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Abstract

Extended dynamic mode decomposition (EDMD) is a data-driven algorithm for approxi-
mating spectral data of the Koopman operator associated to a dynamical system, combining
a Galerkin method of order N and collocation method of order M . Spectral convergence of
this method subtly depends on appropriate choice of the space of observables. For chaotic an-
alytic full branch maps of the interval, we derive a constraint between M and N guaranteeing
spectral convergence of EDMD.
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1 Context and Results

Extended dynamic mode decomposition (EDMD) is an increasingly popular tool for data analysis
in complex systems which is used to identify dynamically relevant modes of a dynamical system
based on observations, see for example [28, 27, 30, 31, 6, 38, 26]. The rationale of this approach
consists in computing effective modes in dynamical systems, which follows ideas tracing their
origins in the context of statistical data analysis [20]. At their core, these methods condense the
dynamical observations into a suitably chosen effective linear evolution matrix. The eigenvalues
and eigenvectors of this matrix then provide information concerning the relevance and structure of
the effective degrees of freedom of the system. While the idea of EDMD has been predominantly
pushed by applications in fluid dynamics, the method also aims more broadly to provide useful
insight into a variety of real world data analysis problems. Conceptually, it is based on the
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observation that general dynamical systems can be described by global evolution operators, known
as transfer or Perron-Frobenius operators, or their formal adjoints, known as Koopman operators.

In the last decade considerable progress has been made in the theoretical underpinning of
EDMD, for example, by studying data-driven methods to approximate Perron-Frobenius and
Koopman operators which feature in the work of Dellnitz and Junge [13] and which have since
been extended in many ways, see [12, 15, 23, 22, 16, 11, 40] to name but a few. For broader
context, a comparison of various data-driven algorithms can be found in [24], [16] gives a compre-
hensive overview of the historical context, and [8] provides a recent review of the many variants
of dynamic mode decomposition algorithms. In particular, substantial progress has been made
in the fundamental understanding of EDMD as a finite-rank approximation scheme of the Koop-
man operator. For a dynamical system given by a map T , this operator is given by composition
with T , and plays a crucial role, in particular for the study of decay of correlations. In most of
the literature concerned with data-driven approaches, the operator is considered on the space of
square-integrable functions, where for mixing dynamical systems it has a single simple eigenvalue,
while other dynamical features are hidden in the continuous spectrum. With data-driven methods
it is possible to rigorously approximate the spectral measure in this setting, as for example is done
in [25] using Christoffel-Darboux kernels, or in [10] with a residual-based approach to remove
spurious eigenvalues, see also [9] for related results.

On the other hand, for certain chaotic dynamical systems of sufficient regularity and with
suitably chosen observables, EDMD correctly determines rates of correlation decay. This can
be understood by enriching L2 with generalised functions or distributions, thereby turning the
Koopman operator on this extended space into a (quasi)-compact operator with discrete spectrum
well-approximated by the EDMD scheme, see [34, 5, 39]. This is explained by the fact that the
Koopman operator is adjoint to the transfer operator, which restricted to a dual space (densely
and continuously embedded in L2) enjoys strong spectral properties, see, for example, [21, 2].
This structure can be seen as an instance of a rigged Hilbert space, see [34] for a discussion of
this point of view or [36] for a previous use in the dynamical systems context and the very recent
work [18] in the data-driven setting.

Nevertheless there remain substantial open questions regarding convergence and quantitative
accuracy of the EDMD method. In this article we aim to contribute to this challenge. In order to
make quantitative progress, in the spirit of [34, 5] we focus on the simplest kind of complex dy-
namical systems, chaotic expansive one-dimensional maps, whose statistical long-term behaviour
is well understood. We consider a discrete dynamical system given by a map on an interval, say
T : [−1, 1]→ [−1, 1], and the associated Koopman operator formally given by (Kf)(x) = f(T (x)).

To briefly and informally summarize the EDMD algorithm introduced in [38], one assumes that
the dynamics (in our case given by the interval map T ) is observed through a set of N observables
{ψ0, . . . , ψN−1}. Further one assumes that the dynamics is recorded at M nodes {x0, . . . , xM−1}
in the phase space, which might arise from times series data, be sampled from a distribution or
be a predefined set. One then solves the generalised eigenvalue problem given by

λ
N−1∑
n=0

H
(M)
kn un =

N−1∑
n=0

G
(M)
kn un , (1)
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where

H
(M)
kn =

1

M

M−1∑
m=0

ψk(xm)ψn(xm)

G
(M)
kn =

1

M

M−1∑
m=0

ψk(T (xm))ψn(xm)

(2)

define the N × N square matrices Ĥ
(M)
N and Ĝ

(M)
N . Ideally, the solutions of the problem (1) are

good approximations for the spectral data of the (appropriately defined) Koopman operator. This,
however, depends sensitively on the choice and the number N of observables, and the choice and
the number M of nodes.

To emphasise the challenge we face, consider the basic textbook example of a piecewise linear
full branch map of the interval, the skewed doubling map on [−1, 1] given by

TD(x) =

{
−1 + 2(x+ 1)/(1 + a) if −1 ≤ x ≤ a

1 + 2(x− 1)/(1− a) if a < x ≤ 1
, (3)

where the parameter a ∈ (−1, 1) determines the skew of the map. For the set of nodes we simply
take a lattice of equidistant points, xm = −1 + (2m + 1)/M , m = 0, . . . ,M − 1. For the set
of observables, Fourier modes seem to be a sensible choice, that is ψk(x) = exp(iπ(k − K)x)

where N = 2K + 1 is odd and k = 0, . . . , N − 1. If M > N , the matrix Ĥ
(M)
N is diagonal1.

The outcome of the EDMD algorithm, that is, the eigenvalues in (1) for certain values of N and
M , are shown in the left panel of Figure 1. These eigenvalues are scattered over the complex
plane and the data seem to display a very slow convergence when increasing the number of nodes
and observables. Furthermore, these data do not seem to correspond to the rates of correlation
decay of the skewed doubling map. For full-branch linear interval maps the (suitably defined)
decay rates are in fact well known, see [29] for an elementary account or the appendix of [33]
in a slightly more general setting. In particular, for the map (3) these decay rates are given by
λn = ((1 + a)/2)n+1 + ((1 − a)/2)n+1, n ∈ N0. Since EDMD produces counterintuitive outcomes
already in this simple setup there are certainly some issues which need to be clarified.

An alternative setting arises from choosing monomials as the observables, that is, ψk(x) = xk

for k = 0, . . . , N − 1, while keeping the same set of equidistant points as the nodes. The results of
applying EDMD in this case are presented in the right panel of Figure 1. We observe that in this
case, the eigenvalues in (1) do approximate λn, however the convergence strongly depends on the
number of chosen nodes M , and in particular can deteriorate for larger N if M is not increased
appropriately.

Our main result (Theorem 2.14) implies the following connection between the eigenvalues of
the EDMD matrices and the eigenvalues of the Koopman operator associated to an analytic full
branch interval map. The EDMD matrices Ĥ

(M)
N and Ĝ

(M)
N here are defined as in Equation (2), with

observables given by monomials, ψk(x) = xk for k = 0, . . . , N − 1, and a collection of equidistant
nodes xm = −1 + δ+ 2m/M ∈ [−1, 1], m = 0, . . . ,M − 1, for any choice of 0 ≤ δ ≤ 2/M . Precise
definitions and the proof of the result as Corollary 2.17 are given in Section 2; for the moment
we simply note that for ρ > 0 we write Dρ = {z ∈ C : |z| < ρ} for the open disk with radius ρ
centred at 0.

Theorem. Let T be an analytic full branch map on the interval [−1, 1], whose inverse branches
ϕ`, ` = 1, . . . , d, extend analytically to an open disk DR ⊂ C with

⋃
` ϕ`(DR) ⊆ Dr for some

1Here, for simplicity, we replace the second observable in (2) by its complex conjugate, which amounts to
relabelling the matrix indices.
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Figure 1: Eigenvalues in the complex plane for the skewed doubling map (Equation (3)) with
a = 1/

√
2, obtained via EDMD using Equation (1). Left: The chosen observables are Fourier

modes with N = 50, M = 10000 (blue, circle) and N = 20, M = 5000 (amber, cross). The circle
has a radius determined by the correlation decay rate of smooth observables, λ1 = (1 + a2)/2.
Right: The chosen observables are monomials with N = 5, M = 10000 (blue, circle) and N = 10,
M = 10000 (amber, cross). The dots correspond to λn = ((1 + a)/2)n+1 + ((1 − a)/2)n+1 for
n = 0, 1, 2, 3, 4.

1 < r < R, and assume r/R < 1/γ with γ = (1 +
√

2)2. Then there exists a Hilbert space of
holomorphic functions H with Banach space dual H′, such that the Koopman operator K : H′ → H′
is compact.

Moreover, for M ≥ N2RN there exist enumerations of the eigenvalues of K and (Ĥ
(M)
N )−1Ĝ

(M)
N ,

λk(K) and λk((Ĥ
(M)
N )−1Ĝ

(M)
N ) respectively, such that for each k ∈ N, there are constants C > 0

and b ∈ (0, 1) so that

|λk((Ĥ(M)
N )−1Ĝ

(M)
N )− λk(K)| ≤ CbN .

In short, for analytic full branch interval maps this theorem guarantees exponential conver-
gence of eigendata of the EDMD matrix constructed using N monomials as observables and M
equidistant points in the phase space, to those of the associated Koopman operator (defined on a
suitable function space), if M satisfies a lower bound in terms of N .

We aim to keep our account self-contained and therefore start with an exposition that can be
found elsewhere in the literature and restate some well-known facts. In particular, we introduce
in some detail analytic full branch maps and suitable function spaces for the associated transfer
operators in Section 2.1, and reiterate some basic features of collocation errors in Section 2.2. The
main technical approximation lemmas are presented in Section 2.3 culminating in the proof of
our main Theorem 2.14 and its corollaries in Section 2.4. The given estimates are conservative,
and a refined approach may allow to relax some of the constraints, such as the constraint on
the expansion rate of the map, or the relation between the number of nodes and the number of
observables. Therefore we also provide a numerical analysis of EDMD in the context of linear
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and nonlinear analytic full branch maps of the interval in Section 3, focusing on maps where the
spectrum of the transfer operator is known explicitly, and where we are able to compare EDMD
results with the exact expected outcome. These computations indicate that one may indeed be
able to derive improved estimates with different tools. Finally, in Section 3.3 we return to the
conundrum described above for the choice of Fourier modes presented in the left panel of Figure 1.

2 Error estimates for EDMD

In this section we provide a detailed proof of the convergence properties of EDMD for certain
one-dimensional chaotic maps. To keep our presentation self-contained we will include some well-
known details and classical facts. Initially, we set up the spectral theory for the dynamical system
we consider, and then move on to provide a detailed account of the proof of Theorem 2.14 and of
the corollaries.

2.1 Analytic full branch maps and their transfer operators

The following are the standing assumptions we are going to use throughout our exposition. We
consider an analytic full branch map T : I → I on the interval I = [−1, 1]. By that we mean there
exists a collection of closed intervals {I` : 1 ≤ ` ≤ d} with disjoint interiors, such that I =

⋃
` I`,

and T |int(I`) is an analytic diffeomorphism with T (I`) = I for each `. We denote by ϕ` : I → I` the
analytic inverse branches of the map T , and assume that for some R > 1, each ϕ` has an analytic
extension to an open disk DR ⊂ C with radius R centred at 0. More precisely, we require that
ϕ` ∈ H∞(DR), where

H∞(DR) = {f ∈ Hol(DR) : sup
z∈DR

|f(z)| <∞}

denotes the usual Banach space of holomorphic functions with the norm

‖f‖H∞(DR) = sup
z∈DR

|f(z)| .

Finally, we assume there exists 1 < r < R such that

d⋃
`=1

ϕ`(DR) ⊆ Dr ,

which poses a condition on the expansion of the map T .
We associate with the map T the transfer operator L : L1(I)→ L1(I) given by

(Lf)(z) =
d∑
`=1

σ`ϕ
′
`(z)f(ϕ`(z)), (4)

where σ` = sgn(ϕ′`(0)) = ±1 encodes whether the respective branch of the map is increasing or
decreasing. This operator, in this setting also known as the Perron-Frobenius operator, connects
to the action of the map via the duality relation∫ 1

−1
g(T (x))f(x) dx =

∫ 1

−1
g(x)(Lf)(x) dx (f ∈ L1(I), g ∈ L∞(I)). (5)
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We will first show that the expression (4) also gives rise to a well-defined and in fact compact
operator when viewed on certain spaces of analytic functions. The main result of this section
will be Proposition 2.4, showing that this operator is well-approximated by finite-rank Taylor
approximations.

For that purpose we introduce the standard Hardy-Hilbert space

H2(DR) = {f ∈ Hol(DR) : sup
s<R

∫ 2π

0

|f(seit)|2 dt <∞}

with norm

‖f‖H2(DR) = sup
s<R

√
1

2π

∫ 2π

0

|f(seit)|2 dt .

Given f ∈ Hol(DR) we can write f(z) =
∑∞

n=0 fnz
n, where fn denotes the n-th Taylor coeffi-

cient of f . For fixed N ∈ N0 we let

(PNf)(z) =
N−1∑
n=0

fnz
n (6)

denote the usual Taylor projection. Later on we will be more specific about the domain and
codomain of PN . For later use we note that f ∈ H2(DR) if and only if

∑∞
n=0 |fn|2R−2n < ∞, in

which case

‖f‖2H2(DR)
=
∞∑
n=0

|fn|2R−2n.

We start by recalling the relation between the two classes of spaces introduced above in the
following two lemmas.

Lemma 2.1. Let ρ ∈ (r,∞). Then the embedding J1 : H2(Dρ) → H∞(Dr) is compact and

‖J1‖H2(Dρ)→H∞(Dr) ≤ ρ/
√
ρ2 − r2. Moreover,

‖J1 − PN‖H2(Dρ)→H∞(Dr) ≤
ρ√

ρ2 − r2

(
r

ρ

)N
for N ∈ N0 ,

where PN : H2(Dρ)→ H∞(Dr) denotes the Taylor projection defined in (6).

Proof. Let f ∈ H2(Dρ). Then we can write f(z) =
∑∞

n=0 fnz
n for z ∈ Dρ. Moreover, for z ∈ Dr

we have

|((J1 − PN)f) (z)|2 =

∣∣∣∣∣
∞∑
n=N

fnz
n

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
n=N

fnρ
n

(
z

ρ

)n∣∣∣∣∣
2

≤
∞∑
n=N

|fn|2ρ2n
∞∑
n=N

∣∣∣∣zρ
∣∣∣∣2n ≤ ‖f‖2H2(Dρ)

(
r

ρ

)2N
1

1− (r/ρ)2
.

Thus

‖(J1 − PN)f‖H∞(Dr) ≤ ‖f‖H2(Dρ)

ρ√
ρ2 − r2

(
r

ρ

)N
.

The estimate for the operator norm follows by taking N = 0 in the above. Finally, J1 is compact,
since it is a uniform limit of finite-rank operators.
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Lemma 2.2. Let ρ ∈ (0, R). Then the embedding J2 : H∞(DR) → H2(Dρ) is compact and
‖J2‖H∞(DR)→H2(Dρ) ≤ 1. Moreover,

‖J2 − PN‖H∞(DR)→H2(Dρ) ≤
( ρ
R

)N
for N ∈ N0 ,

where PN : H∞(DR)→ H2(Dρ) denotes the Taylor projection defined in (6).

Proof. Let f ∈ H∞(DR). Then we can write f(z) =
∑∞

n=0 fnz
n for z ∈ DR. For N ∈ N0, we have

‖(J2 − PN)f‖2H2(Dρ)
= sup

s<ρ

1

2π

∫ 2π

0

∣∣∣∣∣
∞∑
n=N

fns
neint

∣∣∣∣∣
2

dt = sup
s<ρ

∞∑
n=N

|fn|2s2n =
∞∑
n=N

|fn|2R2n
( ρ
R

)2n
≤
( ρ
R

)2N ∞∑
n=R

|fn|2R2n ≤
( ρ
R

)2N
‖f‖2H2(DR)

≤
( ρ
R

)2N
‖f‖2H∞(DR)

.

As in the proof of Lemma 2.1, the estimate for the operator norm follows by taking N = 0 in the
above, and J2 is compact since it is a uniform limit of finite-rank operators.

We now turn to the transfer operator defined in (4). Our ultimate aim is to show that it is
compact and is well-approximated by operators of finite rank. We start with the following simple
observation.

Lemma 2.3. The transfer operator (4) extends to a bounded operator L̃ : H∞(Dr) → H∞(DR)
with

‖L̃‖H∞(Dr)→H∞(DR) ≤ sup
z∈DR

d∑
`=1

|ϕ′`(z)| .

Proof. Let f ∈ H∞(Dr) and z ∈ DR. Then

|(L̃f)(z)| ≤
d∑
`=1

|ϕ′`(z)||f(ϕ`(z))| ≤
d∑
`=1

|ϕ′`(z)|‖f‖H∞(Dr)

so

‖L̃f‖H∞(DR) ≤ sup
z∈DR

d∑
`=1

|ϕ′`(z)|‖f‖H∞(Dr)

and the assertion follows.

For variants of this result for transfer operators arising from maps with infinitely many
branches, see [3].

Now let J1 : H2(Dρ) → H∞(Dr) and J2 : H∞(DR) → H2(Dρ) denote the canonical embed-
dings and L̃ the transfer operator as an operator L̃ : H∞(Dr) → H∞(DR). Then the transfer
operator L viewed as an operator L : H2(Dρ) → H2(Dρ) factorises as L = J2L̃J1. Using this
factorisation we are now able to estimate the accuracy of particular finite-rank approximations of
the transfer operator.

Proposition 2.4. Let ρ ∈ (r, R). Then, for N ∈ N0 we have

‖L − PNL‖H2(Dρ)→H2(Dρ) ≤ C
( ρ
R

)N
,

‖L − LPN‖H2(Dρ)→H2(Dρ) ≤ C

(
r

ρ

)N
,
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where

C =
ρ√

ρ2 − r2
sup
z∈DR

d∑
`=1

|ϕ′`(z)|

and PN : H2(Dρ)→ H2(Dρ) denotes the Taylor projection. In particular

‖L − PNLPN‖H2(Dρ)→H2(Dρ) ≤ C

(( ρ
R

)N
+

(
r

ρ

)N)

for N ∈ N0. Choosing ρ =
√
Rr optimises the above convergence rate to

‖L − PNLPN‖H2(Dρ)→H2(Dρ) ≤ 2C
( r
R

)N/2
.

Proof. Using L = J2L̃J1, by Lemmas 2.1, 2.2, and 2.3 we have

‖L − PNL‖H2(Dρ)→H2(Dρ)

= ‖(J2 − PNJ2)L̃J1‖H2(Dρ)→H2(Dρ)

≤ ‖J2 − PN‖H∞(DR)→H2(Dρ) · ‖L̃‖H∞(Dr)→H∞(DR) · ‖J1‖H2(Dρ)→H∞(Dr)

≤
( ρ
R

)N
sup
z∈DR

d∑
`=1

|ϕ′`(z)| ρ√
ρ2 − r2

,

and, similarly,

‖L − LPN‖H2(Dρ)→H2(Dρ)

= ‖J2L̃(J1 − J1PN)‖H2(Dρ)→H2(Dρ)

≤ ‖J2‖H∞(DR)→H2(Dρ) · ‖L̃‖H∞(Dr)→H∞(DR) · ‖J1 − PN‖H2(Dρ)→H∞(Dr)

≤
(
r

ρ

)N
sup
z∈DR

d∑
`=1

|ϕ′`(z)| ρ√
ρ2 − r2

.

The rest follows by observing that

L − PNLPN = (L − PNL) + PN(L − LPN)

together with the fact that ‖PN‖H2(Dρ)→H2(Dρ) = 1, which follows since PN is a self-adjoint
projection on H2(Dρ).

2.2 Collocation errors for EDMD

In this section we leverage several classical facts to prove Proposition 2.7, providing basic bounds
on the difference between the EDMD matrices in Equation (2) with a finite set of equidistant
nodes, and their formal infinite-data limits. The results are stated for expanding analytic full
branch maps, but in fact the analyticity assumption can be weakened to piecewise C1.

Let M ∈ N. For m ∈ {0, 1, . . . ,M − 1} and 0 ≤ δ ≤ 2/M let xm = −1 + δ + 2m/M denote a
collection of equidistant nodes in I = [−1, 1]. Given N ∈ N and k, ` ∈ {0, . . . , N − 1} let(

H
(M)
N

)
k`

=
1

M

M−1∑
m=0

xkmx
`
m,

(
G

(M)
N

)
k`

=
1

M

M−1∑
m=0

(T (xm))k x`m, (7)
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and define the N × N square matrices Ĥ
(M)
N and Ĝ

(M)
N by (Ĥ

(M)
N )k` = (H

(M)
N )k` and (Ĝ

(M)
N )k` =

(G
(M)
N )k`. These matrices determine EDMD for M equidistant nodes and N observables, where

the observables are given by monomials (see Equation (2)).
In order to study the impact of the number of nodes we also introduce for k, ` ∈ N0

Hk` =
1

2

∫ 1

−1
xkx` dx, Gk` =

1

2

∫ 1

−1
(T (x))m x` dx (8)

and define the two N × N square matrices ĤN and ĜN by
(
ĤN

)
k`

= Hk` and
(
ĜN

)
k`

= Gk`

for k, ` ∈ {0, . . . , N − 1}. These matrices may be viewed as a formal M → ∞ limit of the finite
sums occurring in EDMD and we shall sometimes refer to these objects as EDMD matrices with
‘infinitely many nodes’. The following lemmas provide the collocation errors of the expressions
just introduced.

We begin by recalling the following standard bound for the error in the Riemann integral.

Lemma 2.5. Let f : [a, b]→ R be piecewise C1, that is, f is continuously differentiable apart from
a finite set of points S = {s1, s2, . . . , sd} ⊂ [a, b] with s1 < s2 < . . . < sd, and f has an extension
to a C1 function on [s`−1, s`] for ` ∈ {1, . . . , d + 1} where we set s0 = a and sd+1 = b. Given
M ∈ N, define h = (b − a)/M and xk = a + kh for k ∈ {0, . . . ,M}. For any tk ∈ [xk−1, xk] and
k ∈ {1, . . . ,M} we have∣∣∣∣∣

∫ b

a

f(x) dx−
M∑
k=1

f(tk)h

∣∣∣∣∣ ≤ 1

2
‖f ′‖(b− a)2

M
+ 2d‖f‖b− a

M

where
‖f ′‖ = sup

x∈[a,b]\S
|f ′(x)|, ‖f‖ = sup

x∈[a,b]
|f(x)| .

Proof. We start by showing that∣∣∣∣∣
∫ xk

xk−1

f(x) dx− f(tk)h

∣∣∣∣∣ ≤ 1

2
‖f ′‖h2 + 2χk‖f‖h (9)

where

χk =

{
1 if (xk−1, xk) ∩ S 6= ∅
0 if (xk−1, xk) ∩ S = ∅ .

In order to see this, note that (xk−1, xk) ∩ S is either empty or finite. If it is empty, then∣∣∣∣∣
∫ xk

xk−1

f(x) dx− f(tk)h

∣∣∣∣∣ =

∣∣∣∣∣
∫ xk

xk−1

(f(x)− f(tk)) dx

∣∣∣∣∣
≤
∫ xk

xk−1

|f(x)− f(tk)| dx ≤ ‖f ′‖
∫ xk

xk−1

|x− tk| dx ≤
1

2
h2‖f ′‖

by the Mean Value Theorem, and (9) follows in this case. If (xk−1, xk) ∩ S 6= ∅, then we use∣∣∣∣∣
∫ xk

xk−1

f(x) dx− f(tk)h

∣∣∣∣∣ ≤ 2‖f‖h ,
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which proves (9) in this case. Now, using (9) we have∣∣∣∣∣
∫ b

a

f(x) dx−
M∑
k=1

f(tk)h

∣∣∣∣∣ =

∣∣∣∣∣
M∑
k=1

(∫ xk

xk−1

f(x) dx− f(tk)h

)∣∣∣∣∣
≤ M

2
‖f ′‖h2 +

M∑
k=1

χk · 2‖f‖h ≤
1

2
‖f ′‖(b− a)2

M
+ 2d‖f‖b− a

M
.

Our subsequent estimates for the matrix norms will rely on a famous lemma of Schur, the
short proof of which we recall for the convenience of the reader.

Lemma 2.6. Let A ∈ CN×N be a complex N ×N matrix and write

R =
N∑
m=1

max
1≤n≤N

|Amn|, C =
N∑
n=1

max
1≤m≤N

|Amn| .

Then the spectral norm ‖A‖2 of A, that is, the matrix norm induced by the Euclidean norm,
satisfies ‖A‖2 ≤

√
CR.

Proof. Let x ∈ CN and y ∈ CN . Then by the Cauchy-Schwarz inequality∣∣∣∣∣
N∑

k,`=1

ȳkAk`x`

∣∣∣∣∣
2

≤

(
N∑

k,`=1

|yk||Ak`|1/2 · |Ak`|1/2|x`|

)2

≤
N∑

k,`=1

|yk|2|Ak`| ·
N∑

k,`=1

|Ak`||x`|2 ≤ (‖y‖2)2C ·R(‖x‖2)2 .

Setting y = Ax we obtain (‖Ax‖2)4 ≤ CR(‖x‖2)2(‖Ax‖2)2, from which the assertion follows.

We are now able to bound the collocation error caused by taking a finite number of nodes.

Proposition 2.7. Denote by T an analytic full branch map on I = [−1, 1] with d branches, and
let S be the set of the d− 1 ‘critical points’ of the map T . For k, ` ∈ {0, . . . , N − 1} we have∣∣∣(ĤN − Ĥ(M)

N

)
k`

∣∣∣ ≤ k + `

M
,∣∣∣(ĜN − Ĝ(M)

N

)
k`

∣∣∣ ≤ max(‖T ′‖, 2(d− 1))
k + l + 1

M
,

where ‖T ′‖ = supx∈[−1,1]\S |T ′(x)|.
Moreover ∥∥∥ĤN − Ĥ(M)

N

∥∥∥
2
≤ 3

2

N2

M
,∥∥∥ĜN − Ĝ(M)

N

∥∥∥
2
≤ 3

2
max(‖T ′‖, 2(d− 1))

N2

M
.

Proof. Using Lemma 2.5 with f(x) = xk+` we have

∣∣∣(ĤN − Ĥ(M)
N

)
k`

∣∣∣ =

∣∣∣∣∣12
∫ 1

−1
f(x) dx− 1

M

M−1∑
m=0

f(xm)

∣∣∣∣∣ ≤ 1

2

(
1

2
‖f ′‖ · 22

M

)
=
k + `

M
,
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since f ′(x) = (k + `)xk+`−1 and hence ‖f ′‖ = k + `.
Next we set f(x) = (T (x))kx` and observe that f ′(x) = k(T (x))k−1T ′(x)x` + (T (x))k · `x`−1,

and therefore ‖f ′‖ ≤ k‖T ′‖+ ` ≤ (k + `)‖T ′‖, using that ‖T ′‖ ≥ 1. Lemma 2.5 now gives

∣∣∣(ĜN − Ĝ(M)
N

)
k`

∣∣∣ =

∣∣∣∣∣12
∫ 1

−1
f(x) dx− 1

M

M−1∑
m=0

f(xm)

∣∣∣∣∣ ≤ 1

2

(
1

2
‖f ′‖ 22

M
+ 2(d− 1)‖f‖ 2

M

)
=

1

2

(
2‖T ′‖k + `

M
+

22(d− 1)

M

)
≤ max(‖T ′‖, 2(d− 1))

k + `+ 1

M
.

The remaining assertions follow from Lemma 2.6. For instance, if B ∈ CN×N with |Bk`| ≤
k + `+ 1 for k, ` ∈ {0, . . . , N − 1}, then maxk |Bk`| ≤ N + ` and

N−1∑
`=0

max
0≤k≤N−1

|Bk`| ≤
N−1∑
`=0

(N + `) = N2 +
1

2
N(N − 1) ≤ 3

2
N2 .

By symmetry
∑N−1

k=0 max` |Bk`| ≤ 3N2/2. Thus by Lemma 2.6, we have ‖B‖2 ≤ 3N2/2.

2.3 EDMD in an operator setting

This section provides the key technical elements of our paper, preparing the proof of our main
results. Proposition 2.11 provides a bound on the Galerkin approximation error, that is, the
error incurred from the finite-rank approximation of the transfer operator. Complementarily, in
Proposition 2.13 we use the basic bounds from the previous section to establish a bound on the
collocation error incurred by the finite-node approximation of the integrals in Equation (8).

The following calculations will be involving matrix representations of operators on H2(Dρ)
with some fixed ρ ∈ (r, R) with respect to the standard orthonormal basis (en)n∈N0 given by

en(z) =

(
z

ρ

)n
for n ∈ N0 . (10)

We will denote by

(f, g) = lim
s↑ρ

1

2π

∫ 2π

0

f(s exp(it))g(s exp(it)) dt

the standard inner product in H2(Dρ), and by

〈f, g〉 =
1

2

∫ 1

−1
f(x)g(x) dx (11)

the standard inner product in L2([−1, 1]).
With the orthonormal basis above we can write the transfer operator Lf =

∑
k`(f, e`)Lk`ek

with
Lk` = (Le`, ek) . (12)

Equation (12) defines a linear operator L : `2(N0) → `2(N0), where ‖L‖H2(Dρ) = ‖L‖`2 . We use
Equations (8) to consider G and H as densely defined operators on `2(N0). We will also need the
following densely defined diagonal operator on `2(N0)

V : (xn)n∈N0 7→ (ρnxn)n∈N0 (13)

11



and its inverse V −1 : `2(N0)→ `2(N0)

V −1 : (xn)n∈N0 7→ (ρ−nxn)n∈N0 , (14)

which is a compact operator since ρ > 1. While V and V −1 depend on ρ, we omit to explicitly
write out this dependence for notational simplicitly.

We are now going to link the expressions defining EDMD with the transfer operator, and the
following lemma is the first in a couple of steps.

Lemma 2.8. With the above notation, we have G = HV −1LV .

Proof. By Equation (10) we have xk = ρkek(x), so that Equations (8) can be written as

Hk` = ρk+`〈e`, ek〉, Gk` = ρk+`〈Le`, ek〉

recalling Equations (5) and (11). Since Le` =
∑

n(Le`, en)en, we obtain

Gk` = ρk+`〈Le`, ek〉 =
∑
n∈N0

ρk+`(Le`, en)〈en, ek〉

=
∑
n∈N0

ρk+`Ln`ρ
−n−kHkn =

∑
n∈N0

Hknρ
−nLn`ρ

` .

We are now going to introduce operators on `2(N0) which capture a finite number of ob-
servables. Let PN : `2(N0) → `2(N0) denote the canonical orthogonal projection onto the first N
coordinates which gives the matrix representation of the Taylor projection PN : H2(Dρ)→ H2(Dρ)
with respect to the canonical orthogonal basis (en)n∈N0 . Let LN , HN and GN denote the orthogonal
projections of the operators introduced above, that is,

LN = PNLPN , HN = PNHPN , GN = PNGPN (15)

defined as operators of rank at most N on `2(N0). If we restrict HN and GN on the image of
PN , that is, if we consider the N ×N section, we obtain the N ×N square matrices ĤN and ĜN

mentioned previously. It turns out that ĤN is invertible (because it is positive definite) and we
denote by H†N : `2(N0)→ `2(N0) the rank N operator which lifts the matrix Ĥ−1N to `2(N0). That

means H†N coincides with Ĥ−1N when restricted to the image of PN , that is, HNH
†
N = H†NHN = PN

and H†NPN = PNH
†
N = H†N . We note that since HN is symmetric, H†N can be seen to be the

Moore-Penrose pseudoinverse of HN .

Lemma 2.9. For all N ∈ N0 we have

‖HN‖`2 ≤ ‖H‖`2 ≤ π and ‖H†N‖`2 ≤ C(1 +
√

2)2N

for some C > 0.

Proof. Let Fk` = 1/(k + ` + 1) with k, ` ∈ N0 denote the Hilbert matrix. It is known (see, for
example, [7, p.305]) that ‖F‖`2 = π. Now

H =
1

2
(F + JFJ)

where J : `2(N0)→ `2(N0) is given by (Jx)k = (−1)kxk. Since ‖J‖`2 = 1 we have

‖H‖`2 ≤ ‖F‖`2 = π .

Furthermore, with ‖PN‖`2 = 1 we obtain

‖HN‖`2 = ‖PNHPN‖`2 ≤ ‖H‖`2 .

The second inequality follows from [37, Theorem 3.2].
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We also introduce orthogonal projections of the diagonal operators defined in Equations (13)
and (14)

VN = PNV PN , V −1N = PNV
−1PN . (16)

Lemma 2.10. For all N ∈ N0 we have

‖VNH†NGNV
−1
N − LN‖`2 ≤ C

(γρ
R

)N
for some C > 0, where γ = (1 +

√
2)2.

Proof. By Lemma 2.8 we have

PNGPN = PNHV
−1LV PN = PNHPNV

−1LV PN + PNH(1− PN)V −1LV PN ,

so using Equations (15) and (16) we have

GN = HNV
−1
N LNVN + PNH(1− PN)V −1LPNVN ,

since PNV
−1 = V −1N PN and V PN = PNVN . Thus using H†NHN = PN and VNV

−1
N = PN we obtain

VNH
†
NGNV

−1
N = LN + VNH

†
NPNH(1− PN)V −1LPN

= LN + VNH
†
NPNH(1− PN)V −1(1− PN)LPN

and

‖VNH†NGNV
−1
N − LN‖`2

≤ ‖VN‖`2‖H†N‖`2‖PNH(1− PN)‖`2‖(1− PN)V −1(1− PN)‖`2‖(1− PN)LPN‖`2 .

On the other hand, by definition of the diagonal operator we have

‖VN‖`2 = ρN−1, ‖(1− PN)V −1(1− PN)‖`2 = ρ−N ,

by Lemma 2.9 we have

‖PNH(1− PN)‖`2 ≤ 2π, ‖H†N‖`2 ≤ C1γ
N ,

and Proposition 2.4 yields

‖(1− PN)LPN‖`2 ≤ ‖(1− PN)L‖`2‖PN‖`2 = ‖(1− PN)L‖H2(Dρ)→H2(Dρ) ≤ C2

( ρ
R

)N
with suitable C1, C2 > 0, and the assertion follows.

Proposition 2.11. Writing γ = (1 +
√

2)2, we have for all N ∈ N0

‖VNH†NGNVN − L‖`2 ≤ C

((γρ
R

)N
+

(
r

ρ

)N)

for some C > 0. Choosing ρ =
√
rR/γ optimises the convergence speed to (γr/R)N/2.
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Proof. The assertion follows immediately from Proposition 2.4 and Lemma 2.10, as

‖VNH†NGNV
−1
N − L‖`2

≤ ‖VNH†NGNV
−1
N − LN‖`2 + ‖L− LN‖`2

= ‖VNH†NGNV
−1
N − LN‖`2 + ‖L − PNLPN‖H2(Dρ)→H2(Dρ)

≤ C1

(γρ
R

)N
+ C2

(( ρ
R

)N
+

(
r

ρ

)N)
.

Proposition 2.11 is the first main convergence result. It shows that for an infinite number
of nodes the EDMD matrix H†NGN of order N , is similar to a matrix that converges uniformly
exponentially fast to the matrix representation of the transfer operator, provided the map T is
sufficiently expansive, that is, if r/R < 1/γ.

We will now implement the concept with a finite number of nodes in our setting. For that pur-
pose lift the N ×N square matrix Ĥ

(M)
N (see Equation (7)) to a rank N operator H

(M)
N : `2(N0)→

`2(N0) such that the N×N section of H
(M)
N coincides with Ĥ

(M)
N and H

(M)
N = PNH

(M)
N = H

(M)
N PN .

Furthermore we can see that Ĥ
(M)
N is positive definite for M ≥ N since

N−1∑
k,`=0

ᾱk(Ĥ
(M)
N )k`α` =

1

M

M−1∑
m=0

|p(xm)|2 , (17)

where the polynomial p(x) =
∑N

k=0 αkx
k has at most N−1 distinct roots as long as (α0, . . . , αN−1)

is nonzero, so that at least one of the terms in the sum of Equation (17) is positive. In the same

vein, provided that M ≥ N , we can lift the inverse matrix (Ĥ
(M)
N )−1 to a rank N operator

(H
(M)
N )† : `2(N0)→ `2(N0) which obeys H

(M)
N (H

(M)
N )† = (H

(M)
N )†H

(M)
N = PN .

Lemma 2.12. There exist constants C1, C2 > 0 such that for N ∈ N0 and M ≥ C1N
2γN we have

‖(H(M)
N )†‖`2 ≤ C2γ

N ,

where γ = (1 +
√

2)2.

Proof. We have ‖H†N‖ ≤ C̃1γ
N by Lemma 2.9, and

‖HN −H(M)
N ‖`2 = ‖ĤN − Ĥ(M)

N ‖2 ≤
3

2

N2

M

by Proposition 2.7. Define C1 = max(3C̃1, 1) and suppose that M ≥ C1N
2γN > N . Then

‖H†N(HN −H(M)
N )‖`2 ≤ ‖H†N‖`2‖HN −H(M)

N ‖`2 ≤
1

2

and I −H†N(HN −H(M)
N ) is invertible. From

H
(M)
N = HN − (HN −H(M)

N ) = HN − PN(HN −H(M)
N ) = HN(I −H†N(HN −H(M)

N ))

we conclude (since M > N)

(H
(M)
N )† = (I −H†N(HN −H(M)

N ))−1H†N

and

‖(H(M)
N )†‖`2 ≤ ‖(I −H†N(HN −H(M)

N ))−1‖`2‖H†N‖ ≤
1

1− 1/2
C̃1γ

N .
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The following proposition essentially estimates the difference between EDMD with a finite and
with an infinite number of nodes.

Proposition 2.13. Let r/R < 1/γ with γ = (1 +
√

2)2, and ρ ∈ (r, R). There exist C1, C2 > 0
such that for N ∈ N0 and M ≥ C1N

2γN we have

‖VN(H
(M)
N )†G

(M)
N V −1N − VNH†NGNV

−1
N ‖`2 ≤ C2(ργ)N

N2

M
.

Proof. Let C1 > 0 be as in Lemma 2.12 and M ≥ C1N
2γN . We have

‖VN(H
(M)
N )†G

(M)
N V −1N − VNH†NGNV

−1
N ‖`2

= ‖VN(H
(M)
N )†(G

(M)
N −GN)V −1N

+ VN(H
(M)
N )†(H

(M)
N −HN)V −1N VNH

†
NGNV

−1
N ‖`2

≤ ‖VN‖`2‖(H(M)
N )†‖`2‖G(M)

N −GN‖`2‖V −1N ‖`2

+ ‖VN‖`2‖(H(M)
N )†‖`2‖H(M)

N −HN‖`2‖V −1N ‖`2‖VNH
†
NGNV

−1
N ‖`2 .

Using Proposition 2.7, we obtain

‖H(M)
N −HN‖`2 = ‖Ĥ(M)

N − ĤN‖2 ≤
3

2

N2

M

‖G(M)
N −GN‖`2 = ‖Ĝ(M)

N − ĜN‖2 ≤ C̃1
N2

M
,

and by Lemma 2.12,
‖(H(M)

N )†‖`2 ≤ C̃2γ
N .

Finally, Proposition 2.11 yields

‖VNH†NGNVN‖`2 = ‖VNH†NGNVN − L‖`2 + ‖L‖`2

≤ C̃3

(γr
R

)N/2
+ ‖L‖H2(Dρ)→H2(Dρ) ≤ C̃4 ,

and
‖VN‖`2‖V −1N ‖`2 = ρN−1 ,

and the assertion follows.

2.4 Main results

Our first main result can be stated as follows:

Theorem 2.14. Let T be an analytic full branch map on the interval [−1, 1] with r/R < 1/γ,
where γ = (1 +

√
2)2. Then there exist C1, C2 > 0 such that for all N ∈ N0 and all M ≥ C1N

2γN

we have

‖VN(H
(M)
N )†G

(M)
N V −1N − L‖`2 ≤ C2

(
(γrR)N/2N2

M
+
(γr
R

)N/2)
.

Proof. We note that

‖VN(H
(M)
N )†G

(M)
N V −1N − L‖`2 ≤ ‖VN(H

(M)
N )†G

(M)
N V −1N − VNH†NGNV

−1
N ‖`2

+ ‖VNH†NGNV
−1
N − L‖ .

Using Proposition 2.11 and Proposition 2.13 with ρ =
√
rR/γ yields the assertion.
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In particular, by imposing a lower-bound condition on the number of nodes in terms of the
number of observables, we obtain exponential convergence. More precisely:

Corollary 2.15. Under the hypothesis of Theorem 2.14, there exists a C > 0 such that for all
N ∈ N0 and for all M ≥ N2RN we have

‖VN(H
(M)
N )†G

(M)
N V −1N − L‖`2 ≤ C

(γr
R

)N/2
.

Proof. We note that by assumption RN > rNγN , and so M ≥ N2RN ≥ C1N
2γN for all N ≥

logC1/ log r. Letting

C3 = max

{
‖VN(H

(M)
N )†G

(M)
N V −1N − L‖`2

(γrR)N/2N2

M
+
(
γr
R

)N/2 : N <
logC1

log r
,M < C1N

2γN

}
,

the assertion follows with C = max{2C2, C3}.

It is a classical textbook result (see, for example, [14, p.1091]) that uniform convergence of
compact operators, such as in Corollary 2.15, implies uniform convergence of eigenvalues. How-
ever, without additional conditions, the speed of convergence does not carry over. In our case,
exponential convergence of eigenvalues is a consequence of [1, Theorem 2.18 and ensuing remarks]
(see also [34]), which provide the proof of the following simple useful statement.

Lemma 2.16. Let V be a Banach space and FN : V → V a convergent sequence of finite-rank
operators with

‖FN −F‖V→V ≤ Ce−αN

for some C > 0 and α > 0. Then there exist enumerations (taking algebraic multiplicities into
account) of the eigenvalues of FN and of the limit F , denoted λk(FN) and λk(F) respectively,
such that for each fixed k there exist constants C ′ > 0 and α′ > 0 with

|λk(FN)− λk(F)| ≤ C ′e−α
′N for N ∈ N .

With Corollary 2.15 and Lemma 2.16 the eigenvalues of the EDMD matrices (H
(N)
M )†G

(M)
N

converge at an exponential rate towards the eigenvalues of the (compact) transfer operator L on
H2(Dρ). If we denote by (H2(Dρ))

′ the Banach dual of H2(Dρ), that is, the Banach space of
bounded linear functionals ` : H2(Dρ)→ C, then the Banach adjoint K : (H2(Dρ))

′ → (H2(Dρ))
′

of the transfer operator L : H2(Dρ)→ H2(Dρ) is defined by (K`)(f) = `(Lf). The Banach adjoint
K and the transfer operator L have the same spectra (including multiplicities of eigenvalues), which
together with the previous considerations yields the following result:

Corollary 2.17. Assume the hypothesis of Theorem 2.14, M ≥ N2RN , and ρ =
√
rR/γ. Denote

by K : (H2(Dρ))
′ → (H2(Dρ))

′ the (compact) Koopman operator extended to the Banach dual of

H2(Dρ). Then there exist enumerations of the eigenvalues of K and (H
(M)
N )†G

(M)
N , λk(K) and

λk((H
(M)
N )†G

(M)
N ) respectively, such that for each fixed k there exist constants C > 0 and 0 < b < 1

such that
|λk((H(M)

N )†G
(M)
N )− λk(K)| ≤ CbN for N ∈ N .

Remark 2.18. The Banach adjoint K is indeed an extension of the ‘usual’ Koopman operator to
the dual space (H2(Dρ))

′. To see this, take a function g ∈ L2([−1, 1]) and introduce the functional
`g : H2(Dρ)→ C by

`g(f) =

∫ 1

−1
f(x)g(x) dx . (18)
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Using the continuity of point evaluations on H2(Dρ), that is, |f(x)| ≤ ρ/
√
ρ2 − x2‖f‖H2(Dρ) (see

the proof of Lemma 2.1), one can easily show that `g is bounded. Hence functionals of the type
defined in Equation (18) constitute a subspace of (H2(Dρ))

′. With Equation (5) we obtain

(K`g)(f) = `g(Lf) =

∫ 1

−1
(Lf)(x)g(x)dx =

∫ 1

−1
f(x)g(T (x)) dx = `g◦T (f) .

Hence on the subspace of linear functionals of the form (18), K acts in the ‘usual’ way g 7→ g ◦T .

3 Numerical illustration

We compare our previous analytic estimates by applying EDMD to chaotic one-dimensional ex-
panding maps. For the set of observables we take monomials ψk(x) = xk, k = 0, 1, . . . , N − 1.

3.1 Piecewise linear maps

As our first model we take a piecewise linear full branch map, the skewed doubling map in (3)
defined on [−1, 1], repeated for convenience below

TD(x) =

{
−1 + 2(x+ 1)/(1 + a) if −1 ≤ x ≤ a

1 + 2(x− 1)/(1− a) if a < x ≤ 1
,

where the parameter a ∈ (−1, 1) determines the skew of the map. The eigenvalues of the transfer
operator (4), defined on a space of analytic functions, say H2(DR) with R > 1, are simply given
by λn = ((1 + a)/2)n+1 + ((1− a)/2)n+1 with n = 0, 1, . . ., see for example [29] for an elementary
account. The finite-rank approximation given by the matrix LN (see Equation (15)) becomes
exact in this piecewise linear case and the first N eigenvalues are given by the diagonal matrix
elements (LN)kk. Furthermore, if we perform EDMD with an infinite number of nodes along the
lines of Equation (8), EDMD is equivalent to the eigenvalue problem of the matrix LN (see the
proof of Lemma 2.10, since (1 − PN)LPN = 0 in the case of piecewise linear maps). This is
also reflected in the numerical evaluation of EDMD where results for the leading N eigenvalues
coincide with the exact values to the numerical accuracy used, when the matrices HN and GN are
computed via Equation (8). We note that computing the eigenvalues via EDMD requires solving
the generalised eigenvalue problem (1), which in itself poses a considerable numerical challenge.
For our numerics we have relied on standard commercial numerical solvers contained, for example,
in the Maple or Mathematica software packages. Alternatively, one can use standard numerical
eigenvalue solvers by employing the ε-pseudoinverse of the matrix HN , which, in practice, yields
the same numerical result for the eigenvalues.

The picture differs if we focus on EDMD for a finite number M of equidistant nodes xm =
−1 + (2m − 1)/M , m = 1, . . . ,M , see the right panel of Figure 1. Then the collocation error
in computing the integrals, see Proposition 2.7, causes corresponding errors for the eigenvalues
themselves. If we denote by ∆n = |λn − λ

(EDMD)
n | the absolute difference between the exact

eigenvalue and the corresponding result produced by EDMD, then this error shows indeed the
characteristic 1/M dependence if the leading eigenvalues are considered, see Figure 2. In addition,
the error shows large fluctuations which may be the result of the constant expansivity in the
piecewise linear chaotic map. The number of observables had no impact on the error when
infinite number of nodes were considered. For a finite number of nodes a fairly small number
of observables is sufficient to obtain small errors and the error may in fact increase (as seen in
the right panel of Figure 1) if the number of observables is increased, see Theorem 2.14. We will
elaborate further on this observation in the next section.
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Figure 2: Difference ∆n between the exact eigenvalue of the transfer operator and the approximate
eigenvalue obtained by EDMD using monomials as observables, for the skewed doubling map,
Equation (3), with a = 1/

√
2, in dependence on the number of equidistant nodes M on a double

logarithmic scale. Left: Error of the subleading eigenvalue, ∆1, for N = 5 (blue, circles) and
N = 6 (amber, cross). The line (cyan) shows an algebraic decay of order 1/M . Left: Error of the
second nontrivial eigenvalue, ∆2, for N = 5 (blue, circles) and N = 6 (amber, cross). The line
(cyan) shows an algebraic decay of order 1/M .

3.2 Blaschke maps

To obtain further insight let us consider a piecewise analytic map with nonlinear branches. For a
reliable error estimate we focus on the class of so-called interval Blaschke maps, for which the exact
spectrum of the transfer operator on H2(DR) can been computed explicitly [32, 4]. We consider
here the simplest case which is given by a symmetric nonlinear deformation of the doubling map

TB(x) =


2x+ 1 +

2

π
arctan

(
µ sin(πx)

1− µ cos(πx)

)
if −1 ≤ x ≤ 0

2x− 1 +
2

π
arctan

(
µ sin(πx)

1− µ cos(πx)

)
if 0 < x ≤ 1

(19)

where µ ∈ (−1, 1) denotes the parameter of the map. The exact spectrum consists of the trivial
eigenvalue λ0 = 1 and two nontrivial families of eigenvalues given by {µn : n = 1, 2, . . .} and
{(µ/2 + 1/2)n : n = 1, 2, . . .}. Eigenvalues in the first family have geometric multiplicity two,
while eigenvalues in the second family are simple. The two inverse branches can be computed
in a straightforward way and they are given by ϕ`(x) = x/2 + (−1)`arccos(µ cos(πx/2))/π with
` = 1, 2. If |µ| ≤ 0.3 then there exists some R > 1 so that these branches are analytic on a disk
DR in the complex plane and thus satisfy the conditions required for the transfer operator to be
compact, see Section 2.1 for details.

We first focus on EDMD with an infinite number of nodes, see Equation (8). In this case (see
Proposition 2.4) the finite-rank approximation by the matrix LN , Equation (15), produces errors
which are exponentially small in N . EDMD yields eigenvalue estimates which are exponentially
close to the exact values (Proposition 2.11), and the errors ∆n decay exponentially with the
number of observables used, as can also be observed numerically in Figure 3. We note that the
two different sets of eigenvalues which are contained in the spectrum of the transfer operator have
different exponential decay rates, which might be caused by the multiplicities of the two sets of
eigenvalues.

As a next step we investigate the impact of a finite number of nodes, when EDMD is applied
to the Blaschke map (19) with a fixed number N of observables. We again choose M centralised
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Figure 3: Difference ∆n between the exact eigenvalue of the transfer operator and the approximate
eigenvalue obtained by EDMD using monomials as observables and an infinite number of nodes, for
a Blaschke interval map, Equation (19), with µ = 0.3 in dependence on the number of observables
N on a semi-logarithmic scale. Results for the first five nontrivial eigenvalues are shown. EDMD
has been evaluated for an infinite number of nodes, see Equation (8).

nodes xm = −1 + (2m − 1)/M , m = 1, . . . ,M to evaluate the sums in Equations (7). While
the finite number of observables causes only an exponentially small error, the total error is now
dominated by the collocation errors of the matrix elements (Proposition 2.7), which are algebraic
in the number of nodes used. Since we are in a symmetric case with nodes being interval midpoints,
we expect the collocation errors to be of order O(M−2), as indeed observed in Figure 4 for the
leading eigenvalues. However, the asymptotic behaviour sets in later for larger number of nodes
when higher eigenvalues are considered (see also Theorem 2.14).

We will now demonstrate the joint dependence of the eigenvalue approximation error on both
the number of observables N and the number of nodes M , again using the Blaschke map (19), with
observables given by monomials, and a set of centralised equidistant nodes. As already observed
in Figure 2, we can expect to require a sufficiently large number of nodes to deal with expressions
containing monomials of high power, so that convergence of eigenvalues depends on a nontrivial
relation between N and M (see Corollary 2.15). The results displayed in Figure 5 confirm this
expected lack of uniformity as convergence seems to occur in a triangular shaped region when
N and M jointly tend to infinity. Numerically, a constraint of the type M > cN2 seems to be
required to ensure convergence of the EDMD eigenvalues towards the correct spectrum of the
transfer operator. Hence, the numerical result seems to indicate that the terms γN occurring in
Theorem 2.14 overestimate the actual error, and a tighter bound avoiding such terms might be
obtained. In fact, the statement of Theorem 2.14 is uniform across the spectrum, and the estimate
might be improved by using ε-pseudoinverses for operators and focusing solely on the leading part
of the spectrum.

In line with Theorem 2.14, the numerical investigation of simple toy models shows exponential
convergence in the number of observables, so that a small number of observables turns out to be
sufficient. However the required number of nodes M is large and grows rapidly with increasing
N , and we observe a nontrivial relation between N and M which needs to be satisfied to obtain
convergence of the EDMD algorithm.
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Figure 4: Difference between the exact eigenvalue of the transfer operator and the approximate
eigenvalue obtained by EDMD using monomials as observables, for a Blaschke interval map,
Equation (19), with µ = 0.3 in dependence on the number of equidistant nodes M on a double
logarithmic scale. Results for the first five nontrivial eigenvalues are shown. The jumps are likely
to be artefacts caused by sorting eigenvalues by size of modulus. EDMD has been evaluated for
N = 15 observables. The line (cyan) shows an algebraic decay of order 1/M2.
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Figure 5: Density plot of the difference between the exact eigenvalue of the transfer operator and
the approximate eigenvalue obtained by EDMD using monomials as observables, for a Blaschke
interval map with µ = 0.3 in dependence on the number of equidistant nodes M and the number
of observables N . The data are shown on a double logarithmic scale. Left: error of the subleading
eigenvalue, ∆1, right: error of the second nontrivial eigenvalue, ∆2.

3.3 Impact of observables

We have derived our results for simple toy models where a rigorous account for our findings can be
provided. In general, however, the quality of the EDMD results is hard to judge, as the outcome
depends on the observables in a subtle way. Even when EDMD converges, the meaning of the
eigenvalues obtained may not be obvious. We have demonstrated this phenomenon for the skewed
doubling map when EDMD is applied with observation through Fourier modes, see the left panel
of Figure 1.
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Let us look at this case in some more detail. To simplify the analysis consider the case of
infinite number of nodes where the relevant matrix elements are simply given by

Hk` =
1

2

∫ 1

−1
exp(iπkx) exp(−iπ`x) dx = δk`

Gk` =
1

2

∫ 1

−1
exp(iπkT (x)) exp(−iπ`x) dx

=
1 + a

2
eiπ`(1−a)/2

sin(π(k − `(1 + a)/2))

π(k − `(1 + a)/2)

+
1− a

2
e−iπ`(1+a)/2

sin(π(k − `(1− a)/2))

π(k − `(1− a)/2)
(20)

when using Equation (3). While not crucial, we have used here the complex conjugate for the
second entry as that conveniently results for H in the identity matrix. Figure 6 shows the result
for the subleading eigenvalue λ1 computed from the generalised eigenvalue problem, that is, the
subleading eigenvalue of GN , in dependence on the skew of the map. We obtain convergence when
N increases, but convergence slows down considerably for maps with a small skew a. Furthermore,
the modulus of the subleading eigenvalue seems to converge towards (1 + |a|)/2, an expression
which coincides with the essential spectral radius of the transfer operator considered on the space
of functions of bounded variation, see for example [17]. With hindsight we can also provide an
analytic argument supporting this observation. We may consider the skewed doubling map as
a piecewise analytic map on the complex unit circle, following the construction which is used
for analytic maps, see for example [32]. Fourier modes become complex monomials, and smooth
functions on the interval become discontinuous on the unit circle, as smooth functions on an
interval normally do not have a continuous periodic extension beyond the endpoints of the interval.
If one applies the transfer operator to such discontinuous functions the number of discontinuities
may increase, but the variation of the function remains bounded because of the expansivity of
the map. While one would naively expect that Fourier modes imply studying transfer operators
on a space of square integrable functions we encounter here an unexpected subtle mechanism
where Fourier modes result in studying the transfer operator on the space of functions with
bounded variation. This observations parallels the approximation of smooth maps by piecewise
linear Markov maps, see for example [35, 19], which effectively also amounts to studying transfer
operators on the space of functions with bounded variation [33]. In summary, it is not surprising
that the corresponding essential spectral radius shows up in the numerical outcome of EDMD. It
is also worth mentioning that the essential spectral radius does not have to be an eigenvalue of
the transfer operator, so that some care has to be taken when interpreting eigenmodes obtained
by EDMD.

Let us also comment on the slow convergence which is visible in Figure 6 close to a = 0. The
transfer operator of the doubling map, a = 0, effectively halves wavenumbers of the Fourier modes,
that is, the matrix GN in Equation (20) has a single eigenvalue 1 and a degenerate eigenvalue
zero. The matrix GN for a = 0 consists of Jordan blocks, and the largest block has size b where
2b ∼ N . For a 6= 0, standard perturbation theory tells us that nonvanishing eigenvalues of the size
|λ1| ∼ |a|1/b ∼ |a|ln 2/ lnN are generated. This simple reasoning is consistent with the numerical
data, see the inset in Figure 6. It also supports the assertion that EDMD in this example yields
the essential spectral radius for the transfer operator being defined on the space of functions with
bounded variation.

In summary, while EDMD is a powerful data analysis tool, results have to be taken with a
grain of salt, as the interpretation of the eigenvalues and eigenmodes is far from obvious. In
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Figure 6: Absolute value of the subleading eigenvalue λ1 obtained for the skewed doubling map,
Equation (3), in dependence on the skew a, using EDMD with N Fourier modes in the limit
of infinitely many nodes, see Equations (20) (symbols). The line (amber) shows the essential
spectral radius of the transfer operator defined on the space of functions with bounded variation.
The inset shows the product ln |λ1| lnN as a function of N for a doubling map with tiny skew
a = 10−16 (symbols). The horizontal line (amber) indicates a crude analytic estimate (see the
text for details).

particular, it is often not clear which transfer or Koopman operator is studied by EDMD, as
the underlying operator (together with a function space) is determined in a subtle way by the
observables used, if it exists at all. Nevertheless, at the phenomenological level EDMD is a very
appealing tool, and further rigorous studies are required to complement its empirical success with
provable convergence guarantees and rates.
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[25] M. Korda, M. Putinar and I. Mezić. Data-driven spectral analysis of the Koopman operator.
Appl. Comput. Harmon. Anal., 48:599, 2020.

[26] J.N. Kutz, S.L. Brunton, B.W. Brunton, and J.L. Proctor. Dynamic Mode Decomposition:
Data-Driven Modeling of Complex Systems. Society for Industrial and Applied Mathematics,
2016.
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[30] W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D.S. Henningson. Spectral analysis of
nonlinear flows. J. Fluid Mech., 641:85, 2009.

[31] P.J. Schmid. Dynamic mode decomposition of numerical and experimental data. J. Fluid
Mech., 656:5, 2010.

[32] J. Slipantschuk, O.F. Bandtlow, and W. Just. Analytic expanding circle maps with explicit
spectra. Nonl., 26:3231, 2013.

[33] J. Slipantschuk, O.F. Bandtlow, and W. Just. On the relation between Lyapunov exponents
and exponential decay of correlations. J. Phys. A, 46:075101, 2013.

[34] J. Slipantschuk, O.F. Bandtlow, and W. Just. Dynamic mode decomposition for analytic
maps. Comm. Nonl. Sci. Num. Sim., 84:105179, 2020.

[35] B. C. So, N. Yoshitake, H. Okamoto, and H. Mori. Correlations and spectra of an intermittent
chaos near its onset point. J. Stat. Phys., 36(3/4):367, 1984.

[36] Z. Suchanecki, I. Antoniou, S. Tasaki, and O.F. Bandtlow. Rigged Hilbert spaces for chaotic
dynamical systems. J. Math. Phys., 37:5837, 1996.

[37] H.S. Wilf. Finite Sections of Some Classical Inequalities. Springer, New York, 1970.

[38] M.O. Williams, I.G. Kevrekidis, and C.W. Rowley. A data-driven approximation of the
Koopman operator: extending dynamic mode decomposition. J. Nonl. Sci., 25:1307, 2015.

[39] C. Wormell. Orthogonal polynomial approximation and extended dynamic mode decompo-
sition in chaos. arXiv preprint, arXiv:2305.08074, 2023.

[40] C. Zhang and E. Zuazua. A quantitative analysis of Koopman operator methods for system
identification and predictions. Comptes Rendus. Mécanique, 351, 2023.
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