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Abstract

Resonances of dynamical systems are defined as the singularities of
the analytically continued resolvent of the restriction of the Frobenius-
Perron operator to suitable test-function spaces. A sufficient condition
for resonances to arise from a meromorphic continuation to the entire
plane is that the Frobenius-Perron operator is a Fredholm-Riesz operator
on a rigged Hilbert space. After a discussion of spectral theory in locally
convex topological vector spaces we illustrate the approach for a simple
chaotic system, namely the Rényi map.
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1 Introduction

In the study of chaotic dynamical systems time correlation functions play a
central role, as they are generally the only experimentally accessible quanti-
ties. Ruelle [35] showed that the Fourier transform of the two-time correlation
function, i.e. the power spectrum, of certain chaotic dynamical systems can
be described by suitably chosen evolution operators of these systems. More
precisely, complex poles of the meromorphic extension of the power spectrum,
the so-called Ruelle resonances, are logarithms of eigenvalues of the Frobenius-
Perron operator. Only their residues, but not their position, depend on the
choice of observables (see also [10]). There is a caveat here: the location of
the poles (or the isolated eigenvalues) is independent of the very choice of ob-
servables only if the ‘level of observation’ has been specified in advance. By
this we mean that the class of observables (or the domain of definition of the
Frobenius-Perron operator) has been adequately restricted. In the case of a
piecewise expanding interval transformation, for example, Keller [20] showed
that the L2-spectrum of the associated Frobenius-Perron operator fills the unit
disk, whereas the BV-spectrum, i.e. the spectrum of the restriction of the
Frobenius-Perron operator to the space of functions of bounded variation, con-
sists of two parts: eigenvalues filling the interior of a closed disk centred at
the origin, which is strictly contained in the unit disk, and isolated eigenval-
ues of finite multiplicity outside this disk, but contained in the unit disk. This
means that there are square-integrable functions whose power spectrum cannot
be meromorphically continued to a strip containing the real line, whereas this
is always the case for functions of bounded variation. In particular, a generic
‘L2-observation’ will not have poles in its power spectrum, and if there is a pole
it might not coincide with that of another generic L2-observation. The choice
of the test-function space on which the Frobenius-Perron operator is considered
is therefore not purely academic.

Following [2] we understand resonances of dynamical systems as singularities
of the analytically continued resolvent of the evolution operator on a rigged
Hilbert space: given an evolution operator V on a Hilbert space H, a subspace
® of H — the so-called test-function space — is chosen, such that the following
holds:

1) @ carries a topology 7 with respect to which it becomes a locally convex
topological vector space;

2) (®,7) is continuously and densely embedded into #, i.e. the topology T
on ® is stronger than the one induced by H and & is dense in H;

3) (®,7) is quasi-complete and barrelled
4) & is stable with respect to the adjoint V1 of V, i.e. VI® C ®;

5) the adjoint V' is continuous on (®,7).



The triplet
dCHCI,

where @ denotes the topological dual of ®, is called a rigged Hilbert space or
a Gelfand triplet (see [7, 14, 15, 12] for details). The operator V' then has an
extension Veyy to ®' qua duality, which is defined by

(@|Vexef) = (V191

for every ¢ € ® and every f € ®'. If the test-function space is suitably chosen,
the resolvent of the restriction of V1 to ® or the resolvent of the extension Vi
can be analytically continued into the Hilbert space spectrum of V' giving rise
to singularities, which are the resonances of the dynamical system. The choice
of ® and thus the concept of resonances depends on the physical observation of
the system.

In the following we shall be concerned with discrete time dynamical systems
or maps, i.e. endomorphisms S of a measure space X, for which the evolution
operator V is given by the Koopman operator [24]:

(VI)(=) = f(Sa),

where f is a square-integrable phase function. Its adjoint is the Frobenius-
Perron operator. Our experience with chaotic maps so far indicates that the
test-function spaces for resonances can be chosen such that the resolvent of
the Frobenius-Perron operator can be meromorphically extended to the entire
complex plane with the origin removed, i.e. the only resonances in the com-
plex plane without the origin are poles. If in addition the eigenprojections (the
residues) are finite rank operators then the operator is a Fredholm-Riesz oper-
ator. This is the case for a well-known example of a chaotic map, namely the
Rényi map, for which there exist test-function spaces on which the associated
Frobenius-Perron operator is a Fredholm-Riesz operator. Since most of these
spaces are not normable, we briefly review the spectral theory of operators on
locally convex topological vector spaces.

2 Spectral theory in locally convex topological
vector spaces

The spectral theory of operators has its roots in the theory of matrices and the
theory of integral equations, and, as such, goes back at least to the second half
of the last century. Its present form grew out of a considerable abstraction of
these ideas yielding a theory which is based on a fertile combination of function-
theoretic and algebraic concepts. At the heart of this theory is the notion of
the spectrum, which generalises the latent roots of a matrix and the singular
values of an integral equation. Let us recall that a complex number X is said to



belong to the spectrum of a continuous operator T' of a Banach space, if A — T
fails to have a continuous inverse. With this definition the spectrum of 7" is a
non-empty compact subset of the complex plane.

An extension of the above results to more general topological vector spaces
relies heavily on a suitable concept of spectrum. If the very same definition is
used for a continuous operator on a locally convex space, the spectrum may
be empty or unbounded, and might not be closed (see [25] for examples). To
our knowledge, the first concept of spectrum to provide a satisfactory analogy
of the results in Banach spaces is due to Williamson [42] (unpublished). Not
much later, Waelbroeck employed a similar idea to develop a spectral theory
for locally convex algebras, which incorporates the main features of the Banach
space theory [40, 41]. Parts of his theory were generalised by Neubauer [27],
Allan [1], Moore [26], and Konig [21]. The only textbook to give a general
account seems to be [16].

We shall briefly outline the most important elements of the spectral theory
of operators on locally convex topological vector spaces leading to the Riesz
decomposition theorem. The background and terminology may be found in [37]
or [22, 23].

Let ® be a barrelled quasi-complete locally convex topological vector space
over C. Let & be a covering family of bounded subsets of ®. Lg(E) denotes
the space of continuous operators on ® equipped with the topology of uniform
convergence on sets belonging to &. Note that L& (E) is quasi-complete by [37,
I11.4.4, Corollary]. If & has the property that

V(B) € & for V € L(E),B € 6,

then & is called admissible, and L& (E) becomes a locally convex algebra with
separately continuous multiplication for admissible &. A function defined on
an open subset @ C C with values in Lg(FE) is called holomorphic, if for every

2o € 2 the limit

o 1) = F(z0)

z—20 Z— 20
exists. The collection of all functions which are holomorphic in 2 shall be
denoted by H(Q, Lg(E)). Since Ls(E) is locally convex and quasi-complete,
the integral of functions in H(), Ls(E)) over rectifiable Jordan curves lying in
Q) may be defined as it is done for C-valued functions. Moreover, it turns out
that a theory of Lg(E)-valued holomorphic functions can be developed as in
the one-dimensional case. In particular, we get the analogues of Cauchy’s [16,
II1.27] and Taylor’s [16, II1.33b] theorem, as well as Laurent series expansions
[16, II1.38] for functions holomorphic in an annulus. Thus, the notions ‘pole’
and ‘residue’ can be defined as usual.

Let us remark that Cauchy’s integral theorem together with the uniform
boundedness principle imply that f € H(Q,Lg(E)) for some admissible &,
if and only if f € H(Q,Le/(E)) for any admissible &', i.e. the notion of
holomorphicity does not depend on the choice of &.



We now turn to the definition of the spectrum of an operator V € L(E). The
resolvent set (V') of V is the largest open subset 2 of the domain of definition
of (z— V)" such that (z — V)™ € H(Q, Lg(E)) — with the usual conventions
for the point at infinity. The spectrum o(V') of V is the complement of o(V') in
the compactified complex plane C*:

a(V)=C"\ o(V).
The spectral radius r(V') of V is defined as usual

r(V)= sup |z|.
z€a(V)

Note that the domain of definition of (z — V)~! is strictly larger than o(V)
in general, unlike in the case of Banach spaces. With this definition of o(V),
however, the analogue of Gelfand’s spectral radius formula holds:

Theorem 1 (Williamson, Waelbroeck, Neubauer)
r(V) = sup lim (p(V")"/",
p n—oo
where p Truns over o fundamental system of semi-norms generating the topology

of L&(E). m(V) may take the value oo here.
Proof See [27].

We are now able to state the Riesz decomposition theorem for operators on
.

Theorem 2 Let (V) < co. If (V) = 01 U0y, where o1 and o are disjoint
non-empty closed sets, then there are two simple closed positively oriented rec-
tifiable Jordan curves C1 and Ca, which lie in o(V') and contain in their interior
o1 and o4, respectively, such that

1
P,, = ?{ (z=V)tdz k=1,2,
Cr

= 2mi
belong to L(®) and satisfy the following relations:

ng =Fr,, PF,P,=PF,F, P,+PF, =1
Moreover, Py, (®) and P,,(®) are topologically complementary closed subspaces
invariant under V.
Proof See [16, IV.21-23].

In order to characterise the class of operators of interest we give the following
definitions starting from the more familiar Banach space setting (see [17]).

Definition 1 A continuous operator V' on a Banach space ® is a Fredholm
operator if the following holds:



1) V is a topological homomorphism;

)

2) the range V(®) is closed;

3) the dimension of the kernel of V is finite;
)

4) the co-dimension of the range of V' is finite, i.e. dim ®/y () < 0.

This definition originated from the attempts to find suitable generalisations of
Fredholm’s theory of integral equations [11]. For a compact integral operator
V, for example, I — K is a Fredholm operator and the equation

(I-K)z=y

is normally solvable. Ironically, this by now standard definition of a Fredholm
operator implies that a Fredholm integral operator is just not a Fredholm oper-
ator. This motivated the following

Definition 2 A continuous operator V' on a Banach space ® is a Riesz operator
if
1) for any non-zero complex number z

i) z — V is a Fredholm operator;
ii) the ascent and descent of z—V are finite, i.e. the chains (z—V)~"(0)
and (z — V)"(®) become stationary;

2) the eigenvalues of V form a finite set or a sequence converging to zero.

We see that the class of Riesz operators comprises those operators for which the
Riesz-Schauder theory of compact operators is valid [32, 38]. In Banach spaces
Riesz operators may be characterised by the following theorem of Ruston [36]

Theorem 3 A continuous operator V on a Banach space ® is a Riesz operator
if and only if

1) the operator valued function z — (I —2V)~™1 is meromorphic in the entire
plane;

2) the residues at the poles are finite rank projectors.
See [36] for the proof.

Remark Ruston’s result may be restated in terms of the resolvent of V. The
operator V is a Riesz operator if, and only if, the resolvent (z — V)~! is mero-
morphic on C \ {0} with the Riesz projectors associated with the poles (see
theorem 2) having finite dimensional ranges.



Ruston also showed that for Riesz operators a determinant theory analogous
to Fredholm’s determinant theory for integral equations [11] is valid.

The definitions given above can be generalised to locally convex topological
vector spaces @. A continuous operator operator V on @ is a Fredholm operator if
it has properties 1-4 of definition 1. Similarly, the continuous operator V on ® is
a Riesz operatorif 1-2 of definition 2 hold. Our class of Riesz operators on locally
convex topological vector spaces coincides with Pietsch’s R-endomorphisms [30]
and de Bruyn’s Riesz transformations [9]. Unfortunately, de Bruyn in an earlier
paper [8] introduced a class of operators on topological vector spaces, which he
called ‘Riesz operators’ and which is different from our class of Riesz operators.
Nevertheless, the various definitions coincide in the Banach space setting (see
[17]). A further element of confusion in the locally convex scenario arises from
the fact that Ruston’s characterisation of Riesz operators is no longer valid here.
We shall, therefore, define yet another class of operators:

Definition A continuous operator V' on a locally convex topological vector
space is a Fredholm-Riesz operator if 1 and 2 of theorem 3 hold.

Wrobel [43] showed that if ® is quasi-complete and barrelled then the class of
Fredholm-Riesz operators coincides with Pietsch’s F-endomorphisms [30]. Thus,
for Fredholm-Riesz operators on rigged Hilbert spaces both, the Riesz-Schauder
theory and a determinant theory similar to Fredholm’s determinant theory are
valid. The class of Fredholm-Riesz operators, however, is in general strictly con-
tained within the class of Riesz operators (see [43] for a discussion). Finally, we
note that a continuous operator on a quasi-complete and barrelled locally convex
space is Fredholm-Riesz if and only if its dual is Fredholm-Riesz with respect
to the strong dual topology. Thus our concept of Fredholm-Riesz operators is
well suited to the rigged Hilbert space formulation of resonances.

3 The Rényi map

The Rényi map being the paradigm of a ‘chaotic’ dynamical system has received
considerable attention over the past thirty years. Rényi [31] was the first to in-
vestigate this map, or rather this family of maps, which are now named after
him. After he had shown that they are ergodic with respect to Lebesgue mea-
sure, Rokhlin [34] proved that they are even exact. More recently these maps
were re-investigated using the associated Frobenius-Perron operator of these
maps. Roepstorff [33] realised that the Bernoulli polynomials are eigenfunc-
tions of its Frobenius-Perron operator. These polynomial eigenfunctions were
also obtained by Gaspard [13] through Euler’s summation formula. Hasegawa
and Saphir [18, 19], and Antoniou and Tasaki [3] derived a generalised spectral
decomposition of the Frobenius-Perron operator using an algorithm [4] based
on the spectral decomposition technique for large Poincaré non-integrable dy-
namical systems developed by the Brussels-Austin groups [29, 28].



The S-adic Rényi map Ss on the closed unit interval [0, 1] is the multiplica-
tion modulo 1 by the integer S:

S :[0,1] = [0,1]

Sgr = fr mod 1 with f € N, > 1.

The map can also be considered as a dynamical system (Sg, A), where A denotes
the Lebesgue measure on the unit interval. The evolution of a probability den-
sity f € L*()\) under the action of Sj is given by the Frobenius-Perron operator
Up of the map (see, e.g. [24]):

Us: L'(\) = L*())

d
Usf =55 [, s
T s

where & is the Radon-Nikodym derivative with respect to A. In our case, Ug

dax
is given by o
Usf)(z) = 7" Z f(¢i(=)). (1)

Here, ¢; is the inverse of the Rényi map on its i-th interval of monotonicity, i.e.
¢i : [Oa 1] - [05 1]
T+

for 0 <i < 8 — 1. Note that the Frobenius-Perron operator can be defined on
LP()) for p > 1 as well, and thus, in particular, on the Hilbert space L2()). Its
adjoint U ; is just the Koopman operator of Sg (see [24]).

We consider the following test-function spaces:

e the strict inductive limit P of polynomials;
e the Banach space & (¢ > 0) of entire functions of exponential type c;

e the inductive limit & (¢ > 0) of entire functions of exponential type less
than c;

e the Fréchet space H(D,) (r > 1) of functions analytic in the open disk
with radius r;

e the Fréchet space C™ of infinitely differentiable functions on the closed
unit interval.



Each of these spaces is densely and continuously embedded into the following;:
P& & & =€ H(Dp) = H(D,) = C® — L?

for ¢ < ¢',r < 7' and, hence, each of them is densely and continuously
embedded into L2. Furthermore, each of these spaces is complete and barrelled,
and invariant under the Frobenius-Perron operator. In particular, we have the
following

Proposition 1 The Frobenius-Perron operator of the Rényi map is a Fredholm-
Riesz operator on each of the spaces listed above. The eigenvalues of the restric-
tion of the Frobenius-Perron to any of these spaces are simple, of geometric
multiplicity one, and are given by (%)”,n € Ny, i.e. the spectra of the restric-
tions are the same.

For the proof and a more detailed description of these spaces we refer to [5] and
[6] (see also [39] for a discussion of the £-spaces.)

We saw in the last section that isolated eigenvalues of finite algebraic mul-
tiplicity are poles of the resolvent with finite-rank residue. Thus, an analytic
continuation of the resolvent of the Frobenius-Perron operator of the Rényi map
restricted to the spaces listed above will yield all the Ruelle resonances of the
system. The residues are rank-1 projectors, which may be obtained via con-
tour integration. In particular, the analytic continuation procedure will give
the same answers as the spectral decomposition technique.
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