln

∑

l0,l1,...,ln−1

(Tl0l1(β1))
1−t (Tl0l1(β2))

t · · ·
(

Tln−1l0(β1)
)1−t (

Tln−1l0(β2)
)t

≤
1

n
ln





∑

l0,l1,...,ln−1

Tl0l1(β1) · · ·Tln−1l0(β1)





1−t 



∑

l0,l1,...ln−1

Tl0l1(β2) · · ·Tln−1l0(β2)





t

= (1 − t)
1

n
ln Tr ((T (β1))

n) + t
1

n
ln Tr ((T (β2))

n) .

Here we have used that Equation (7) implies Tkl(β1 + β2) = Tkl(β1)Tkl(β2) as well as

Tkl(tβ) = (Tkl(β))t. The other statements of the lemma can be derived in a similar way,

or can be found in standard textbooks on ergodic theory.

To establish a relation between the correlation decay, that is, between the

eigenvalues of the operator (5) for β = 1, and the Lyapunov exponent, note that the

largest eigenvalue of the Perron-Frobenius operator is given by ν0(1) = 1, while ν2(1)

is a positive eigenvalue, which provides a lower bound for the subleading eigenvalue of

Lβ. Thus, on the one hand

αH ≤ − ln ν2(1) . (8)

On the other hand T (22)(β) = T (00)(β + 2) by Equation (7), which implies

ν2(β) = ν0(β + 2) . (9)

Hence, using the properties of the topological pressure in Lemma 2.1, the relations (8)

and (9) yield

αH ≤ −P (3) ≤ (3 − 1)Λ . (10)

See Figure 2 for a graphical illustration of this result.

Note that if all slopes γk of f have the same sign, then we have T (11)(β) =

sign(γk)T
(00)(β + 1). Thus, we can apply the previous arguments to |ν1(1)| to obtain

the following improved estimate

αH ≤ − ln |ν1(1)| = − ln ν0(2) = −P (2) ≤ (2 − 1)Λ . (11)

To summarise, we have shown the following.
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Figure 2. Schematic representation of the topological pressure P (β) and graphical

illustration of the estimates (10) and (11).

Proposition 2.2. Let f : I → I denote a topologically mixing piecewise linear expanding

Markov map. If H = H(DR) denotes a space of piecewise analytic observables (see

appendix, Definition A.2) then the mixing rate is bounded in terms of the Lyapunov

exponent Λ with respect to the piecewise constant invariant density, by

αH ≤ 2Λ . (12)

If all slopes have the same sign the sharper estimate

αH ≤ Λ (13)

holds.

Remark 2.3. The assumption that f be topologically mixing is sufficient but not

necessary. Indeed, there exist piecewise linear expanding Markov maps f with the

following properties: the map f is not topologically mixing, yet exhibits exponential

decay of correlations and the conclusions of Proposition 2.2 hold.

The simplest examples for which the bounds are achieved are the tent map

(αH = 2Λ) and the doubling map (αH = Λ). It is finally worth mentioning that the

condition P (1) = 0, that is, the absolute continuity of the reference measure with respect

to Lebesgue measure, is not essential for Proposition 2.2 to be valid. The conclusions

also hold, for instance, for certain Gibbs measures with respect to piecewise constant

potentials.

3. Remarks on general expanding Markov maps

The setup of piecewise linear Markov maps is rather special. One may thus be tempted

to ask whether a result like Proposition 2.2 extends, say, to Markov maps with finite
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curvature. The previous considerations are based on Equation (9), a result which has

been exploited previously in a slightly more restricted setup [8] to conjecture an exact

relation between correlation decay and generalised Lyapunov exponents. It has already

been demonstrated that such an identity breaks down for maps with finite curvature [18].

This fact, taken on its own, however, does not prevent the validity of a generalisation

of Proposition 2.2, making a study of how curvature affects the previous considerations

a worthy task.

Using an Ulam-like construction any expanding Markov map can be approximated

by a piecewise linear map (see, for example, [24]). Let F : I → I denote a piecewise

expanding, but not necessarily linear Markov map with Markov partition {I1, . . . , IN}.

Using the cylinder sets Ui0,...,in−1
= ∩n−1

k=0F
−k(Iik) we may introduce a piecewise linear

approximation fn : I → I by the following construction. The map fn linearly

interpolates F on each cylinder set, that is, fn(Ui0,...,in−1
) = Ui1,...,in−1

. (see Figure 3(a)).

It is a straightforward exercise to show that the Lyapunov exponent of fn tends to the

Lyapunov exponent of F (with respect to the absolutely continuous invariant measure)

as n tends to infinity. However, the analysis of the mixing rate requires greater care.

While Proposition 2.2 is still valid for any order n of the approximation, it is far from

obvious whether the proposition is valid for a general expanding map.

To illustrate this point we consider a simple example, a family of full branch

piecewise Möbius maps Fc defined on [−1, 1],

Fc(x) =
1 − 2(c+ 1)|x|

1 + 2c|x|
. (14)

We restrict the parameter to c ∈ (−1/4, 1/2), in order to guarantee expansivity.

Figure 3(a) depicts the map Fc for c = −0.22.

The leading part of the spectrum of the corresponding Perron-Frobenius operator

considered on the space of analytic observables can be approximated using a spectral

approximation method. The basic idea of this method is to approximate Lβ by an

n × n square matrix ΠnLβΠn, where Πn denotes the projector that sends a function

to its Lagrange-Chebyshev interpolating polynomial of degree n − 1. This method is

easily implemented and, moreover, it is possible to show (see [25]) that the eigenvalues

of ΠnLβΠn converge exponentially fast to the eigenvalues of Lβ. Using this method

the leading eigenvalues of the Perron-Frobenius operator and their dependence on c are

easily obtained (see Figure 3(b)). A minimum for the subleading eigenvalue occurs at

about c = −0.11. The corresponding numerical value reads λ1 ≈ 0.10415 resulting

in a mixing rate αH = − ln |λ1| ≈ 2.2619. The corresponding Lyapunov exponent,

which by the way hardly depends on the parameter c, is computed using the numerical

approximation of the invariant density. The numerical value is Λ ≈ 0.685 so that the

inequality (12) is clearly violated.

In order to understand why the reasoning at the beginning of this section fails,

that is, why an approximation of the map Fc by a piecewise linear Markov map fails

to produce the correct mixing rate, let us consider increasingly finer piecewise linear
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Figure 3. Left: (a) Diagrammatic view of the Möbius map (14) for c < 0 (solid).

Dotted lines indicate the cylinder sets of the first generations. Broken lines show the

first two piecewise linear approximations f1 and f2. Right: (b) The largest eigenvalues

(in modulus) of the Perron-Frobenius operator for the map Fc in dependence on c,

as obtained using the Lagrange-Chebyshev method with truncation order n = 25.

Positive/negative eigenvalues are shown by filled/open symbols.

approximations fn of the map (14), see Figure 3(a). For each map fn the Perron-

Frobenius operator restricted to piecewise polynomial functions has a finite matrix

representation (see (6)). For the remainder of the section we shall only deal with

the case β = 1 and refer to T (β) (and νm(β)) as T (and νm). Figure 4(a) shows

the numerical results for the leading eigenvalues of the diagonal block T (11) and T (22),

that is, ν1 and ν2, respectively, for increasing level of approximation n = 1, . . . , 6.

For comparison we display the subleading eigenvalue ν
(subl)
0 of T (00) as well. For every

level n of approximation, ν2 gives the subleading eigenvalue λ1 of the Perron-Frobenius

operator of the piecewise linear approximation, and these values seem to converge as

n tends to infinity. The values and the limit are larger than exp(−2Λ), meaning that

the inequality (12) in the Proposition 2.2 is satisfied, as expected. The eigenfunction

un : [−1, 1] → R of the corresponding eigenvalue ν2 is a quadratic polynomial on each

element of the partition, but it develops an increasing number of discontinuities between

different intervals of the increasingly finer partition. These eigenfunctions do not seem

to converge to a smooth limit (see Figure 4(b)). In fact, unlike the invariant density

there is no reason why the limit should be smooth. The numerical experiment suggest

that we end up with a function of bounded variation.

It is indeed possible to show and perhaps well known that an estimate like Equation

(13) holds for discontinuous observables. For that purpose let us consider the Perron-

Frobenius operator L1 on the space of functions of bounded variation. Recall that

a function f : [−1, 1] → R is of bounded variation if it has finite total variation

var(f) = sup
{

∑p
i=1 |f(xi) − f(xi−1)| : −1 ≤ x0 ≤ . . . ≤ xp ≤ 1

}

< ∞. In this
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Figure 4. Left: (a) Leading eigenvalues ν1 and ν2 of the corresponding matrix blocks

T (11) and T (22) for a piecewise linear approximation of the map (14) with c = −0.11,

as a function of the level of approximation. The subleading eigenvalue of T (00), ν
(subl)
0 ,

is displayed as well. For comparison, exp(−Λ) and exp(−2Λ) are depicted as well.

The broken lines are a guide for the eye. Right: (b) Eigenfunction un corresponding

to ν2 for n = 1, . . . , 6 with normalisation
∫

I
|un(x)| dx = 1. For clarity, successive

approximations are shifted by 0.5. The open symbols indicate the discontinuity set of

the eigenfunction, i.e., the increasingly finer Markov partition of the piecewise linear

approximaton.

setup, the spectrum of the Perron-Frobenius operator associated with expanding maps

has been studied in detail (see [26]). In particular, there is an explicit formula for the

essential spectral radius given by

σess = lim
k→∞

(inf{|(F k
c )′(x)| : x ∈ [−1, 1]})−1/k .

Thus, we have an upper bound for the mixing rate

αBV ≤ − ln σess = lim
k→∞

1

k
ln inf{|(F k

c )′(x)| : x ∈ [−1, 1]} ,

which yields the the following estimate for the Lyapunov exponent

Λ =
1

k

∫

I

ln |(F k
c )′(x)|dµ

≥
1

k
inf{ln |(F k

c )′(x)| : x ∈ [−1, 1]}

∫

I

dµ

=
1

k
ln inf{|(F k

c )′(x)| : x ∈ [−1, 1]} .

Thus, for observables of bounded variation we have the following result.
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Proposition 3.1. Let f : I → I be a piecewise monotonic smooth expanding interval

map which is mixing with respect to its unique absolutely continuous invariant measure.

Then the rate of decay of correlations for functions of bounded variations is bounded by

the Lyapunov exponent

αBV ≤ Λ . (15)

In fact, almost identical statements can be found in [10], for example, Corollary 9.2.

4. Conclusion

There is no simple, straightforward answer to the question about the relation between

Lyapunov exponents and mixing rates. On formal grounds one may argue that both

quantities probe entirely different and independent aspects of a dynamical system, and

that no particular relation should be expected. Lyapunov exponents are determined

by properties related to the largest eigenvalue of the Perron-Frobenius operator. By

contrast, correlation decay depends crucially on properties of the observables, with

mixing rates being related to the subleading part of the spectrum. Thus, abstract

operator theory on its own does not seem to provide further insight into the relation

between both quantities. Witness, for example, the doubling map viewed as an analytic

map on the unit circle. While its Lyapunov exponent is finite, the Perron-Frobenius

operator has no nontrivial eigenvalue when considered on the space of analytic functions,

that is, correlations of analytic observables decay faster than any exponential (see e.g.

[13]).

The argument outlined above, however, is a bit too simplistic. In fact, our results

on piecewise linear expanding Markov maps observed via piecewise analytic functions or

general piecewise smooth expanding maps observed via functions of bounded variation

suggest that bounds on the mixing rate in terms of Lyapunov exponents can be derived

provided that specific properties of the underlying dynamical system are taken into

account. Estimates of this type rely on nontrivial lower bounds for spectra. As such,

they are complementary to estimates which are available for proving the existence of

spectral gaps, and will thus require completely different approaches.

It turns out that the spirit of the result contained in Equation (15) can be

understood by considering an observable with a single discontinuity. In order to

substantiate this claim we have performed numerical simulations on the map (14) for

c = −0.11. We have computed the autocorrelation function (4) for the observable

ϕ = ψ = φh with φh(x) = x if |x| < 1/2 and φh(x) = x − sign(x)h if |x| > 1/2,

having a discontinuity of stepsize h at |x| = 1/2 (see Figure 5). Choosing h = 0,

the corresponding observable φh is analytic and the correlation decay is seen to follow

the subleading eigenvalue λ1 of the Perron-Frobenius operator defined on the space

of analytic functions (see Figure 3(b)). In the discontinuous case corresponding to

h 6= 0 the short time initial decay of the correlations still follows the pattern of the

analytic observable, but the correlation function now develops an exponential tail which

obeys Equation (15). The tail becomes more pronounced if the stepsize increases. In
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fact, the mixing rate seems to be very close to the Lyapunov exponent. Revisiting the

considerations leading to Proposition 3.1, it is tempting to surmise that this coincidence

is a consequence of large deviation properties of finite time Lyapunov exponents, since

the expression for the essential spectral radius involves an extreme value of a finite time

Lyapunov exponent. Thus, the relation between Lyapunov exponents and mixing rates

for observables of bounded variation could be viewed to arise from the same mechanism

already exploited in [8] for analysing the simple case mentioned in the introduction.
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Figure 5. Normalised autocorrelation function of the discontinuous variable φh with

different stepsizes h for the map Fc (14) with c = −0.11. The straight lines represent

an exponential decay with rate ln |λ1| and −Λ. Ergodic averages have been computed

as time averages of a series of length 2 × 104 for 5 × 108 uniformly distributed initial

conditions, skipping a transient of length 100. The horizontal dotted line indicates the

order of magnitude of statistical errors induced by the finite ensemble size.

This simple demonstration gives support to the folklore that correlation decay is

linked with Lyapunov exponents. Even if a real world phenomenon is sufficiently well-

modelled by a smooth dynamical system for which to date no link between correlation

decay and Lyapunov exponents can be established, one should keep in mind that modern

data processing inevitably involves digital devices, which correspond to discontinuous

observations. Therefore, in formal terms observables of bounded variation could be the

relevant class for applications and in these cases Proposition 3.1 applies.

At an intuitive level it is easy to understand why discontinuous observations result

in correlation decay related to Lyapunov exponents. A discontinuous observable is

able to distinguish between different “microstates” at a “macroscopic” level, that is,

a discontinuous observation is able to distinguish two states at infinitesimal distance.

As the distance between two nearby phase space points separated by a discontinuity
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grows according to the Lyapunov exponent, the sensitivity at the microscale may be

transported to the macroscale, that is, it may filter through to the correlation function

by a discontinuous observation.

In our context the mathematical challenge is to establish a relation between mixing

rates and Lyapunov exponents for natural classes of observables, for example, full

branch analytic intervals maps observed via analytic functions. Besides the need for

developing tools to obtain lower bounds for spectra, establishing the relation alluded to

above also requires a deeper understanding of which dynamical feature causes the point

spectrum of the Perron-Frobenius operator, that is, which signature of the microscopic

dynamics survives if viewed via analytic observables. This is reminiscent of coarse-

graining approaches in statistical mechanics, for example, the introduction of collective

coordinates and quasi-particles. Thus, tackling the mathematical problem above may

well shed some light on some of the most fundamental problems in contemporary

nonequilibrium statistical physics of complex systems.
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Appendix: Spectral properties of Markov maps

In this section we shall provide a short account of the technical details to make the

results of Section 2 rigorous. The main thrust of the argument is to define a suitable

function space on which the generalised Perron-Frobenius operator is compact. Results

of this type for general analytic Markov maps are not new (see, for example, [27] or

[28]). The special case of piecewise linear Markov maps discussed below, where a

complete determination of the spectrum is possible, is probably well known to specialists

in the field. Unfortunately, we are at loss to provide a reference for the results in

Proposition A.5 below, so we will outline a proof for the convenience of the reader.

To set the scene we define what is meant by a piecewise linear Markov map. Before

doing so we note that by a partition of a closed interval I we mean a finite collection

of closed intervals {I1, . . . , IN} with disjoint interiors, that is, int(Ik) ∩ int(Il) for k 6= l,

such that
⋃N
k=1 Ik = I.

Definition A.1. An interval map f : I → I is said to be a Markov map if there exists

a finite partition {Ik}
N
k=1 of I such that for any pair (k, l) either f(int(Ik)) ∩ int(Il) = ∅

or int(Il) ⊆ f(int(Ik)). If this is the case, the corresponding partition will be referred

to as a Markov partition and the N ×N matrix A given by

Akl =

{

1 if int(Il) ⊆ f(int(Ik))

0 otherwise
(A.1)
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will be called the topological transition matrix of the Markov map f .

A Markov map f with Markov partition {Ik}
N
k=1 is said to be expanding if |f ′(x)| > 1

for all x ∈ int(Ik). It is said to be piecewise linear if f ′ is constant on each element of

the Markov partition, that is, f ′(x) = γk for all x ∈ int(Ik).

Finally, we call an expanding Markov map with topological transition matrix A

topologically mixing‡ if there is a positive integer p such that each entry of the matrix

Ap is strictly positive.

In what follows we shall concentrate on topologically mixing piecewise linear

expanding Markov maps. Our aim is to define suitable spaces of observables on which

the associated generalised Perron-Frobenius operator or transfer operator

(Lβh)(x) =
∑

y∈f−1(x)

h(y)

|f ′(y)|β
(A.2)

(see Equation (5)) is well defined and has nice spectral properties. It turns out that

these spaces can be chosen from spaces of functions which are piecewise analytic.

In order to define these spaces we require some more notation.

Definition A.2. Let D denote an open disk in the complex plane.

(i) We write H∞(D) = {h : D → C : h holomorphic and supz∈D |h(z)| <∞} to

denote the space of bounded holomorphic functions on D. This is a Banach space

when equipped with the norm ‖h‖H∞(D) = supz∈D |h(z)|.

(ii) We use H(D) =
⊕N

k=1H
∞(D) to denote the space of N -tuples (h1, . . . , hN) of

bounded holomorphic functions on D. This is a Banach space when equipped with

the norm ‖h‖
H(D) = max{‖hk‖H∞(D) : k = 1, . . . , N}.

The desired space of observables will now be defined by linking the disk D occurring

in the definition above to the dynamical system as follows. Given a piecewise linear

expanding Markov map with Markov partition {Ik}
N
k=1 let us denote by ϕkl : Ik → Il

the inverse branch of the Markov map from partition element Ik into the partition

element Il as well as its obvious analytic continuation to the complex plane. Observe

now that, since the map is expanding, all inverse branches are contractions. We can

thus chose two concentric disks Dr and DR of radius r > 0 and R > r, respectively,

such that

ϕkl(DR) ⊂ Dr for all inverse branches ϕkl . (A.3)

It turns out that H(DR) is a suitable space of observables for the map, in the

sense that the associated transfer operator (A.2) is a well defined bounded operator on

H(DR). This is the content of the following result.

‡ This is a slight abuse of terminology, since its use is usually restricted to continuous maps. However,

it serves the same purpose as in the continuous setup as it guarantees the existence of a spectral gap

for the corresponding transfer operator (see Corollary A.6).
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Proposition A.3. Given a piecewise linear expanding Markov map f with topological

transition matrix A and inverse branches ϕkl, suppose that the disk DR is chosen as

above. Then, for any real β, the transfer operator Lβ is a well defined bounded operator

from H(DR) into itself and is given by

(Lβh)k (z) =
∑

l

Alk|ϕ
′
kl(z)|

βhl(ϕkl(z)) . (A.4)

Proof. The representation (A.4) follows from a short calculation using the definition

(A.2) of Lβ. Since |ϕ′
kl(z)|

β = |γl|
−β is constant and the disk DR satisfies (A.3) the

operator maps H(DR) to H(DR). In order to see that Lβ : H(DR) → H(DR) is bounded

observe that if h ∈ H(DR) with ‖h‖
H(DR) ≤ 1, then

‖Lβh‖H(DR) = max
k

‖(Lβh)k‖H∞(DR) ≤ max
k

∑

l

Alk|γl|
−β <∞ .

Remark A.4. The space H(DR) is not the only suitable space of observables.

Restricting to one and the same disk of analyticity for each branch, however, simplifies

notation. More general spaces are discussed in [29] and [30].

Next we shall explain why the spectrum of Lβ viewed as an operator on H(DR) is

given by the eigenvalues of the diagonal blocks T (mm)(β) for m ∈ N0 defined in (6).

The key ingredient of the proof of this statement is a factorisation of the transfer

operator together with an approximation argument.

In order to explain the factorisation of the transfer operator we observe that in

(A.4) the argument of hl, that is ϕkl(z), is contained in the smaller disk Dr because of

(A.3). We can thus use (A.4) to define the operator on a larger function space, namely

H(Dr). Note that the space is ‘larger’ as analyticity is only required on a smaller disk

Dr ⊂ DR. We shall write L̃β : H(Dr) → H(DR) in order to distinguish this lifted

operator from the one occurring in Proposition A.3. Note that the arguments in this

proposition can be adapted to show that L̃β is a bounded operator.

It is tempting to think of Lβ and L̃β as being essentially the same, since they are

given by the same functional expression. However, the two operators are different as

operators as the latter is defined on a larger domain. Yet, both operators are related by

restriction. In order to give a precise formulation of this fact we introduce a bounded

embedding operator J which maps the smaller space H(DR) injectively into the larger

space H(Dr). To be precise J : H(DR) → H(Dr) is given by (J h)k = Jhk, where

J : H∞(DR) → H∞(Dr) in turn is given by (Jh)(z) = h(z) for z ∈ Dr. Note that J

looks superficially like the identity. This, however, is misleading as argument and image

are considered in different spaces.

The relation between Lβ and L̃β can now be written a follows

Lβ = L̃βJ . (A.5)
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Note that the factorisation above disentangles the intricacies of the map contained in

L̃β from its general expansiveness contained in J .

We now turn to the approximation argument. For piecewise linear Markov maps

the transfer operator is easily seen to map piecewise polynomial functions of degree at

most M into piecewise polynomial functions of degree at most M . This follows from a

straightforward calculation using the fact that the inverse branches are affine functions.

In order to exploit this property of the transfer operator further we shall introduce

a projection operator defined as follows: given an analytic function h in H∞(DR) and

an integer M we use PMh to denote the truncated Taylor series expansion

(PMh)(z) =

M
∑

k=0

h(k)(z0)

k!
(z − z0)

k ,

where z0 denotes the centre of the disk DR. Clearly, PM is a projection operator.

It turns out that the projections PM approximate the embedding J for large M in a

strong sense. In order to make this statement, the heart of the approximation argument

alluded to above, more precise we observe that, by Cauchy’s Integral Theorem, we have

for any h ∈ H∞(DR) and any z ∈ Dr

h(z) − (PMh)(z) =
1

2πi

∮

Γ

h(ζ)

ζ − z

(z − z0)
M+1

(ζ − z0)M+1
dζ ,

where the contour Γ is the positively oriented boundary of a disk centred at z0 with

radius lying strictly between r and R. It follows that the norm of J − JPM viewed as

an operator from H∞(DR) to H∞(Dr) satisfies

‖J − JPM‖H∞(DR)→H∞(Dr) ≤
R

R− r

( r

R

)M+1

.

In particular, we have

lim
M→∞

‖J − JPM‖H∞(DR)→H∞(Dr) = 0 . (A.6)

In order to extend this result to the space of piecewise analytic functions H(DR)

we introduce the projection operator PM : H(DR) → H(DR) by setting PMh =

(PMh1, . . . , PMhN). The analogue of (A.6) now reads

lim
M→∞

‖J − JPM‖
H(DR)→H(Dr) = 0 . (A.7)

We are now able to combine the factorisation (A.5) with the approximation result above

to prove the main result of this Appendix.

Proposition A.5. Suppose we are given a piecewise linear expanding Markov map f

with inverse branches ϕkl and disks Dr ⊂ DR satisfying (A.3). Then, for any real β,

the transfer operator Lβ viewed as an operator on H(DR) is compact and its non-zero

eigenvalues (with multiplicities) are precisely the non-zero eigenvalues of the matrices

T (mm)(β) with m ∈ N0 given in (7).
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Proof. We start by recalling that for every M ≥ 0 the transfer operator Lβ leaves the

space PM(H(DR)) invariant, that is, Lβ(PM(H(DR))) ⊆ PM (H(DR)). Thus

(I − PM)LβPM = 0 ,

where I denotes the identity on H(DR).

Using the above equation and the factorisation (A.5) we see that

‖Lβ − PMLβPM‖
H(DR) = ‖Lβ(I − PM)‖

H(DR)

= ‖L̃βJ (I − PM)‖H(DR) ≤ ‖L̃β‖H(Dr)→H(DR)‖J − JPM‖H(DR)→H(Dr) ,

which, using (A.7), implies

lim
M→∞

‖Lβ −PMLβPM‖
H(DR) = 0 . (A.8)

Since PMLβPM is a finite-rank operator for every M , the limit above implies that Lβ is

compact. Clearly, the non-zero eigenvalues of each PMLβPM are exactly the non-zero

eigenvalues of the block matrices (6). The remaining assertion, namely that the non-

zero spectrum of the the transfer operator is captured by the non-zero spectra of the

finite dimensional matrix representations follows from (A.8) together with an abstract

spectral approximation result (see [31, XI.9.5]).

Specialising to topologically mixing Markov maps we obtain the following

refinement of the above proposition.

Corollary A.6. Suppose that the hypotheses of the previous proposition hold. If the

Markov map f is also topologically mixing, then Lβ : H(DR) → H(DR) has a simple,

positive, leading eigenvalue ν0(β). Moreover, this leading eigenvalue is the Perron

eigenvalue of the matrix T (00)(β).

Proof. This follows from the previous proposition together with the observation that for

m ≥ 1 the spectral radius r(T (mm)(β)) of the matrix T (mm)(β) is strictly smaller than

the Perron eigenvalue of T (00)(β). In order to see this note that for all m ≥ 1 we have

|T
(mm)
kl (β)| ≤ CT

(00)
kl (β) ,

where

C =
1

inf l |γl|
< 1 .

A short calculation shows that for each k ≥ 0 and each m ≥ 1 we have
∥

∥

∥

(

T (mm)(β)
)k

∥

∥

∥

F
≤ Ck

∥

∥

∥

(

T (00)(β)
)k

∥

∥

∥

F
,

where ‖.‖F denotes the Frobenius norm. The spectral radius formula now implies that

r(T (mm)(β)) ≤ Cν0(β) .
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