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Abstract. For piecewise real analytic expanding Markov maps, with Markov hole,
it is shown that the escape rate and corresponding escape measure can be rapidly
approximated using periodic points.

1. Introduction

For a dynamical system T : X → X, a non-empty subset H ⊂ X induces an escape
time function

e(x) = eH(x) = min {n ≥ 0 : T n(x) ∈ H} ,
the nomenclature motivated by interpreting H as a hole in phase space X, through
which points may escape under iteration. The sequence of super-level sets En = {x ∈
X : e(x) > n} decreases with n, and for a probability measure m on X it is often the
case that m(En)→ 0 as n→∞.

If T is a suitable hyperbolic map and m is for example Lebesgue measure, then the
m(En) approach zero at an exponential rate. In this case the exponential decay rate

δ = δ(T,H,m) = lim
n→∞

m(En)1/n

is a quantity of interest; indeed

ε = ε(T,H,m) = − log δ(T,H,m)

is commonly referred to as the escape rate, and has been widely studied (see e.g. [3, 4,
9, 10, 13, 14, 22]). In certain special cases δ(T,H,m) can be found exactly1, though
in general this is not feasible, so there is interest in developing methods for its efficient
approximation.

The purpose of this note is to describe, in the context of analytic expanding maps
T , a method for rapidly approximating δ = δ(T,H,m). It relies on locating all periodic

1e.g. if T (x) = 3x (mod 1) on the interval X = [0, 1], and H is the ‘middle third’ (1/3, 2/3), then
m(En) = (2/3)n for each n, so that δ(T,H,m) = 2/3.
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points of T , up to a certain period N , say. This yields (see §3 for further details) an
approximation δN ≈ δ, where the error satisfies

|δ − δN | ≤ CθN
2

for some θ ∈ (0, 1), C ≥ 0; in particular, the δN approximate δ super-exponentially
fast.

For example if the map T : [0, 1]→ [0, 1] is defined, as in [4], by

T (x) =

{
9x

1−x if 0 ≤ x ≤ 1
10

10x− i if i
10
< x ≤ i+1

10
for 1 ≤ i ≤ 9 ,

and H = [ 9
10
, 1], we derive (see §5 for further details) the successive approximations

δ2 = 0.899376191482276109518851011534

δ3 = 0.901142928953763644891210358737

δ4 = 0.901139819292137417448614669069

δ5 = 0.901139820047631592907392158902

δ6 = 0.901139820047605710579196990120

δ7 = 0.901139820047605710706369756237

In fact these techniques also yield a means of rapidly approximating the corre-
sponding escape measure µ, the T -invariant measure supported on the survivor set
E∞ = e−1

H (∞) and maximizing the quantity h(m)−
∫
E∞

log |T ′| dm over all T -invariant

probability measures m, where h(·) denotes metric entropy (see e.g. [10, 14, 21]).
For example µ is completely determined by its sequence of n-th moments µ(n) =∫
xn dµ(x), which in general are not known exactly, but the periodic points of T can

again be used (see §4 for the method, and §5 for an example) to derive a sequence

µN(n), where |µ(n)− µN(n)| = O(θN
2
) as N →∞.

Using periodic points to calculate escape rates and related quantities is not a new
idea. Indeed, there is a considerable body of work for rather general systems in the
physics literature starting with [1, 2] (see also [12, 19, 24] for later developments and
applications). Restricting attention to analytic expanding maps, however, we are able
to rigorously justify the approach and to provide precise estimates for the speed of
convergence of the approximations.

This article is organised as follows. After some preliminaries on transfer operators
and their determinants in §2, the method for approximating the escape rate is described
in §3, and for the escape measure in §4. In the final §5, the speed of convergence of
these methods is illustrated using the map T and hole H defined above.
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2. Transfer operators and determinants

Suppose the unit interval2 I = [0, 1] is partitioned as I = I1 ∪ · · · ∪ Id, d ≥ 2,
where the Ii are closed intervals with pairwise disjoint interiors. We shall assume that
T : I → I is such that T |Ii is real analytic, for each i, and expanding in the sense that
min { |T ′(x)| : x ∈ Ii, 1 ≤ i ≤ d } > 1. We say that T is Markov if for each 1 ≤ i ≤ d
the closure of T (Ii) is a union of elements of the partition α = {I1, . . . , Id}, in which
case α is referred to as the Markov partition. For each n ≥ 1, define the usual refined
partition α(n) = ∨n−1

i=0 T
−iα. By a Markov hole we mean a union of members of α(n),

for some n ≥ 1. The fact that T is expanding ensures that any sub-interval H ⊂ I can
be approximated arbitrarily well by a Markov hole3

Although the techniques described below apply, with slight modification, to general
Markov holes H for Markov maps T , for simplicity of exposition we shall henceforth
assume that for each 1 ≤ i ≤ d the closure of T (Ii) equals I (the so-called Bernoulli
case), and that the hole H ⊂ I is a member of α.

We denote by Ti : I → Ii (1 ≤ i ≤ d) the contractions which are inverse branches
to T . By the implicit function theorem the maps Ti are real analytic, since each T |Ii
is real analytic. In particular, we can choose a bounded open neighbourhood U ⊂ C
containing I such that

∪di=1TiU ⊂ U , (2.1)

where here Ti denotes the relevant holomorphic extension to U .
Let A2(U) denote the Hilbert space of analytic functions f : U → C which are

square-integrable with respect to 2-dimensional Lebesgue measure on U equipped with
the usual inner product.

We may now define a transfer operator L acting on A2(U) by

Lf(z) =
d∑
i=1

εiT
′
i (z)f(Tiz) where f ∈ A2(U) . (2.2)

Here εi ∈ {−1, 1} denotes the sign of the derivative of Ti on I.

2For simplicity of exposition we restrict attention to one-dimensional dynamical systems, though in
fact similar results apply to real analytic expanding Markov maps in higher dimensions. In dimension
D the rate of convergence (of δN to δ, and of µN (n) to µ(n)) can be shown to be O(θN1+D−1

) as
N →∞, for some 0 < θ < 1; in particular it is super-exponential.

3This suggests the possibility of approximating the escape rate for non-Markov holes H, by using
the methods of this paper for a sequence of Markov holes approximating H. More precisely, the escape
rate can easily be seen to depend continuously on (the end points of) the hole, by a perturbation
theorem of Keller and Liverani for the bounded variation semi-norm and L1 (see [20]). Thus, for
δ > 0, provided n is sufficiently large, we can choose intervals H1 ⊂ H ⊂ H2 where H1, H2 are unions
of elements of α(n) and such that ε(T,H1,m) ≤ ε(T,H,m) ≤ ε(T,H2,m) satisfy 0 ≤ ε(T,H,m) −
ε(T,H1,m), ε(T,H2,m) − ε(T,H,m) ≤ δ. However, whereas the values ε(T,H1,m), ε(T,H2,m) can
be approximated quickly there is less explicit control of the dependence of n on δ.
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Using (2.1) it is not difficult to see that L maps A2(U) continuously into itself.
In fact, on this space the transfer operator has strong spectral properties, which will
be crucial for the results to follow. The spectral properties are conveniently described
in terms of the theory of exponential classes developed in [5], which we briefly recall.
Given positive real numbers a and γ, a bounded operator L on a Hilbert space is said
to belong to the exponential class E(a, γ) if

sup
n∈N

sn(L) exp(anγ) <∞ ,

where sn(L) = inf { ‖L−K‖ : rank(K) < n } denotes the n-th approximation number
of L. We now have the following result.

Proposition 2.1. The transfer operator L : A2(U) → A2(U) given in (2.2) be-
longs to the exponential class E(a, 1) for some a > 0. In particular, L is trace class.
Moreover, its eigenvalues decay at an exponential rate.

Proof. The first assertion follows from [7, Theorem 5.9]. The second now fol-
lows since the approximation numbers of L are summable. The statement about the
eigenvalue decay follows from [7, Lemma 5.11]. �

Given a hole H ∈ α, without loss of generality assume that H = Id. In order to
analyse the corresponding escape rate we consider the following modified operator:

Definition 2.2. Define LH by

LHf(z) =
d−1∑
i=1

εiT
′
i (z)f(Tiz) where f ∈ A2(U) and z ∈ U . (2.3)

Equivalently, we can think of LH as the original transfer operator L with the term
corresponding to H removed. As a result, the modified transfer operator enjoys the
same strong spectral properties as the original transfer operator.

Proposition 2.3. The modified transfer operator LH : A2(U) → A2(U) given in
(2.3) belongs to the exponential class E(a, 1) for some a > 0. In particular, LH is trace
class. Moreover, its eigenvalues decay at an exponential rate.

Proof. See the proof of Proposition 2.1 �

Since LH is trace class, it has a well-defined trace. Moreover, there is an explicit
expression for the trace of any power of LH in terms of fixed points of the iterates of
the map:

Proposition 2.4. For any n ∈ N we have

tr(LnH) =
∑

x∈FixH(Tn)

sgn ((T n)′(x))

(T n)′(x)− 1
,

where FixH(T n) =
{
x ∈ [0, 1] : T nx = x, T kx 6∈ H for 0 ≤ k < n

}
and sgn(ξ) ∈ {−1, 1}

denotes the sign of ξ ∈ R.
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Proof. This follows from [8, Theorem 4.2]. �

The traces can now be used to calculate the determinant of the operator LH .

Proposition 2.5. The function z 7→ det(1− zLH) given for z of sufficiently small
modulus by

det(I − zLH) = exp

(
−
∞∑
n=1

zn

n
tr(LnH)

)
(2.4)

extends to an entire function, the zeros of which are exactly the reciprocals of the
eigenvalues of LH (counting algebraic multiplicities).

The Taylor coefficients cn of

det(I − zLH) = 1 +
∞∑
n=1

cnz
n (2.5)

satisfy both the recurrence relation

cn = − 1

n

n−1∑
l=0

cltr(Ln−lH ) for n ≥ 1 (2.6)

with c0 = 1, and Plemelj’s formula

cn =
(−1)n

n!
det


tr(LH) 1 0
tr(L2

H) tr(LH) 2
...

...
. . .

tr(Ln−1
H ) tr(Ln−2

H ) · · · tr(LH) n− 1
tr(LnH) tr(Ln−1

H ) · · · tr(L2
H) tr(LH)

 . (2.7)

Moreover, we have

|cn| = O(θn
2

) as n→∞ , (2.8)

for some 0 < θ < 1.

Proof. For the recurrence formula and Plemelj’s formula see [23, Theorem 4.4.10].
The decay estimate for the Taylor coefficients is proved in [7, Theorem 6.1]. The re-
maining assertions follow from Lidskii’s Trace Theorem (see, for example, [15, Theo-
rem 8.4, Chapter III]). �

Remark 2.6. Explicit estimates for θ, in terms of geometric properties of Ti(U),
can be found in [7, Theorem 6.1].

Proposition 2.7. The following hold:

(a) The operator LH has a simple eigenvalue δ ∈ (0, 1], strictly larger in modulus
than all other eigenvalues, with corresponding eigenfunction % ∈ A2(U), which
is positive on I.
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(b) There exists a probability measure ν supported on the survivor set E∞ satisfying∫
E∞

LHf dν = δ

∫
E∞

f dν for all f ∈ A2(U) .

(c) The probability measure µ = %ν supported on the survivor set E∞ is T -
invariant and coincides with the escape measure.

(d) The escape rate with respect to Lebesgue measure m satisfies

ε(T,H,m) = − log δ .

Proof. The assertions in (a), (b) and (c) follow from results in [21]. To be precise,
the existence of the eigenmeasure ν in (b) follows immediately from Theorem A in [21].
For (a) observe that (b) together with the compactness of LH imply the existence of an
eigenvector % ∈ A2(U) corresponding to δ, which, by the positivity arguments used for
the proof of Theorem A in [21], must have the stated properties. The same theorem
also yields (c). Finally, (d) follows from the fact that

m(En) =

∫
I\H
LnH1 dm

together with the spectral properties of LH given in (a). �

3. Determining the escape rate

The results of §2 mean we can find the value 0 < δ(T,H,m) ≤ 1 by considering the
determinant:

Proposition 3.1. The smallest zero (in modulus) of z 7→ det(I − zLH) is simple,
real, and equal to δ(T,H,m)−1.

Proof. By Proposition 2.7 the value δ(T,H,m) is a simple eigenvalue of the trans-
fer operator LH and also the largest in modulus. Combining this with Proposition 2.5
the assertions follow. �

Setting δ = δ(T,H,m), the expansion (2.5) now gives

0 = 1 +
∞∑
n=1

cnδ
−n = 1 +

N∑
n=1

cnδ
−n +O(θN

2

).

leading naturally to the following definition:

Definition 3.2. For each N ≥ 1 define δN to be the largest value (in modulus)
such that

0 = 1 +
N∑
n=1

cnδ
−n
N .

This brings us to the first main result:
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Theorem 3.3. The values δN converge to δ at a super-exponential rate; more pre-
cisely,

δN = δ +O(θN
2

) as N →∞ .

Proof. By construction the sequence δN converges to δ. In order to estimate the
speed of convergence, fix N ≥ 1 and write

∆(z) = det(1− zLH) = 1 +
∞∑
n=1

cnz
n ,

∆N(z) = 1 +
N∑
n=1

cnz
n .

By the mean value theorem, there is tN on the line segment joining δ−1 and δ−1
N such

that(
δ−1 − δ−1

N

)
∆′N(tN) = ∆N(δ−1)−∆N(δ−1

N ) = ∆N(δ−1) = ∆N(δ−1)−∆(δ−1) .

But since ∆′N(tN)→ ∆′(δ−1) 6= 0 by Proposition 3.1 it follows that |∆′N(tN)| is bounded
away from zero. Thus∣∣δ−1 − δ−1

N

∣∣ ≤ 1

|∆′N(tN)|

∞∑
n=N+1

|cn| δ−n = O(θN
2

) as N →∞

for some 0 < θ < 1. �

Remark 3.4. The implied constant in Theorem 3.3 can if necessary be explicitly
estimated, using bounds on the Taylor coefficients cn.

4. Determining the escape measure

In order to approximate the escape measure, we first introduce the following weighted
transfer operator.

Definition 4.1. Let φ be a bounded holomorphic function on U . For t in a
bounded neighbourhood V of 0 ∈ C, define the weighted transfer operator LH,t by

LH,tf(z) =
d−1∑
i=1

εiT
′
i (z)etφ(z)f(Tiz) where f ∈ A2(U) and z ∈ U .

We now have analogues of the results from §2:

Proposition 4.2. The operators LH,t : A2(U)→ A2(U) satisfy:

(a) For each t ∈ V the operator LH,t belongs to the exponential class E(a, 1) for
some a > 0.

(b) The mapping t 7→ LH,t is holomorphic in the trace-class operator topology; in
particular, the function (z, t) 7→ det(1− zLH,t) is holomorphic on C× V .
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(c) For any t ∈ V and any n ∈ N we have

tr(LnH,t) =
∑

x∈FixH(Tn)

sgn ((T n)′(x)) etφ
(n)(x)

(T n)′(x)− 1
.

where FixH(T n) =
{
x ∈ [0, 1] : T nx = x, T kx 6∈ H for 0 ≤ k < n

}
and φ(n) =∑n−1

k=0 φ ◦ T k.
(d) The Taylor coefficients cn,φ(t) of the determinant

det(I − zLH,t) = 1 +
∞∑
n=1

cn,φ(t)zn

satisfy supt∈V |cn,φ(t)| = O(θn
2
) as n→∞ for some 0 < θ < 1.

Proof. Assertion (a) follows from [7, Theorem 5.9], while assertion (b) follows
from (a) and [15, Section 1.9, Chapter IV]. The formula for the traces in (c) is a
consequence of [8, Theorem 4.2], and (d) follows from [7, Theorem 6.1]. �

Remark 4.3. Setting t = 0 we see that LH,0 = L, hence cn,φ(0) = cn for all n ≥ 1.

It turns out that the escape measure can be expressed as a quotient of the partial
derivatives of (z, t) 7→ det(I − zLH,t). The proof of this relies on a formula for the
derivative of a determinant which we briefly recall. Let D ⊂ C be an open neighbour-
hood of 0 and suppose that D 3 s 7→ L(s) is an operator-valued function which is
holomorphic in the trace-class topology. If det(I − L(0)) 6= 0, then

d

ds
det(I − L(s))|s=0 = − det(I − L(0)) tr(L̇(0)(I − L(0))−1) , (4.1)

where L̇(0) = d
ds
L(s)|s=0. For a proof see [23, 4.3.1.9 Proposition] or [15, Section 1.9,

Chapter IV].
The calculation of the escape measure relies on the following result.

Proposition 4.4. We have∫
E∞

φ dµ = δ
∂
∂t

det(I − zLH,t)|t=0,z=1/δ

∂
∂z

det(I − zLH,t)|t=0,z=1/δ

.

Proof. The proof is a simple application of formula (4.1), the only subtlety arising
from the fact that both ∂

∂t
det(I − zLH,t) and ∂

∂z
det(I − zLH,t) vanish for t = 0 and

z = 1/δ. This problem, however, can be circumvented by choosing D to be a small
punctured neighbourhood of 1/δ such that det(1 − ζLH,0) 6= 0 for ζ ∈ D. We then
apply formula (4.1) for ζ ∈ D and then take the limit ζ → 1/δ.

We thus start by using (4.1) twice to obtain for any ζ ∈ D
∂

∂t
det(I − ζLH,t)|t=0 = − det(I − ζLH,0)tr(ζL̇H,0(I − ζLH,0)−1)
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where L̇H,0 = d
dt
LH,t|t=0, and

∂

∂z
det(I − zLH,0)|z=ζ = − det(I − ζLH,0)tr(LH,0(I − ζLH,0)−1) .

We now observe that d
dt
LH,t|t=0 = MφLH,0 where Mφ : A2(U)→ A2(U) is the operator

of multiplication by φ, that is, Mφf = φf for f ∈ A2(U).
Before letting ζ → 1/δ we note that for ζ ∈ D we can write

LH,0(1− ζLH,0)−1 =
δ

1− ζδ
Π +Q(ζ) ,

where Πf =
∫
E∞

f dν · % denotes the spectral projection associated to the eigenvalue δ
and Q is a trace-class operator valued holomorphic function on D. This follows from
standard spectral theory (see, for example, [23, 4.1.6 Theorem]) together with the fact
that δ is a simple eigenvalue of LH,0 by Proposition 2.7.

Now

∂
∂t

det(I − zLH,t)|t=0,z=1/δ

∂
∂z

det(I − zLH,t)|t=0,z=1/δ

= lim
ζ→1/δ

∂
∂t

det(I − ζLH,0)|t=0

∂
∂z

det(I − zLH,0)|z=ζ

= lim
ζ→1/δ

ζ
δtr(MφΠ) + (1− ζδ)tr(MφQ(ζ))

δtr(Π) + (1− ζδ)tr(Q(ζ))
=

1

δ

tr(MφΠ)

tr(Π)

and the result follows by noting that tr(Π) =
∫
E∞

% dν = 1 and

tr(MφΠ) =

∫
E∞

φ% dν =

∫
E∞

φ dµ .

�

Using Proposition 4.4 we can write∫
E∞

φ dµ = δ

∑∞
n=0 c

′
n,φ(0)δ−n∑∞

n=0 n cn,φ(0)δ−(n−1)
=

∑N
n=0 c

′
n,φ(0)δ1−n∑N

n=0 n cn,φ(0)δ1−n
+O(θN

2

) , (4.2)

for some 0 < θ < 1. Here we have used the fact that c′n,φ(0) = O(θn
2
) as n → ∞ for

some 0 < θ < 1, which follows from Proposition 4.2 (d) and Cauchy’s formula.
This leads naturally to the following definition:

Definition 4.5. For each N ≥ 1, define IN(φ) by

IN(φ) =

∑N
n=0 c

′
n,φ(0)δ1−n

N∑N
n=0 n cn,φ(0)δ1−n

N

=

∑N
n=1 c

′
n,φ(0)δ1−n

N∑N
n=1 n cnδ

1−n
N

.

This brings us to the second main result:
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Theorem 4.6. The values IN(φ) converge to
∫
E∞

φ dµ at a super-exponential rate;
more precisely,

IN(φ) =

∫
E∞

φ dµ+O(θN
2

) as N →∞

for some 0 < θ < 1.

Proof. This follows from (4.2) and Theorem 3.3. �

Remark 4.7. Similar approximating formulae, in the context of invariant measures
equivalent to Lebesgue measure, have been derived in [16, 17, 18] using a slightly
different approach.

Importantly, it is possible to efficiently calculate each c′n,φ(0) using periodic points:

Proposition 4.8. Setting

bφ,n =
1

n

∑
x∈FixH(Tn)

sgn((T n)′(x))φ(n)(x)

(T n)′(x)− 1
, (4.3)

we have

c′φ,n(0) = −
n∑
i=1

bφ,icn−i for all n ≥ 1 . (4.4)

Proof. Let z belong to a sufficiently small disc centred at the origin. Then we
have

∂

∂t
det(1− zLH,t)|t=0 = − det(1− zLH,0)

∞∑
m=1

zm

m

∂

∂t
tr(LnH,t)|t=0

= −(1 +
∞∑
n=1

cnz
n)

∞∑
m=1

bφ,mz
m . (4.5)

On the other hand,

∂

∂t
det(1− zLH,t)|t=0 = 1 +

∞∑
n=1

c′n(0)zn , (4.6)

and the result now follows by comparing coefficients in (4.5) and (4.6). �

5. An example

As in [4], we consider the map

T (x) =

{
9x

1−x if 0 ≤ x ≤ 1
10

10x− i if i
10
< x ≤ i+1

10
for 1 ≤ i ≤ 9

and H = [ 9
10
, 1].
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Note that the inverse branches {Ti}0≤i≤9 are given by

T0(x) =
x

9 + x

and
Ti(x) = (x+ i)/10 for 1 ≤ i ≤ 9 .

Writing

an =
1

n
tr(LnH) =

1

n

∑
x∈FixH(Tn)

1

(T n)′(x)− 1
,

these an can be computed by locating the members of FixH(T n), all of which are
quadratic numbers.

For example there are 9 members of FixH(T ), denoted x0, x1, . . . , x8, say. For each
1 ≤ i ≤ 8 we see that

1

T ′(xi)− 1
=

1

10− 1
=

1

9
,

whereas
1

T ′(x0)− 1
=

1

9− 1
=

1

8
.

Therefore

a1 =
8∑
i=0

1

T ′(xi)− 1
=

1

8
+

8

9
=

73

72
.

The computation of a2 is only slightly more involved. For the fixed point 0 we have

1

(T 2)′(0)− 1
=

1

81− 1
=

1

80
,

whereas for those 64 period-2 points xij = (Ti ◦ Tj)(xij) with 1 ≤ i, j ≤ 8, we have

1

(T 2)′(xij)− 1
=

1

100− 1
=

1

99
.

It remains to consider the 8 period-2 points of the form x0i = (T0 ◦ Ti)(x0i), and
the 8 period-2 points of the form xi0 = (Ti ◦ T0)(xi0), for 1 ≤ i ≤ 8. In fact since
(T 2)′(x0i) = (T 2)′(xi0), it suffices to consider the points x0i, and a calculation gives

(T0 ◦ Ti)(x) =
x+ i

x+ 90 + i
, (T0 ◦ Ti)′(x) =

90

(x+ 90 + i)2
,

x0i = 5

√(9 +
i− 1

10

)2

+
i

25
− 9− i− 1

10

 ,

from which we compute

a2 =
1

2

(
1

80
+

64

99
+ 2

8∑
i=1

1

(T 2)′(x0i)− 1

)
= 0.410995345836251121588654162858 . . .



12 O. F. BANDTLOW, O. JENKINSON, M. POLLICOTT

Subsequent values an can be computed similarly, for example:

a3 = 0.244247986872392594300895837121 . . .

a4 = 0.164881484924536515073990416986 . . .

a5 = 0.118849630250109944686793773181 . . .

a6 = 0.089248843422890449580723889612 . . .

a7 = 0.068936195289851448498303594869 . . .

5.1. The escape rate. We are now in a position to compute the power series
coefficients ci of the determinant det(I − zLH) = 1 +

∑∞
i=1 ciz

i. Specifically, the
formulae of Proposition 2.5 give

c1 = −a1

c2 = −a2 +
a2

1

2

c3 = −a3 + a1a2 −
a3

1

6

c4 = −a4 +
a2

2

2
+ a1a3 −

a2
1a2

2
+
a4

1

24

c5 = −a5 + a1a4 + a2a3 −
a2

1a3

2
− a1a

2
2

2
+
a3

1a2

6
− a5

1

120

c6 = −a6 +
a2

3

2
+ a1a5 + a2a4 −

a2
1a4

2
− a1a2a3 −

a3
2

6
+
a3

1a3

6
+
a2

1a
2
2

4
− a4

1a2

24
+

a6
1

720

c7 = −a7 + a1a6 + a2a5 + a3a4 −
a2

1a5

2
− a1a2a4 −

a1a
2
3

2
− a2

2a3

2

+
a3

1a4

6
+
a2

1a2a3

2
+
a1a

3
2

6
− a4

1a3

24
− a3

1a
2
2

12
+
a5

1a2

120
− a7

1

5040
.

Substituting the above numerical values4 of an into the formulae for the ci then
gives

c1 = −73

72
c2 = 0.102989993669921717917518676648 . . .

c3 = −0.001252380603001953819578039057 . . .

c4 = 1.994754501536932614209760476393 . . .× 10−6

c5 = −4.367117910658311343671035602900 . . .× 10−10

c6 = 1.348215512356863399693187985465 · · · × 10−14

c7 = −5.969559406869561159884947613741 . . .× 10−20 .

4Of course we use higher precision for the an, ensuring that the values ci are correct to the
precision given.
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These values of ci allow us to form, for 1 ≤ N ≤ 7, the degree-N polynomial
approximation

∆N(z) = 1 +
N∑
i=1

ciz
i

to the determinant. The smallest root zN of ∆N can then be computed as follows:

z1 = 72/73 = 0.986301369863013698630136 . . .

z2 = 1.111881779249553184201012015076 . . .

z3 = 1.109701877327063363180409111227 . . .

z4 = 1.109705706696569182143392132129 . . .

z5 = 1.109705705766218331774455583303 . . .

z6 = 1.109705705766250204483482219528 . . .

z7 = 1.109705705766250204326875729570 . . .

and inverting these gives the same sequence of approximations δN = z−1
N to δ(T,H,m)

as listed in §1.

5.2. The escape measure. The escape measure µ is completely determined by
its set of moments

∫
E∞

xn dµ(x), n ≥ 0. Each n-th moment can be rapidly approxi-

mated by setting φ(x) = xn, then using the approach described in §4. Here we shall
illustrate this in the case n = 1: the first moment µ(1) =

∫
E∞

x dµ(x) is often called
the barycentre, or resultant, of the measure µ.

Since φ(x) = x is fixed, we write bn = bφ,n (see (4.3)), so that

bn =
1

n

∑
x∈FixH(Tn)

∑n−1
i=0 T

ix

(T n)′(x)− 1
.

We find that

b1 = 4/9 = 0.4444444444444444444444444 . . .

b2 = 0.363146979940866817710676390686 . . .

b3 = 0.323945697078082902031586942946 . . .

b4 = 0.291597918113354097600085433302 . . .

b5 = 0.262738636423342281952526356399 . . .

b6 = 0.236761095523224368789249278048 . . .

b7 = 0.213354539113042148099894783840 . . .
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Recall that the coefficients di = c′φ,i(0) (where φ(x) = x) are given by formula (4.4).

It follows that, for example, the first four5 di are given by:

d1 = −b1
d2 = a1b1 − b2

d3 = −b3 + b1a2 + a1b2 −
a2

1b1
2

d4 = a2b2 + b1a3 + a1b3 − b4 − a1b1a2 −
a2

1b2
2

+
a3

1b1
6

Substituting the numerical values of an, bn into the formulae for the di gives us:

d1 = −4/9 = −0.444444444444444444444 . . .

d2 = 0.087470304009750466239940893264 . . .

d3 = −0.00152833960244703092715945867 . . .

d4 = 3.133193453094917698092477916170 . . .× 10−6

d5 = −8.40390182408161094002529348420 . . .× 10−10

d6 = 3.090985019372664486353921814698 . . .× 10−14

d7 = −1.60253894897971331452691425140 . . .× 10−19

The approximations

µN(1) =

∑N
n=1 dnz

n−1
N∑N

n=1 ncnz
n−1
N

to the integral µ(1) =
∫
E∞

x dµ(x) are then:

µ2(1) = 0.442354383674664532214929145156 . . .

µ3(1) = 0.442135977598196893113667748055 . . .

µ4(1) = 0.442136676297808722065125231922 . . .

µ5(1) = 0.442136676053865369048181249845 . . .

µ6(1) = 0.442136676053875847256104872452 . . .

µ7(1) = 0.442136676053875847197526214497 . . .
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5In the calculation that follows we use di for 1 ≤ i ≤ 7, though the algebraic formulae for di in
terms of an, bn are a little long to conveniently give here (e.g. the analogous expression for d7 consists
of a sum of 30 terms).
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[12] P. Cvitanović, B. Eckhardt, P.E. Rosenqvist, G. Russberg, &P. Scherer, Dynamical averaging
in terms of periodic orbits, Physica D, 83, (1995) 109–123.

[13] M. Demers & L.-S. Young, Escape rates and conditionally invariant measures, Nonlinearity,
19 (2006), 377–397.

[14] A. Ferguson & M. Pollicott, Escape rates for Gibbs measures, Ergod. Theor. Dyn. Syst., 32
(2012), 961–988.

[15] I. C. Gohberg & M. G. Krein, Introduction to the theory of linear nonselfadjoint operators,
Providence, American Mathematical Society (1969).

[16] O. Jenkinson & M. Pollicott, Ergodic properties of the Bolyai-Rényi expansion, Indag. Math.,
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